ANALISIS EFEKTIVITAS PENGERING KONVEKTIF LIMBAH PANAS RUMPUT LAUT DENGAN HEAT INPUT BERBEDA

  • Nur Zuhraini Universitas Pattimura
  • Nicolas Titahelu Universitas Pattimura
  • Jonny Latuny Universitas Pattimura
Keywords: Efektivitas, Masukan panas, Pemulihan limbah panas, Pengering konvektif, Penukar Kalor Tube bank Staggereed

Abstract

Abstrak Penelitian ini berfokus pada penerapan tube bak staggered heat exchanger sebagai sistem pemulihan limbah panas untuk memanfaatkan limbah panas dari pengering konveksi pada suhu < 55°C. Penelitian ini bertujuan untuk mendapatkan masukan panas yang efektif dan memaksimalkan efisiensi untuk mempersingkat waktu pengeringan dan menghemat konsumsi daya. Metode penelitian eksperimental adalah dengan mengubah nilai masukan panas dari 400W menjadi 800W pada kondisi kecepatan angin 2 m/s, suhu media pengering 50°C, dan kelembaban relatif konstan 30% pada kondisi pengoperasian sebelum dan sesudah penggunaan pemulihan limbah panas. Mengambil data berupa suhu, kecepatan udara, kelembaban relatif, dan masukan panas setelah kondisi tunak tercapai. Hasil percobaan menunjukkan bahwa efisiensi menurun seiring dengan bertambahnya masukan panas, pada kondisi operasi sebelum dan sesudah penerapan waste heat recovery, efisiensi maksimum pada masukan panas 400 W masing-masing sebesar 59,54% dan 62,61%. Waktu pengeringan minimum rumput laut adalah 1035 dan 975 menit pada input panas 800W masing-masing pada kondisi sebelum dan sesudah penerapan pemulihan panas limbah. Penghematan daya maksimum pada input panas 400 W adalah 414 KWh atau 1,52 %. Hasil penelitian menunjukkan bahwa pengering konveksi dengan fungsi waste heat recovery dapat digunakan untuk mengeringkan rumput laut, pada kondisi operasi masukan panas 400 W efisiensi sebesar 62,61%, waktu pengeringan 1140 menit, dan penghematan daya sebesar 414 KWh atau 1,52 %

Downloads

Download data is not yet available.

References

H. J. Bixler and H. Porse, “A decade of change in the seaweed hydrocolloids industry,” J. Appl. Phycol., vol. 23(3), no. April, pp. 321–325, 2010, doi: 10.1007/s10811-010-9529-3.

B. Setha, M. N. Mailoa, and F. F. Gaspersz, “Analysis of Quality Sheet Carrageenan of Eucheuma Cottonii,” Int. J. ChemTech Res., vol. 9, no. 1, pp. 92–94, 2016.

E. G. Talakua, “Optimasi faktor produksi untuk maksimasi keuntungan usaha budidaya rumput laut di desa Sathean kecamatan Kei Kecil,” J. Sos. Ekon. Kelaut. Perikan., pp. 45–56, 2017.

S. Suwati et al., “Comparison between Natural and Cabinet Drying on Weight Loss of Seaweed Euchuema cottonii Weber-van Bosse,” Sarhad J. Agric., vol. 37, no. SpecialIssue 1, pp. 1–8, Jun. 2021, doi: 10.17582/journal.sja/2021/37.s1.01.08.

BPS Provinsi Maluku, “Provinsi Maluku dalam Angka,” 2022.

Subaryono and R. Kusumawati, “Quality of Eucheuma cottonii seaweed cultivated in Lampung waters,” IOP Conf. Ser. Earth Environ. Sci., vol. 404, no. 1, 2019, doi: 10.1088/1755-1315/404/1/012067.

