THERMAL PERFORMANCE OF STAGGERED BARE TUBE BANK HEAT EXCHANGER AS AIR PRE-HEATER FOR SEAWEED CONVECTIVE DRYER

  • Jehuda Marcoveej Titahelu Universitas Pattimura
  • Cendy Sophia Edwina Tupamahu Universitas Pattimura
  • Benjamin Golfin Tentua Universitas Pattimura
  • Sefnath Josep Etwan Sarwuna Universitas Pattimura
  • Antoni Simanjuntak Universitas Pattimura
  • Nicolas Titahelu Universitas Pattimura
Keywords: Penukar kalor tube bank, tata letak staggered bare tube, kinerja termal, pemanas awal udara, suhu udara keluar

Abstract

Abstrak Pemanfaatan energi limbah panas pengering dengan suhu keluar < 55 C melalui penukar kalor tube bank bare staggered sebagai pemanas awal udara untuk pengeringan rumput laut. Penelitian bertujuan untuk mendapatkan kecepatan udara efektif dimana kinerja termal maksimum dan suhu udara keluar penukar kalor. Metode penelitian eksperimental dengan memvariasikan kecepatan udara 0,5 hingga 2,5 m/s pada ST, SL, D dan L konstan. Pengambilan data terukur kecepatan udara bebas, suhu fluida dingin, dan suhu fluida panas setelah sistem mencapai keadaan tunak. Hasil penelitian menunjukkan bahwa semakin meningkat kecepatan udara bebas maka semakin besar pula kinerja termal dan koefisien konveksi masing-masing sebesar 38,77% dan 38,05% pada kecepatan udara bebas maksimum. Sebaliknya semakin besar kecepatan udara bebas maka suhu keluar akan semakin menurun sebesar 99,60%, dimana suhu udara keluar maksimum berada pada kecepatan udara bebas 2,5 m/s sebesar 303,6 K atau kenaikan sebesar 1,9 derajat. Disimpulkan bahwa sebaiknya penukar kalor ini beroperasi pada kecepatan udara bebas 1,0 m/s guna menjaga keseimbangan kinerja termal dan suhu udara keluar.

Downloads

Download data is not yet available.

References

A. García-Olivares, J. Solé, and O. Osychenko, “Transportation in a 100% renewable energy system,” Energy Convers. Manag., vol. 158, no. August 2017, pp. 266–285, 2018, doi: 10.1016/j.enconman.2017.12.053.

D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strateg. Rev., vol. 24, no. June 2018, pp. 38–50, 2019, doi: 10.1016/j.esr.2019.01.006.

D. A. Cullen et al., “New roads and challenges for fuel cells in heavy-duty transportation,” Nat. Energy, vol. 6, no. 5, pp. 462–474, 2021, doi: 10.1038/s41560-021-00775-z.

S. Griffiths, D. Furszyfer Del Rio, and B. Sovacool, “Policy mixes to achieve sustainable mobility after the COVID-19 crisis,” Renew. Sustain. Energy Rev., vol. 143, no. February, p. 110919, 2021, doi: 10.1016/j.rser.2021.110919.

V. Chan, A. Davies, L. Wellard-Cole, and M. Allman-Farinelli, “The energy density of meals and snacks consumed by young Australian adults (18-30 years old) are influenced by preparation location but not screen use nor social interactions: findings from the MYMeals wearable camera study,” J. Nutr. Sci., vol. 11, no. 5, pp. 1–11, 2022, doi: 10.1017/jns.2022.76.

M. A. Alkhadra et al., “Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion,” Chem. Rev., vol. 122, no. 16, pp. 13547–13635, 2022, doi: 10.1021/acs.chemrev.1c00396.

R. Krishnamoorthy, I. D. Soubache, and S. Jain, “Wireless Communication Based Evaluation of Power Consumption for Constrained Energy System,” Wirel. Pers. Commun., vol. 127, no. 1, pp. 737–748, 2022, doi: 10.1007/s11277-021-08402-6.

G. Kalt, D. Wiedenhofer, C. Görg, and H. Haberl, “Conceptualizing energy services: A review of energy and well-being along the Energy Service Cascade,” Energy Res. Soc. Sci., vol. 53, no. November 2018, pp. 47–58, 2019, doi: 10.1016/j.erss.2019.02.026.

