PENGARUH MODIFIKASI GEOMETRI FINS TERHADAP PERFORMA TERMAL HEATSINK VERTIKAL

  • Widyastutifajri Nuha Universitas Gadjah Mada
  • Agusyarif Rezka Nuha Universitas Negeri Gorontalo
  • Muhammad Ikhlas Universitas Gadjah Mada
Keywords: Heatsink, Fins, Rayleigh Number, Koefisien Perpindahan Panas

Abstract

Komponen elektronik memiliki perkembangan teknologi yang sangat pesat dalam beberapa dekade terakhir. Heatsink adalah perangkat yang digunakan untuk menghilangkan panas dari komponen elektronik dengan tujuan untuk menjaga perangkat elektronik tetap beroperasi pada temperatur kerjanya. Salah satu metode yang dapat digunakan untuk meningkatkan efisiensi perpindahan panas heatsink adalah dengan memodifikasi geometrinya untuk memperoleh model yang lebih optimal. Penelitian ini menginvestigasi pengaruh fins heatsink konvensional (Model A) dan modifikasi geometri fins heatsink (Model B) terhadap performa termal heatsink dengan variasi beban kalor. Penelitian ini menggunakan Computational Fluid
Dynamics untuk mesimulasikan, menganalisis dan memodelkan perpindahan panas fluida di sekitar heatsink. Hasil penelitian ini menunjukan bahwa Model B memiliki nilai koefisien perpindahan kalor lebih besar yaitu 2,51% sampai 7,07% dibandingkan dengan Model A. Secara keseluruhan modifikasi fins heatsin Model B memberikan peningkatan pada performa termal heatsink.

Downloads

Download data is not yet available.

References

I. W. Sutaya, “Peningkatan Kinerja Perangkat Elektronik Berbasis Mikrokontroler Avr 8 Bit Dengan Menggunakan Rtos (Real Time Operating System),” J. Pendidik. Teknol. dan Kejuru., vol. 12, no. 1, pp. 11–19, 2015, doi: 10.23887/jptk.v12i1.4897.

N. Khamkar et al., “HEAT SINK DESIGN FOR OPTIMAL PERFORMANCE OF COMPACT ELECTRONIC APPLIANCES-A REVIEW Performance analysis of Smart Wheel Chair View project IOT Based Electronics System View project,” no. October, 2017, [Online]. Available: https://www.researchgate.net/publication/320187880

H. Khurshid, K. Silaipillayarputhur, and T. Al Mughanam, “Design of a Heat Sink for an Electronic Component in ABB Drive using Different Types of Fins,” MATEC Web Conf., vol. 249, 2018, doi: 10.1051/matecconf/201824903009.

H. E. Ahmed, B. H. Salman, A. S. Kherbeet, and M. I. Ahmed, “Optimization of thermal design of heat sinks: A review,” Int. J. Heat Mass Transf., vol. 118, 2018, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.099.

A. Jameel and S. Al-Damook, Design Optimisation and Analysis of Heat Sinks for Electronic Cooling. 2016.

I. El Ghandouri, A. El Maakoul, S. Saadeddine, M. Meziane, and I. Dhriss, “Comparison of thermal performance of plate and corrugated fin heatsinks with a modified base under free convection,” Mater. Today Proc., vol. 66, no. April, pp. 100–108, 2022, doi: 10.1016/j.matpr.2022.03.676.

H. Patel and V. K. Matawala, “Performance Evaluation and parametric optimization of a Heat Sink for Cooling of Electronic Devices with Entropy Generation Minimization,” Eur. J. Sustain. Dev. Res., vol. 3, no. 4, 2019, doi: 10.29333/ejosdr/5896.

K. Yazawa and A. Shakouri, “Exergy Analysis and Entropy Generation Minimization of Thermoelectric Waste Heat Recovery for Electronics,” in Proceedings of the ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic, 2011, pp. 741–744. doi: https://doi.org/10.1115/IPACK2011-52191.

W.-X. Chu, Y.-C. Lin, C.-Y. Chen, and C.-C. Wang, “Experimental and numerical study on the performance of passive heat sink having alternating layout,” Int. J. Heat Mass Transf., vol. 135, pp. 822–836, 2019, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.034.

A. A. Almubarak, “The Effects of Heat on Electronic Components,” Int. J. Eng. Res. Appl., vol. 07, no. 05, pp. 52–57, 2017, doi: 10.9790/9622-0705055257.

R. C. Adhikari, D. H. Wood, and M. Pahlevani, “An experimental and numerical study of forced convection heat transfer from rectangular fins at low Reynolds numbers,” Int. J. Heat Mass Transf., vol. 163, 2020, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120418.

