STUDI PERFORMANCE TURBIN ANGIN AKSIAL KECEPATAN RENDAH 3 BLADE DENGAN PROFIL AIRFOIL NACA 6 DIGIT

  • Corie Fany Refwalu Universitas Pattimura
  • Wulfilla Maximilian Rumaherang Universitas Pattimura
  • Salvester Maitimu Universitas Pattimura
Keywords: model turbin angin 3 blade, NACA 6 digit, koefesien torsi, koefesien daya, MPP

Abstract

Salah satu tantangan pengembangan turbin angin beradasarkan data potensi angin pada wilayah Maluku adalah sebagian besar wilayah mempunyai potensi angin kecepatan rendah yang berkisar antara 2-6 m/s, sehingga diperlukan analisis tepat penerapan teknologinya.  Koefisien daya turbin aliran terbuka dalam banyak penelitian terdahulu untuk turbin aliran terbuka mempunyai koefesien daya cukup rendah walau beberapa hasil simulasi hidrodinamik menunjukkan koefesien daya mendekati nilai Betz limit, dimana bentuk airfoil blade yang digunakan mempunyai pengaruh yang besar. Penelitian ini merupakan tinjauan penggunaan profil airfoil National Advisory Committee for Aeronautics (NACA) 6 digit pada data base NACA  dengan melakukan eksperimen dengan pembebanan bertahap pada range kecepatan angin 2-6 m/s dengan putaran turbin sesuai nilai tip speed ratio (TSR) yang ditetapkan.   Perbandingan daya maksimum atau daya pada kecepatan rotasi optimum dilakukan melalui tracking daya maksimum yaitu pada TSR atau kecepatan rotasi optimum untuk menentukan kinerja airfoil. Hasil tracking titik maximum power point (MPP) yang diperoleh menunjukan bahwa MPP model turbin dalam kasus ini  adalah 0.86 kali daya turbin (Betz limit) atau 0.51 kali daya kinetic angin, sehingga profil airfoil NACA 6 digit ini dapat digunakan pada turbin angin dengan kecepatan 2-8 m/s.

Downloads

Download data is not yet available.

References

“,Penurunan Emisi Sektor Energi 2021 Berhasil Lampaui Target,” Kementerian ESDM, 2021. [Online]. Available: https://ebtke.esdm.go.id/post/2022/09/08/3254/penurunan.emisi.sektor.energi.2021.berhasil.lampaui.target

C. Yiğit and U. Durmaz, “Wind Turbine Blade Design with Computational Fluid Dynamics Analysis,” Int. J. Comput. Exp. Sci. Eng., vol. 3, no. 2, pp. 44–49, 2017, doi: https://dergipark.org.tr/tr/pub/ijcesen/issue/31604/346639.

W. M. Rumaherang, B. Laconawa, N. Titahelu, and J. Louhenapessy, “Kajian Perbandingan Performance Energi Turbin Angin Model Ducted Dengan Un-Ducted,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 2, no. 1, pp. 56–64, 2022, doi: 10.30598/metiks.2022.2.1.56-64.

S. J. Etwan Sarwuna, W. M. Rumaherang, and C. S. Edwina Tupamahu, “Sosialisasi & Pelatihan EBT untuk Menciptakan Kemandirian Penyediaan Listrik Secara Mandiri,” J. Pengabdi. Masy., vol. 2, no. 1, pp. 161–169, 2022, doi: 10.31004/abdira.v2i1.48.

M. D. Nursidik, I. N. Gusniar, V. Naubnome, and O. -, “Manufaktur Bilah Horizontal Axis Wind Turbine (HAWT) Tipe Taperless Menggunakan Airfoil S3024 dengan Daya 500 WATT di PT. Lentera Bumi Nusantara,” Infomatek, vol. 32, no. 2, pp. 79–90, 2021, doi: 10.23969/infomatek.v23i2.4405.

H. Eftekhari, A. S. Mahdi Al-Obaidi, and S. Eftekhari, “Aerodynamic Performance of Vertical and Horizontal Axis Wind Turbines: A Comparison Review,” Indones. J. Sci. Technol., vol. 7, no. 1, pp. 65–88, 2022, doi: 10.17509/ijost.v7i1.43161.

Z. Zhang, “Conceptual Errors in Actuator Disc Theory and Betz’s Law for Wind Turbines,” Energies, vol. 15, no. 16, 2022, doi: 10.3390/en15165902.