M. Farghali et al., Strategies to save energy in the context of the energy crisis: a review, vol. 21, no. 4. Springer International Publishing, 2023. doi: 10.1007/s10311-023-01591-5.

J. Johannesson and D. Clowes, “Energy Resources and Markets - Perspectives on the Russia-Ukraine War,” Eur. Rev., vol. 30, no. 1, pp. 4–23, 2022, doi: 10.1017/S1062798720001040.

G. B. de Campos, C. Bringhenti, A. Traverso, and J. T. Tomita, “Thermoeconomic optimization of organic Rankine bottoming cycles for micro gas turbines,” Appl. Therm. Eng., vol. 164, p. 114477, 2020, doi: 10.1016/j.applthermaleng.2019.114477.

Y. W. Huang, M. Q. Chen, and L. Jia, “Assessment on thermal behavior of municipal sewage sludge thin-layer during hot air forced convective drying,” Appl. Therm. Eng., vol. 96, pp. 209–216, Mar. 2016, doi: 10.1016/j.applthermaleng.2015.11.090.

R. Moreira, F. Chenlo, J. Sineiro, S. Arufe, and S. Sexto, “Water Sorption Isotherms and Air Drying Kinetics of Fucus vesiculosus Brown Seaweed,” J. Food Process. Preserv., vol. 41, no. 4, Aug. 2017, doi: 10.1111/jfpp.12997.

M. Stramarkou, S. Papadaki, K. Kyriakopoulou, and M. Krokida, “Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris,” J. Appl. Phycol., vol. 29, no. 6, pp. 2947–2960, 2017, doi: 10.1007/s10811-017-1181-8.

S. Kazemi, M. I. M. Nor, and W. H. Teoh, “Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production,” Energy, vol. 193, p. 116722, 2020, doi: 10.1016/j.energy.2019.116722.

M. H. Masud, A. A. Ananno, A. M. E. Arefin, R. Ahamed, P. Das, and M. U. H. Joardder, “Perspective of biomass energy conversion in Bangladesh,” Clean Technologies and Environmental Policy, vol. 21, no. 4. Springer Verlag, pp. 719–731, May 15, 2019. doi: 10.1007/s10098-019-01668-2.

Z. Su et al., “Green and efficient configuration of integrated waste heat and cold energy recovery for marine natural gas/diesel dual-fuel engine,” Energy Convers. Manag., vol. 209, no. March, 2020, doi: 10.1016/j.enconman.2020.112650.

E. Blanco-Davis and P. Zhou, “Life Cycle Assessment as a complementary utility to regulatory measures of shipping energy efficiency,” Ocean Eng., vol. 128, no. September 2015, pp. 94–104, 2016, doi: 10.1016/j.oceaneng.2016.10.015.

A. Akbari, S. Kouravand, and G. Chegini, “Experimental analysis of a rotary heat exchanger for waste heat recovery from the exhaust gas of dryer,” Appl. Therm. Eng., vol. 138, pp. 668–674, Jun. 2018, doi: 10.1016/j.applthermaleng.2018.04.103.

S. M. Shalaby, M. A. Bek, and A. E. Kabeel, “Design Recommendations for Humidification-dehumidification Solar Water Desalination Systems,” in Energy Procedia, Elsevier Ltd, Feb. 2017, pp. 270–274. doi: 10.1016/j.egypro.2016.12.148.

A. E. Kabeel, M. Abdelgaied, and A. Eisa, “Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials,” J. Clean. Prod., vol. 183, pp. 20–25, May 2018, doi: 10.1016/j.jclepro.2018.02.144.

N. Titahelu, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Evaluasi Kinerja Pelat Kolektor Datar Dengan Berbagai Model Tube Kolektor Sebagai Pemanas Air Surya Aktif,” ALE Proceeding, vol. 5, pp. 53–58, 2022, doi: 10.30598/ale.5.2022.53-58.

N. S. F. Syatauw, A. Simanjuntak, and N. Titahelu, “Analisis kinerja panel surya akibat pendinginan aktif,” Isometri, vol. 2, no. 1, 2023.