D. Fithriani, L. Assadad, and Z. Arifin, “Karakteristik dan Model Matematika Kurva Pengeringan Rumput Laut Eucheuma cottonii,” J. Pascapanen dan Bioteknol. Kelaut. dan Perikan., vol. 11, no. 2, p. 159, Mar. 2017, doi: 10.15578/jpbkp.v11i2.290.

BSN, “SNI 2690:2015,” 2015. [Online]. Available: www.bsn.go.id

S. Gupta, S. Cox, and N. Abu-Ghannam, “Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed,” LWT, vol. 44, no. 5, pp. 1266–1272, 2011, doi: 10.1016/j.lwt.2010.12.022.

M. H. Masud, M. U. Joardder, M. Tariqul Islam, M. Munthakimoon Hasan, and M. Muntasir Ahmed, “Feasibility of utilizing waste heat in drying of plant-based food materials Renewable Energy View project Intermittent Microwave convective drying View project Feasibility of utilizing waste heat in drying of plant-based food materials,” Int. Conf. Mech. Ind. Mater. Eng., vol. 2017, 2017, [Online]. Available: https://www.researchgate.net/publication/325321933

M. H. Masud, A. A. Ananno, N. Ahmed, P. Dabnichki, and K. N. Salehin, “Experimental investigation of a novel waste heat based food drying system,” J. Food Eng., vol. 281, Sep. 2020, doi: 10.1016/j.jfoodeng.2020.110002.

A. Zamroni and M. Yamao, “Coastal Resource Management: Fishermen’s Perception of Seaweed Farming in Indonesia,” World Acad. Sci. Eng. Technol. , vol. 60, no. 12, pp. 32–38, 2011, [Online]. Available: https://waset.org/publications/3498/coastal-resource-management-fishermen-s-perceptions-of-seaweed-farming-in-indonesia

A. L. Charles, K. Sridhar, and M. A. Alamsjah, “Effect of drying techniques on color and bioactive potential of two commercial edible Indonesian seaweed cultivars,” J. Appl. Phycol., vol. 32, no. 1, pp. 563–572, Feb. 2020, doi: 10.1007/s10811-019-01916-4.

A. A. Ananno, M. H. Masud, P. Dabnichki, and A. Ahmed, “Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries,” Sol. Energy, vol. 196, no. April 2019, pp. 270–286, 2020, doi: 10.1016/j.solener.2019.11.069.

M. Hatami, M. Jafaryar, J. Zhou, and D. Jing, “Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O/(CH2OH)2 based nanofluids,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 10891–10900, Apr. 2017, doi: 10.1016/j.ijhydene.2017.01.196.

B. El Fil and S. Garimella, “The state of the art in energy saving techniques for garment/textile drying,” Dry. Technol., vol. 40, no. 11, pp. 2235–2250, 2022, doi: 10.1080/07373937.2021.1938599.

S. Lion, C. N. Michos, I. Vlaskos, C. Rouaud, and R. Taccani, “A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications,” Renew. Sustain. Energy Rev., vol. 79, no. May, pp. 691–708, 2017, doi: 10.1016/j.rser.2017.05.082.

M. Stramarkou, S. Papadaki, K. Kyriakopoulou, and M. Krokida, “Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris,” J. Appl. Phycol., vol. 29, no. 6, pp. 2947–2960, 2017, doi: 10.1007/s10811-017-1181-8.

R. Moreira, F. Chenlo, J. Sineiro, S. Arufe, and S. Sexto, “Water Sorption Isotherms and Air Drying Kinetics of Fucus vesiculosus Brown Seaweed,” J. Food Process. Preserv., vol. 41, no. 4, Aug. 2017, doi: 10.1111/jfpp.12997.

E. Uribe et al., “Evaluation of physicochemical composition and bioactivity of a red seaweed (Pyropia orbicularis) as affected by different drying technologies,” Dry. Technol., vol. 38, no. 9, pp. 1218–1230, Jun. 2020, doi: 10.1080/07373937.2019.1628771.