A. Fadila and I. Zakaria, “Rancang Bangun Turbin Angin Tipe Darrieus Tiga Sudu Rangkap Tiga dengan Profil NACA 0006,” Eksergi, vol. 15, no. 3, p. 102, 2020, doi: 10.32497/eksergi.v15i3.1785.

P. Kecepatan Angin and F. Aryanto, “(0370) 636087; 636126,” Din. Tek. Mesin, vol. 3, no. 1, p. 636087, 2013.

R. Aji Saputra, C. G. Indra Partha, and I. W. Sukerayasa, “Rancang Bangun Sistem Pemanen Energi Angin Exhaust Fan Turbin Angin Sumbu Horizontal Dengan Pengarah Angin (Wind Tunnel),” J. SPEKTRUM, vol. 8, no. 2, p. 229, 2021, doi: 10.24843/spektrum.2021.v08.i02.p26.

M. Suzuki, “Numerical Analysis of Horizontal-Axis Wind Turbine Characteristics in Yawed Conditions,” Open J. Fluid Dyn., vol. 02, no. 04, pp. 331–336, 2012, doi: 10.4236/ojfd.2012.24a041.

A. H. Muheisen, M. A. R. Yass, and I. K. Irthiea, “Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences,” J. King Saud Univ. - Eng. Sci., vol. 35, no. 1, pp. 69–81, 2023, doi: 10.1016/j.jksues.2021.02.014.

R. Vennell, S. W. Funke, S. Draper, C. Stevens, and T. Divett, “Designing large arrays of tidal turbines: A synthesis and review,” Renew. Sustain. Energy Rev., vol. 41, pp. 454–472, 2015, doi: 10.1016/j.rser.2014.08.022.

J. Zhu, X. Cai, and R. Gu, “Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades,” Energies, vol. 9, no. 2, p. 66, 2016, doi: 10.3390/en9020066.

I. Sadrehaghighi, “Horizontal Axis Wind Turbines (HAWT) with Case Studies,” Annapolis, Md, no. 02, pp. 1–112, 2022, [Online]. Available: https://www.researchgate.net/publication/338670555

B. A. J. Al-Quraishi, N. Z. B. Asmuin, S. Bin Mohd, W. A. Abd Al-Wahid, A. N. Mohammed, and D. H. Didane, “Review on diffuser augmented wind turbine (DAWT),” Int. J. Integr. Eng., vol. 11, no. 1, pp. 178–206, 2019, doi: 10.30880/ijie.2019.11.01.021.

K. Watanabe, Y. Ohya, and T. Uchida, “Power output enhancement of a ducted wind turbine by stabilizing vortices around the duct,” Energies, vol. 12, no. 16, 2019, doi: 10.3390/en12163171.

Pranoto and A. Akbar, “Analisa Daya Turbin Angin Sumbu Horizontal Profil NACA 0015 Dengan Variasi Jumlah Blade,” pp. 147–152, 2018.

A. E. M. M. Hassan, M. A. Sayed, and E. E. M. Mohamed, “Three-Phase Matrix Converter Based Sliding Mode Controller Applied to Wind Energy Conversion System with Wind Speed Estimation,” vol. 2, no. 5, pp. 22–30, 2016, doi: 10.11648/j.ajme.20160205.11.

M. S. Haider Khan and S. Kumar Mallik, “Mechanical sensorless control of a rotor-tied DFIG wind energy conversion system using a high gain observer,” J. King Saud Univ. - Eng. Sci., no. xxxx, 2022, doi: 10.1016/j.jksues.2022.05.005.

X. Zhang, J. Jia, L. Zheng, W. Yi, and Z. Zhang, “Maximum power point tracking algorithms for wind power generation system: Review, comparison and analysis,” Energy Sci. Eng., vol. 11, no. 1, pp. 430–444, 2023, doi: 10.1002/ese3.1313.

W. M. Rumaherang, “The effect of diameter ratio on energy parameters of the tidal turbine tidal turbine,” Din. Tek. Mesin, vol. 10, no. 1, p. 1, 2020, doi: 10.29303/dtm.v10i1.306.

M. L. Hansen, N. N. Sørensen, and R. G. J. Flay, “Effect of Placing a Diffuser around a Wind Turbine,” Wind Energy, vol. 3, pp. 2007–2013, 2000, doi: https://doi.org/10.1002/we.37.

K. K. M. S. Kariyawasam, K. K. N. P. Karunarathna, R. M. A. Karunarathne, M. P. D. S. C. Kularathne, and K. T. M. U. Hemapala, “Design and Development of a Wind Turbine Simulator Using a Separately Excited DC Motor,” Smart Grid Renew. Energy, vol. 04, no. 03, pp. 259–265, 2013, doi: 10.4236/sgre.2013.43031.