M. Yahya, A. Fudholi, and K. Sopian, “Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace,” Renew. Energy, vol. 105, pp. 22–29, 2017, doi: 10.1016/j.renene.2016.12.049.

Hamdani, T. A. Rizal, and Z. Muhammad, “Fabrication and testing of hybrid solar-biomass dryer for drying fish,” Case Stud. Therm. Eng., vol. 12, pp. 489–496, Sep. 2018, doi: 10.1016/j.csite.2018.06.008.

M. C. Ndukwu, M. Simo-Tagne, F. I. Abam, O. S. Onwuka, S. Prince, and L. Bennamoun, “Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger,” Heliyon, vol. 6, no. 2, Feb. 2020, doi: 10.1016/j.heliyon.2020.e03401.

I. B. Alit, I. G. B. Susana, and I. M. Mara, “Utilization of rice husk biomass in the conventional corn dryer based on the heat exchanger pipes diameter,” Case Stud. Therm. Eng., vol. 22, Dec. 2020, doi: 10.1016/j.csite.2020.100764.

N. Badshah, K. A. Al-attab, and Z. A. Zainal, “Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass,” Energy, vol. 198, 2020, doi: 10.1016/j.energy.2020.117340.

W. M. Rumaherang, B. Laconawa, N. Titahelu, and J. Louhenapessy, “Kajian Perbandingan Performance Energi Turbin Angin Model Ducted Dengan Un-Ducted,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 2, no. 1, pp. 56–64, 2022, doi: 10.30598/metiks.2022.2.1.56-64.

N. Jamshidi and A. Mosaffa, “Investigating the effects of geometric parameters on finned conical helical geothermal heat exchanger and its energy extraction capability,” Geothermics, vol. 76, pp. 177–189, Nov. 2018, doi: 10.1016/j.geothermics.2018.07.007.

A. Keshvarparast, S. S. M. Ajarostaghi, and M. A. Delavar, “Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser,” Appl. Therm. Eng., vol. 172, May 2020, doi: 10.1016/j.applthermaleng.2020.115160.

F. Esmaeilion, “Hybrid renewable energy systems for desalination,” Appl. Water Sci., vol. 10, no. 3, Mar. 2020, doi: 10.1007/s13201-020-1168-5.

W. M. Rumaherang and J. Latuny, “Fluid Flow Study in Various Shapes and Sizes of Horizontal Axis Sea Current Turbine,” Sinergi, vol. 25, no. 3, p. 289, 2021, doi: 10.22441/sinergi.2021.3.006.

M. W. Kareem, S. I. Gilani, K. Habib, K. Irshad, and B. B. Saha, “Performance analysis of a multi-pass solar thermal collector system under transient state assisted by porous media,” Sol. Energy, vol. 158, pp. 782–791, Dec. 2017, doi: 10.1016/j.solener.2017.10.016.

J. Li, Z. Yang, S. Hu, F. Yang, and Y. Duan, “Effects of shell-and-tube heat exchanger arranged forms on the thermo-economic performance of organic Rankine cycle systems using hydrocarbons,” Energy Convers. Manag., vol. 203, Jan. 2020, doi: 10.1016/j.enconman.2019.112248.

S. A. Nada, R. Khater, and M. A. Mahmoud, “Thermal characteristics enhancement of helical cooling-dehumidifying coils using strips fins,” Therm. Sci. Eng. Prog., vol. 16, May 2020, doi: 10.1016/j.tsep.2020.100482.

Z. Mat Nawi, S. K. Kamarudin, S. R. Sheikh Abdullah, and S. S. Lam, “The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle,” Energy, vol. 166, pp. 17–31, 2019, doi: 10.1016/j.energy.2018.10.064.

M. C. Rajagopal et al., “Materials-to-device design of hybrid metal-polymer heat exchanger tubes for low temperature waste heat recovery,” Int. J. Heat Mass Transf., vol. 143, Nov. 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118497.

X. Han, H. Zou, J. Wu, C. Tian, M. Tang, and G. Huang, “Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus,” Renew. Energy, vol. 152, pp. 835–848, Jun. 2020, doi: 10.1016/j.renene.2020.01.075.