A. Mahmoudi, M. Fazli, and M. R. Morad, “A recent review of waste heat recovery by Organic Rankine Cycle,” Appl. Therm. Eng., vol. 143, no. July, pp. 660–675, 2018, doi: 10.1016/j.applthermaleng.2018.07.136.

J. D. Abraham, A. S. Dhoble, and C. K. Mangrulkar, “Numerical analysis for thermo-hydraulic performance of staggered cross flow tube bank with longitudinal tapered fins,” Int. Commun. Heat Mass Transf., vol. 118, Nov. 2020, doi: 10.1016/j.icheatmasstransfer.2020.104905.

G. Valencia, A. Fontalvo, Y. Cárdenas, J. Duarte, and C. Isaza, “Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC,” Energies, vol. 12, no. 12, 2019, doi: 10.3390/en12122378.

H. Jouhara et al., “Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery,” Energy, vol. 223, p. 120037, 2021, doi: 10.1016/j.energy.2021.120037.

N. Titahelu, J. Louhenapessy, J. S. Litiloly, and A. Arson, “Studi perbandingan efektivitas berbagai model tube penukar kalor sebagai sistem pemulihan limbah panas,” in Seminar Nasional “ARCHIPELAGO ENGINEERING,” N. Titahelu, Ed., Ambon: Fakultas Teknik Universitas Pattimura, 2023, pp. 20–31. doi: 10.30598/ale.6.2023.20-31.

A. M. N. Elmekawy, A. A. Ibrahim, A. M. Shahin, S. Al-Ali, and G. E. Hassan, “Performance enhancement for tube bank staggered configuration heat exchanger – CFD Study,” Chem. Eng. Process. - Process Intensif., vol. 164, Jul. 2021, doi: 10.1016/j.cep.2021.108392.

X. Song, M. Liu, X. Hu, X. Wang, T. Liao, and J. Sun, “Numerical analysis of flow across brush elements based on a 2-D staggered tube banks model,” Aerospace, vol. 8, no. 1, pp. 1–16, Jan. 2021, doi: 10.3390/aerospace8010019.

N. Titahelu, B. G. Tentua, and S. A. L. Payapo, “Analisis kinerja termal penukar kalor tube bank bare in-line aliran silang sebagai pemulihan limbah panas pengering konvektif rumput laut,” J. METIKS, vol. 3, no. 2, pp. 1–14, 2023, doi: https://doi.org/10.30598/metiks.2023.3.2.1-14.

H. Chen, Z. Qi, L. Dai, B. Li, G. Xu, and Y. Yang, “Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant,” Energy, vol. 193, p. 116739, 2020, doi: 10.1016/j.energy.2019.116739.

N. Titahelu, “Eksperimen pengaruh beban panas terhadap karakteristik perpindahan panas oven pengering cengkeh,” Teknologi, vol. 3, no. May, pp. 744–750, 2002.

N. Titahelu and C. S. E. Tupamahu, “Analisis Pengaruh Masukan Panas Pada Oven Pengering Bunga cengkeh Terhadap Karakteristik Perpindahan Panas Konveksi Paksa,” in ALE Proceeding, 2019, pp. 108–114. doi: 10.30598/ale.2.2019.108-114.

G. B. Pradana, K. B. Prabowo, R. P. Hastuti, M. Djaeni, and A. Prasetyaningrum, “Seaweed drying process using tray dryer with dehumidified air system to increase efficiency of energy and quality product,” IOP Conf. Ser. Earth Environ. Sci., vol. 292, no. 1, 2019, doi: 10.1088/1755-1315/292/1/012070.

S. N. Tarwaca et al., “Effect of various drying methods on the physicochemical characteristics of pumpkin powder,” IOP Conf. Ser. Earth Environ. Sci., vol. 644, no. 1, 2021, doi: 10.1088/1755-1315/644/1/012080.