T. Yeom et al., “An active heat sink system with piezoelectric translational agitators and micro pin fin arrays,” ASME Int. Mech. Eng. Congr. Expo. Proc., vol. 7, no. PARTS A, B, C, D, pp. 1479–1488, 2012, doi: 10.1115/IMECE2012-88449.

B. S. Lazarov, O. Sigmund, K. E. Meyer, and J. Alexandersen, “Experimental validation of additively manufactured optimized shapes for passive cooling,” Appl. Energy, vol. 226, no. June, pp. 330–339, 2018, doi: 10.1016/j.apenergy.2018.05.106.

N. Titahelu, “Perpindahan Kalor Konveksi Natural Dari Silinder Horisontal Isothermal Set Dalam Saluran Vertikal,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 1, no. 1, pp. 30–38, 2021, doi: 10.30598/metiks.2021.1.1.30-38.

C. Zing, S. Mahjoob, and K. Vafai, “Analysis of porous filled heat exchangers for electronic cooling,” Int. J. Heat Mass Transf., vol. 133, pp. 268–276, 2019, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.067.

M. Baldry, V. Timchenko, and C. Menictas, “Optimal design of a natural convection heat sink for small thermoelectric cooling modules,” Appl. Therm. Eng., vol. 160, 2019, doi: https://doi.org/10.1016/j.applthermaleng.2019.114062.

S.-H. Yu, K.-S. Lee, and S.-J. Yook, “Natural convection around a radial heat sink,” Int. J. Heat Mass Transf., vol. 53, pp. 2935–2938, 2010, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.032.

E. Z. Ahmad, A. Fazlizan, H. Jarimi, K. Sopian, and A. Ibrahim, “Enhanced heat dissipation of truncated multi-level fin heat sink (MLFHS) in case of natural convection for photovoltaic cooling,” Case Stud. Therm. Eng., vol. 28, no. March, p. 101578, 2021, doi: 10.1016/j.csite.2021.101578.

E. C. Silva, Á. M. Sampaio, and A. J. Pontes, “Evaluation of active heat sinks design under forced convection—effect of geometric and boundary parameters,” Materials (Basel)., vol. 14, no. 8, 2021, doi: 10.3390/ma14082041.

V. A. F. Costa and A. M. G. Lopes, “Improved radial heat sink for led lamp cooling,” Appl. Therm. Eng., vol. 70, pp. 131–138, 2014, doi: https://doi.org/10.1016/j.applthermaleng.2014.04.068.

X. Meng, J. Zhu, X. Wei, and Y. Yan, “Natural convection heat transfer of a straight-fin heat sink,” Int. J. Heat Mass Transf., vol. 123, pp. 561–568, 2018, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.002.

Q. Luo et al., “Experimental investigation on the heat dissipation performance of flared-fin heat sinks for concentration photovoltaic modules,” Appl. Therm. Eng., vol. 157, 2019, doi: https://doi.org/10.1016/j.applthermaleng.2019.04.076.

S. Feng, M. Shi, H. Yan, S. Sun, F. Li, and T. J. Lu, “Natural convection in a cross-fin heat sink,” Appl. Therm. Eng., vol. 132, pp. 30–37, 2018, doi: https://doi.org/10.1016/j.applthermaleng.2017.12.049.

T. K. Ibrahim et al., “Experimental study on the effect of perforations shapes on vertical heated fins performance under forced convection heat transfer,” Int. J. Heat Mass Transf., vol. 118, no. November 2017, pp. 832–846, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.11.047.

M. R. Shaeri, M. Yaghoubi, and K. Jafarpur, “Heat transfer analysis of lateral perforated fin heat sinks,” Appl. Energy, vol. 86, no. 10, pp. 2019–2029, 2009, doi: https://doi.org/10.1016/j.apenergy.2008.12.029.

T. H. Ji, S. Y. Kim, and J. M. Hyun, “Pressure drop and heat transfer correlations for triangular folded fin heat sinks,” IEEE Trans. Components Packag. Technol., vol. 30, no. 1, pp. 3–8, 2007, doi: 10.1109/TCAPT.2006.885943.

A. Gaikwad, A. Sathe, and S. Sanap, “A design approach for thermal enhancement in heat sinks using different types of fins: A review,” Front. Therm. Eng., vol. 2, no. January, pp. 1–13, 2023, doi: 10.3389/fther.2022.980985.

M. Selvan, M. S. Abdul Aziz, K. H. Yu, M. S. Nurulakmal, H. P. Ong, and C. Y. Khor, “A study on the effect of fin pitch variation on the thermal performance of a bus duct conductor,” Int. J. Therm. Sci., vol. 184, no. 107938, p. 107938, Feb. 2023, doi: 10.1016/j.ijthermalsci.2022.107938.

S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transf., vol. 18, no. 11, pp. 1323–1329, 1975, doi: https://doi.org/10.1016/0017-9310(75)90243-4.

Published
2023-10-11