A. Singh, J. Sarkar, and R. R. Sahoo, “Experiment on waste heat recovery-assisted heat pump drying of food chips: Performance, economic, and exergoeconomic analyses,” J. Food Process. Preserv., vol. 44, no. 9, Sep. 2020, doi: 10.1111/jfpp.14699.

G. V. Ochoa, J. P. Rojas, and J. D. Forero, “Advance Exergo-economic analysis of a waste heat recovery system using ORC for a bottoming natural gas engine,” Energies, vol. 13, no. 1, 2020, doi: 10.3390/en13010267.

Z. Cheng, Z. Tan, Z. Guo, J. Yang, and Q. Wang, “Technologies and fundamentals of waste heat recovery from high-temperature solid granular materials,” Applied Thermal Engineering, vol. 179. Elsevier Ltd, Oct. 01, 2020. doi: 10.1016/j.applthermaleng.2020.115703.

O. Chibuike, D. N. Olisaemeka Chukwudozie, D. N. Nnaemeka Reginald, D. O. Chukwunenye Anthony, D. I. Onyechege Johnson, and P. E. Enyioma Anyanwu, “Energy Consumption of Yam Slice Drying in an Exhaust Gas Waste Heat Recovery Hot Air Tray Dryer,” Sci. Res. J., vol. 9, no. 8, pp. 1–7, Aug. 2021, doi: 10.31364/scirj/v9.i08.2021.p0821872.

Z. Su et al., “Opportunities and strategies for multigrade waste heat utilization in various industries: A recent review,” Energy Convers. Manag., vol. 229, no. January, p. 113769, 2021, doi: 10.1016/j.enconman.2020.113769.

S. Lion, C. N. Michos, I. Vlaskos, C. Rouaud, and R. Taccani, “A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications,” Renew. Sustain. Energy Rev., vol. 79, no. May, pp. 691–708, 2017, doi: 10.1016/j.rser.2017.05.082.

M. H. Masud, M. U. Joardder, M. Tariqul Islam, M. Munthakimoon Hasan, and M. Muntasir Ahmed, “Feasibility of utilizing waste heat in drying of plant-based food materials Renewable Energy View project Intermittent Microwave convective drying View project Feasibility of utilizing waste heat in drying of plant-based food materials,” Int. Conf. Mech. Ind. Mater. Eng., vol. 2017, 2017, [Online]. Available: https://www.researchgate.net/publication/325321933

J. D. Abraham, A. S. Dhoble, and C. K. Mangrulkar, “Numerical analysis for thermo-hydraulic performance of staggered cross flow tube bank with longitudinal tapered fins,” Int. Commun. Heat Mass Transf., vol. 118, Nov. 2020, doi: 10.1016/j.icheatmasstransfer.2020.104905.

A. T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Appl. Energy, vol. 231, no. March, pp. 138–166, 2018, doi: 10.1016/j.apenergy.2018.09.022.

X. Wang, M. Jin, W. Feng, G. Shu, H. Tian, and Y. Liang, “Cascade energy optimization for waste heat recovery in distributed energy systems,” Appl. Energy, vol. 230, no. June, pp. 679–695, 2018, doi: 10.1016/j.apenergy.2018.08.124.

A. Mahmoudi, M. Fazli, and M. R. Morad, “A recent review of waste heat recovery by Organic Rankine Cycle,” Appl. Therm. Eng., vol. 143, no. July, pp. 660–675, 2018, doi: 10.1016/j.applthermaleng.2018.07.136.

M. U. H. Joardder and M. H. Masud, “Feasibility of Advance Technologies,” in Food Preservation in Developing Countries: Challenges and Solutions, Springer International Publishing, 2019, pp. 219–236. doi: 10.1007/978-3-030-11530-2_9.

A. E. Quintero and M. Vera, “Laminar counterflow parallel-plate heat exchangers: An exact solution including axial and transverse wall conduction effects,” Int. J. Heat Mass Transf., vol. 104, pp. 1229–1245, Jan. 2017, doi: 10.1016/j.ijheatmasstransfer.2016.09.025.