M. Khan, S. Md Yasir, J. Sulaiman, M. Ruslan, M. Khan Majahar Ali, and M. Hafidz Ruslan, “The Effectiveness of Sauna Technique on the Drying Period And Kinetics of Seaweed Kappaphycus Alvarezii Using Solar Drier,” J. Agric. Food, Environ. Sci., no. May 2017, 2015.

E. Uribe, A. Vega-Gálvez, V. Heredia, A. Pastén, and K. Di Scala, “An edible red seaweed (Pyropia orbicularis): influence of vacuum drying on physicochemical composition, bioactive compounds, antioxidant capacity, and pigments,” J. Appl. Phycol., vol. 30, no. 1, pp. 673–683, Feb. 2018, doi: 10.1007/s10811-017-1240-1.

F. Chenlo, S. Arufe, D. Díaz, M. D. Torres, J. Sineiro, and R. Moreira, “Air-drying and rehydration characteristics of the brown seaweeds, Ascophylum nodosum and Undaria pinnatifida,” J. Appl. Phycol., vol. 30, no. 2, pp. 1259–1270, Apr. 2018, doi: 10.1007/s10811-017-1300-6.

N. Titahelu and S. J. Litiloly, “Analisis laju kondensasi akibat pengaruh kecepatan udara terhadap karakteristik perpindahan pana oven pengering pati sagu,” in Seminar Nasional “Archipelago Engineering” (ALE), 2018, pp. 108–114. doi: https://doi.org/10.30598/ale.1.2018.108-114.

E. Tian, Y. L. He, and W. Q. Tao, “Research on a new type waste heat recovery gravity heat pipe exchanger,” Appl. Energy, vol. 188, pp. 586–594, 2017, doi: 10.1016/j.apenergy.2016.12.029.

Y. Qin, H. Fu, J. Wang, M. Liu, and J. Yan, “Waste heat and water recovery characteristics of heat exchangers for dryer exhaust,” Dry. Technol., vol. 36, no. 6, pp. 709–722, Apr. 2018, doi: 10.1080/07373937.2017.1351451.

B. K. Roomi, “Experimental and theoretical study of waste heat recovery from a refrigeration system using a finned helical coil heat exchanger,” no. February, 2020, doi: 10.1002/htj.21788.

Z. Cheng, Z. Tan, Z. Guo, J. Yang, and Q. Wang, “Technologies and fundamentals of waste heat recovery from high-temperature solid granular materials,” Applied Thermal Engineering, vol. 179. Elsevier Ltd, Oct. 01, 2020. doi: 10.1016/j.applthermaleng.2020.115703.

R. Moreira, F. Chenlo, J. Sineiro, M. Sánchez, and S. Arufe, “Water sorption isotherms and air drying kinetics modelling of the brown seaweed Bifurcaria bifurcata,” J. Appl. Phycol., vol. 28, no. 1, pp. 609–618, Feb. 2016, doi: 10.1007/s10811-015-0553-1.

N. Titahelu, “Perpindahan kalor konveksi natural dari silinder horisontal isothermal set dalam saluran vertikal,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 1, no. 1, pp. 30–38, 2021, doi: 10.30598/metiks.2021.1.1.30-38.

R. R. Kermite, J. Louhenapessy, A. Hadi, and J. Ulath, “Analisis Efektivitas Pengering Konvektif Rumput Laut Terintegrasi Dengan Penukar Kalor Tube Bank Bare in-Line Pada Masukan Panas Berbeda,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 3, no. 2, pp. 15–28, 2023, doi: 10.30598/metiks.2023.3.2.15-28.

A. Fouda, S. A. Nada, H. F. Elattar, H. A. Refaey, and A. S. Bin-Mahfouz, “Thermal performance modeling of turbulent flow in multi tube in tube helically coiled heat exchangers,” Int. J. Mech. Sci., vol. 135, pp. 621–638, Jan. 2018,doi: 10.1016/j.ijmecsci.2017.12.015.