A. T. De Oliveira, A. Carolina, and R. Maia, “ANALYSIS OF A VERTICAL-AXIS WIND TURBINE WITH BLADE PITCH CONTROL ANALYSIS OF A VERTICAL-AXIS WIND TURBINE WITH BLADE PITCH CONTROL MECHANISM by Kimberlly Costa Carvalho , Rafael Alves da Silva Oriented by : Dietmar Rempfer Final Report for Summer Researc,” no. July 2016, 2017.

G. A. M. Van Kuik, “On the velocity at wind turbine and propeller actuator discs,” Wind Energy Sci., vol. 5, no. 3, pp. 855–865, 2020, doi: 10.5194/wes-5-855-2020.

D. J. Sharpe, “A general momentum theory applied to an energy-extracting actuator disc,” Wind Energy, vol. 7, pp. 177–188, 2004, doi: https://doi.org/10.1002/we.118.

G. A. M. Van Kuik, J. N. Sørensen, and V. L. Okulov, “Rotor theories by Professor Joukowsky: Momentum theories,” Prog. Aerosp. Sci., vol. 73, no. February, pp. 1–18, 2015, doi: 10.1016/j.paerosci.2014.10.001.

B. Maghni, A. Saadoun, D. Dib, and A. Yassine, “Modeling and Control of a Variable-Speed for Permanent Magnet Direct Drive Wind Energy Conversion Systems,” no. May 2016, 2020.

C. S. Yusuf Ismail Nakhoda, “Pembangkit Listrik Tenaga Angin Sumbu Vertikal Untuk Penerangan Rumah Tangga Di Daerah Pesisir Pantai,” Inst. Teknol. Nas. Malang, vol. 7, no. 1, pp. 20–28, 2017.

A. Benatiallah, D. Benatiallah, T. Ghaitaoui, A. Harrouz, and S. Mansouri, “Modelling and simulation of renewable energy systems in Algeria,” Int. J. Sci. Appl. Inf. Technol., vol. 7, no. 1, pp. 17–22, 2017, [Online]. Available: https://www.researchgate.net/publication/325313792_Modelling_and_Simulation_of_Renewable_Energy_Systems_in_Algeria/figures?lo=1

M. Predescu, A. Bejinariu, O. Mitroi, and A. Nedelcu, “Influence of the number of blades on the mechanical power curve of wind turbines,” Renew. Energy Power Qual. J., vol. 1, no. 7, pp. 825–830, 2009, doi: 10.24084/repqj07.519.

M. Ge, D. Tian, and Y. Deng, “Reynolds Number Effect on the Optimization of a Wind Turbine Blade for Maximum Aerodynamic Efficiency,” J. Energy Eng., vol. 142, no. 1, 2016, doi: 10.1061/(asce)ey.1943-7897.0000254.

B. Kanya and K. D. Visser, “Experimental validation of a ducted wind turbine design strategy,” Wind Energy Sci., vol. 3, no. 2, pp. 919–928, 2018, doi: 10.5194/wes-3-919-2018.

E. Kleusberg, P. Schlatter, and D. H. S., “Wind Energy - 2020 - Kleusberg - Parametric dependencies of the yawed wind‐turbine wake development.pdf,” Wind Energy, vol. 23, pp. 1367–1380, 2020, doi: https://doi.org/10.1002/we.2395.

F. Papi, A. Nocentini, G. Ferrara, and A. Bianchini, “On the use of modern engineering codes for designing a small wind turbine: An annotated case study,” Energies, vol. 14, no. 4, 2021, doi: 10.3390/en14041013.

F. Mühle, M. S. Adaramola, and L. Sretran, “The effect of the number of blades on wind turbine wake - A comparison between 2-and 3-bladed rotors,” J. Phys. Conf. Ser., vol. 753, no. 3, 2016, doi: 10.1088/1742-6596/753/3/032017.

K. A. Adeyeye, N. Ijumba, and J. Colton, “The Effect of the Number of Blades on the Efficiency of A Wind Turbine,” IOP Conf. Ser. Earth Environ. Sci., vol. 801, no. 1, 2021, doi: 10.1088/1755-1315/801/1/012020.

M. Kesraoui, N. Korichi, and A. Belkadi, “Maximum power point tracker of wind energy conversion system, Renewable Energy,” Renew. Energy, vol. 36, no. 10, pp. 2655–2662, 2011, doi: https://doi.org/10.1016/j.renene.2010.04.028.

Published
2023-10-20