H. Sun et al., “A general distributed-parameter model for thermal performance of cold box with parallel plate-fin heat exchangers based on graph theory,” Appl. Therm. Eng., vol. 148, pp. 478–490, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.054.

Y. A. Al-Turki, H. Moria, A. Shawabkeh, S. Pourhedayat, M. Hashemian, and H. S. Dizaji, “Thermal, frictional and exergetic analysis of non-parallel configurations for plate heat exchangers,” Chem. Eng. Process. - Process Intensif., vol. 161, Apr. 2021, doi: 10.1016/j.cep.2021.108319.

R. Eldeeb, V. Aute, and R. Radermacher, “Pillow plate heat exchanger weld shape optimization using approximation and parallel parameterized CFD and non-uniform rational B-splines,” Int. J. Refrig., vol. 110, pp. 121–131, Feb. 2020, doi: 10.1016/j.ijrefrig.2019.10.024.

B. O. Kwon, H. Kim, J. Noh, S. Y. Lee, J. Nam, and J. S. Khim, “Spatiotemporal variability in microphytobenthic primary production across bare intertidal flat, saltmarsh, and mangrove forest of Asia and Australia,” Mar. Pollut. Bull., vol. 151, Feb. 2020, doi: 10.1016/j.marpolbul.2019.110707.

A. M. N. Elmekawy, A. A. Ibrahim, A. M. Shahin, S. Al-Ali, and G. E. Hassan, “Performance enhancement for tube bank staggered configuration heat exchanger – CFD Study,” Chem. Eng. Process. - Process Intensif., vol. 164, Jul. 2021, doi: 10.1016/j.cep.2021.108392.

X. Song, M. Liu, X. Hu, X. Wang, T. Liao, and J. Sun, “Numerical analysis of flow across brush elements based on a 2-D staggered tube banks model,” Aerospace, vol. 8, no. 1, pp. 1–16, Jan. 2021, doi: 10.3390/aerospace8010019.

N. Alvandifar et al., “Experimental study of partially metal foam wrapped tube bundles,” Int. J. Therm. Sci., vol. 162, Apr. 2021, doi: 10.1016/j.ijthermalsci.2020.106798.

A. Hashem-ol-Hosseini, M. Akbarpour Ghazani, A. Shahsavari, and M. Soltani, “Experimental investigation of thermal-hydraulic characteristics of finned oval tube bundles in cross-flow arrangements,” Int. J. Heat Mass Transf., vol. 180, Dec. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121759.

N. Titahelu, B. G. Tentua, and S. A. L. Payapo, “Analisis kinerja termal penukar kalor tube bank bare in-line aliran silang sebagai pemulihan limbah panas pengering konvektif rumput laut,” J. METIKS, vol. 3, no. 2, pp. 1–14, 2023, doi: https://doi.org/10.30598/metiks.2023.3.2.1-14.

A. S. Baqir, H. B. Mahood, and A. R. Kareem, “Optimisation and evaluation of NTU and effectiveness of a helical coil tube heat exchanger with air injection,” Therm. Sci. Eng. Prog., vol. 14, Dec. 2019, doi: 10.1016/j.tsep.2019.100420.

Y. Han, X. sheng Wang, Z. Zhang, and H. nan Zhang, “Multi-objective optimization of geometric parameters for the helically coiled tube using Markowitz optimization theory,” Energy, vol. 192, Feb. 2020, doi: 10.1016/j.energy.2019.116567.

A. Hatumessen, N. Titahelu, and C. S. Tupamahu, “Analisis efektivitas penukar kalor pipa helikal destilasi minyak atsiri kayu putih,” in Archepelago Engineering, N. Titahelu, Ed., Amon: Fakultas Teknik Universitas Pattimura, 2021, pp. 127–132. doi: 10.30598/ale.4.2021.127-132.

G. Kumar, Gagandeep, A. Kumar, N. A. Ansari, and M. Zunaid, “Comparative numerical study of flow characteristics in shell & helical coil heat exchangers with hybrid models,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 10831–10836. doi: 10.1016/j.matpr.2021.01.775.

M. Farnam, M. Khoshvaght-Aliabadi, and M. J. Asadollahzadeh, “Intensified single-phase forced convective heat transfer with helical-twisted tube in coil heat exchangers,” Ann. Nucl. Energy, vol. 154, May 2021, doi: 10.1016/j.anucene.2020.108108.

N. Titahelu, J. Latuny, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Pitch ratio effect on the effectiveness of condenser for essential oil distillation,” J. Energy, Mech. Mater. Manuf. Eng., vol. 6, no. 2, pp. 145–154, doi: https://doi.org/10.22219/jemmme.v6i2.19461.

Y. Yao, Q. Zhu, and Z. Li, “Performance of helically coiled gas heaters in supercritical CO2 Rankine cycles: A detailed assessment under convective boundary condition,” Energy, vol. 195, Mar. 2020, doi: 10.1016/j.energy.2020.117002.

N. Titahelu, D. S. Pelupessy, C. S. E. Tupamahu, and A. F. Rumagutawan, “Meningkatkan efektivitas kondensor vertikal pipa helikal koil untuk destilasi minyak atsiri sereh,” J. Rekayasa Mesin, vol. 14, no. 1, pp. 235–249, 2023, doi: 10.21776/jrm.v14i1.1219.

Z. Said, S. M. A. Rahman, M. El Haj Assad, and A. H. Alami, “Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid,” Sustain. Energy Technol. Assessments, vol. 31, pp. 306–317, Feb. 2019, doi: 10.1016/j.seta.2018.12.020.

X. Yang, J. Yu, T. Xiao, Z. Hu, and Y. L. He, “Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam,” Appl. Energy, vol. 261, no. December 2019, p. 114385, 2020, doi: 10.1016/j.apenergy.2019.114385.

M. Fares, M. AL-Mayyahi, and M. AL-Saad, “Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids,” Case Stud. Therm. Eng., vol. 18, p. 100584, 2020, doi: 10.1016/j.csite.2020.100584.

R. Said, N. Titahelu, and R. Ufie, “Analisis laju aliran massa fluida dingin terhadap efektivitas penukar kalor shell and tube destilasi minyak atsiri cengkeh (Syzygium aromaticum ),” in Archipelago Engineering (ALE), N. Titahelu, Ed., Ambon: Fakultas Teknik Universitas Pattimura, 2021, pp. 140–145. doi: https://doi.org/10.30598/ale.4.2021.140-145.

E. M. S. El-Said and M. M. A. Alsood, “Experimental investigation of air injection effect on the performance of horizontal shell and multi-tube heat exchanger with baffles,” Appl. Therm. Eng., vol. 134, pp. 238–247, Apr. 2018, doi: 10.1016/j.applthermaleng.2018.02.001.

G. Yu, L. Xiong, C. Du, and H. Chen, “Simplified model and performance analysis for top insulated metal ceiling radiant cooling panels with serpentine tube arrangement,” Case Stud. Therm. Eng., vol. 11, pp. 35–42, Mar. 2018, doi: 10.1016/j.csite.2017.12.006.

L. Liu et al., “Numerical investigation of mass transfer characteristics for the desiccant-coated dehumidification wheel in a dehumidification process,” Appl. Therm. Eng., vol. 160, Sep. 2019, doi: 10.1016/j.applthermaleng.2019.113944.

H. Gürbüz and D. Ateş, “A numerical Study on Processes of Charge and Discharge of Latent Heat Energy Storage System Using RT27 Paraffin Wax for Exhaust Waste Heat Recovery in a SI Engine,” Int. J. Automot. Sci. Technol., vol. 4, pp. 314–327, 2020, doi: 10.30939/ijastech..800856.

N. Titahelu, J. Louhenapessy, J. S. Litiloly, and A. Arson, “Studi perbandingan efektivitas berbagai model tube penukar kalor sebagai sistem pemulihan limbah panas,” in Seminar Nasional “ARCHIPELAGO ENGINEERING,” N. Titahelu, Ed., Ambon: Fakultas Teknik Universitas Pattimura, 2023, pp. 20–31. doi: 10.30598/ale.6.2023.20-31.

S. Chakrabarty and U. S. Wankhede, “Flow and heat transfer behaviour across circular,” Int. J. Mod. Eng. Res., vol. 2, no. 4, pp. 1529–1533, 2012.

J. M. Gorman, E. M. Sparrow, and J. Ahn, “In-line tube-bank heat exchangers: Arrays with various numbers of thermally participating tubes,” Int. J. Heat Mass Transf., vol. 132, pp. 837–847, Apr. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.167.

S. Kotšmíd and Z. Brodnianská, “Determination of the reference temperature for a convective heat transfer coefficient in a heated tube bank,” Appl. Sci., vol. 11, no. 22, 2021, doi: 10.3390/app112210564.

C. K. Mangrulkar, A. S. Dhoble, S. Chamoli, A. Gupta, and V. B. Gawande, “Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers,” Renewable and Sustainable Energy Reviews, vol. 113. Elsevier Ltd, Oct. 01, 2019. doi: 10.1016/j.rser.2019.06.027.

T. A. Tahseen, M. Ishak, and M. M. Rahman, “An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger,” Renew. Sustain. Energy Rev., vol. 43, pp. 363–380, 2015, doi: 10.1016/j.rser.2014.10.070.

H. Kim Phang, C.-M. Chu, S. Kumaresan, M. Mizanur Rahman, H.-K. Phang, and S. Md Yasir, “Preliminary Study of Seaweed Drying under A Shade and in A Natural Draft Solar Dryer,” Artic. Int. J. Sci. Eng., vol. 8, no. 1, pp. 10–14, 2014, doi: 10.12777/ijse.8.1.10-14.

A. M. González, M. Vaz, and P. S. B. Zdanski, “A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers,” Appl. Therm. Eng., vol. 148, pp. 363–370, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.068.

C. K. Mangrulkar, A. S. Dhoble, J. D. Abraham, and S. Chamoli, “Experimental and numerical investigations for effect of longitudinal splitter plate configuration for thermal-hydraulic performance of staggered tube bank,” Int. J. Heat Mass Transf., vol. 161, Nov. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120280.

H. Ghasemkhani, A. Keyhani, M. Aghbashlo, S. Rafiee, and A. S. Mujumdar, “Improving exergetic performance parameters of a rotating-tray air dryer via a simple heat exchanger,” Appl. Therm. Eng., vol. 94, pp. 13–23, Feb. 2016, doi: 10.1016/j.applthermaleng.2015.10.114.

A. A. Ananno, M. H. Masud, P. Dabnichki, and A. Ahmed, “Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries,” Sol. Energy, vol. 196, no. April 2019, pp. 270–286, 2020, doi: 10.1016/j.solener.2019.11.069.

Z. Erbay and A. Hepbasli, “Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method,” Energy, vol. 127, pp. 502–515, 2017, doi: 10.1016/j.energy.2017.03.148.

M. H. Masud, A. A. Ananno, N. Ahmed, P. Dabnichki, and K. N. Salehin, “Experimental investigation of a novel waste heat based food drying system,” J. Food Eng., vol. 281, Sep. 2020, doi: 10.1016/j.jfoodeng.2020.110002.

M. Mohanraj, “Performance of a solar-ambient hybrid source heat pump drier for copra drying under hot-humid weather conditions,” Energy Sustain. Dev., vol. 23, pp. 165–169, 2014, doi: 10.1016/j.esd.2014.09.001.

M. Hasanuzzaman, A. B. M. A. Malek, M. M. Islam, A. K. Pandey, and N. A. Rahim, “Global advancement of cooling technologies for PV systems: A review,” Sol. Energy, vol. 137, pp. 25–45, 2016, doi: 10.1016/j.solener.2016.07.010.

M. Hatami, M. Jafaryar, J. Zhou, and D. Jing, “Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O/(CH2OH)2 based nanofluids,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 10891–10900, Apr. 2017, doi: 10.1016/j.ijhydene.2017.01.196.

R. Saidur, “Energy consumption, energy savings, and emission analysis in Malaysian office buildings,” Energy Policy, vol. 37, no. 10, pp. 4104–4113, 2009, doi: 10.1016/j.enpol.2009.04.052.

B. El Fil and S. Garimella, “The state of the art in energy saving techniques for garment/textile drying,” Dry. Technol., vol. 40, no. 11, pp. 2235–2250, 2022, doi: 10.1080/07373937.2021.1938599.

R. T. Oǧulata, “Utilization of waste-heat recovery in textile drying,” Appl. Energy, vol. 79, no. 1, pp. 41–49, 2004, doi: 10.1016/j.apenergy.2003.12.002.

R. L. S. Mainardes, R. S. Matos, J. V. C. Vargas, and J. C. Ordonez, “Optimally staggered finned circular and elliptic tubes in turbulent forced convection,” J. Heat Transfer, vol. 129, no. 5, pp. 674–678, 2007, doi: 10.1115/1.2712860.

R. S. Matos, J. V. C. Vargas, T. A. Laursen, and A. Bejan, “Optimally staggered finned circular and elliptic tubes in forced convection,” Int. J. Heat Mass Transf., vol. 47, no. 6–7, pp. 1347–1359, 2004, doi: 10.1016/j.ijheatmasstransfer.2003.08.015.

L. D. Gu and J. C. Min, “Airside thermal-hydraulic characteristics for tube bank heat exchangers used to cool compressor bleed air in an aero engine,” Appl. Therm. Eng., vol. 141, pp. 939–947, Aug. 2018, doi: 10.1016/j.applthermaleng.2018.06.033.

D. Bacellar, V. Aute, Z. Huang, and R. Radermacher, “Airside friction and heat transfer characteristics for staggered tube bundle in crossflow configuration with diameters from 0.5 mm to 2.0 mm,” Int. J. Heat Mass Transf., vol. 98, pp. 448–454, Jul. 2016, doi: 10.1016/j.ijheatmasstransfer.2016.02.072.

M. Nasif Kuru, M. T. Erdinc, and A. Yilmaz, “Optimization of Heat Transfer and Pressure Drop in Axially Finned Staggered Tube Banks,” Heat Transf. Eng., pp. 1–18, 2020, doi: 10.1080/01457632.2020.1785696.

G. TÜRKAKAR, “Design and Optimization of Pcm-Air Cold Energy Storage Device To Be Used for Peak Electricity Shaving,” Isı Bilim. ve Tek. Derg., vol. 41, no. 1, pp. 23–36, 2021, doi: 10.47480/isibted.979300.

L. Gu, J. Min, X. Wu, and L. Yang, “Airside heat transfer and pressure loss characteristics of bare and finned tube heat exchangers used for aero engine cooling considering variable air properties,” Int. J. Heat Mass Transf., vol. 108, pp. 1839–1849, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.01.047.

W. A. Khan, J. R. Culham, and M. M. Yovanovich, “Convection heat transfer from tube banks in crossflow: Analytical approach,” Int. J. Heat Mass Transf., vol. 49, no. 25–26, pp. 4831–4838, Dec. 2006, doi: 10.1016/j.ijheatmasstransfer.2006.05.042.

T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, vol. 21, no. 1. John Wiley and Sons Inc, 2011.

A. Banasode, S. Valmiki, and V. S. Desai, “Design and Analysis of Bagasse Dryer to Recover Energy of Water Tube Boiler in a Sugar Factory,” Int. J. Innov. Technol. Res., vol. 5, no. 4, pp. 6645–6652, 2017.

B. Lotfi and B. Sundén, “Development of new finned tube heat exchanger: Innovative tube-bank design and thermohydraulic performance,” Heat Transf. Eng., vol. 41, no. 14, pp. 1209–1231, Aug. 2020, doi: 10.1080/01457632.2019.1637112.

D. Mondal, M. O. Ikram, M. F. Rabbi, and M. N. A. Moral, “Experimental Investigation and Comparison of Bend Tube Parallel & Counter Flow and Cross Flow Water to Air Heat Exchanger,” Int. J. Sci. Eng. Res., vol. 5, no. 7, pp. 686–695, 2014.

S. Sahamifar, F. Kowsary, and M. H. Mazlaghani, “Generalized optimization of cross-flow staggered tube banks using a subscale model,” Int. Commun. Heat Mass Transf., vol. 105, pp. 46–57, Jun. 2019, doi: 10.1016/j.icheatmasstransfer.2019.03.004.

Published
2024-05-19