N. S. F. Syatauw, A. Simanjuntak, and N. Titahelu, “Analisis kinerja panel surya akibat pendinginan aktif,” Isometri, vol. 2, no. 1, 2023.

N. Titahelu, “Analisis pengaruh diameter pada susunan setengah tube heat exchanger dalam enclosure terhadap karakteristik perpindahan panas,” Teknologi, vol. 8, no. 1, pp. 889–894, 2011.

S. Zakeralhoseini, B. Sajadi, M. A. Akhavan Behabadi, S. Azarhazin, and H. Fazelnia, “Experimental investigation of the heat transfer coefficient and pressure drop of R1234yf during flow condensation in helically coiled tubes,” Int. J. Therm. Sci., vol. 157, Nov. 2020, doi: 10.1016/j.ijthermalsci.2020.106516.

T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, vol. 21, no. 1. John Wiley and Sons Inc, 2011.

Y. A. F. El-Samadony, A. S. Abdullah, and Z. M. Omara, “Experimental study of stepped solar still integrated with reflectors and external condenser,” Exp. Heat Transf., vol. 28, no. 4, pp. 392–404, Jul. 2015, doi: 10.1080/08916152.2014.890964.

R. Jadar, K. S. Shashishekar, and S. R. Manohara, “Performance Evaluation of Al-MWCNT based Automobile Radiator,” in Materials today: Proceedings, 2019, pp. 380–388. [Online]. Available: www.sciencedirect.com

A. Hatumessen, N. Titahelu, and C. S. Tupamahu, “Analisis efektivitas penukar kalor pipa helikal destilasi minyak atsiri kayu putih,” in Archepelago Engineering, N. Titahelu, Ed., Amon: Fakultas Teknik Universitas Pattimura, 2021, pp. 127–132. doi: 10.30598/ale.4.2021.127-132.

P. Bhandari and Y. K. Prajapati, “Thermal performance of open microchannel heat sink with variable pin fin height,” Int. J. Therm. Sci., vol. 159, Jan. 2021, doi: 10.1016/j.ijthermalsci.2020.106609.

A. M. González, M. V. Jr, and P. S. B. Zdanski, “A hybrid numerical-experimental analysis of heat transfer by forced convection in plate- fi nned heat exchangers,” Appl. Therm. Eng., vol. 148, no. May 2018, pp. 363–370, 2019, doi: 10.1016/j.applthermaleng.2018.11.068.

C. K. Mangrulkar, A. S. Dhoble, J. D. Abraham, and S. Chamoli, “Experimental and numerical investigations for effect of longitudinal splitter plate configuration for thermal-hydraulic performance of staggered tube bank,” Int. J. Heat Mass Transf., vol. 161, Nov. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120280.

P. Promvonge, P. Promthaisong, and S. Skullong, “Experimental and numerical heat transfer study of turbulent tube flow through discrete V-winglets,” Int. J. Heat Mass Transf., vol. 151, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119351.

N. Titahelu, J. Latuny, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Pitch ratio effect on the effectiveness of condenser for essential oil distillation,” J. Energy, Mech. Mater. Manuf. Eng., vol. 6, no. 2, pp. 145–154, 2021, doi: https://doi.org/10.22219/jemmme.v6i2.19461.

C. Ononogbo et al., “Investigation of the Thermal Profile of a Crop Dryer Powered by Generator Exhaust Gas Waste Heat,” Int. J. Adv. Sci. Eng., vol. 8, no. 3, p. 2235, Feb. 2022, doi: 10.29294/ijase.8.3.2022.2235-2241.

T. Kogawa, J. Okajima, A. Komiya, and S. Maruyama, “Effect of gas radiation-depended natural convection on the transition of spatially developing boundary layers,” Int. J. Heat Mass Transf., vol. 177, Oct. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121580.

R. A. Kumar, K. Vigneshwaran, and V. Sivakumar, “Energy and Exergy Analysis of an Inbuilt Condenser Single Basin Single Slope Solar Still with ZnO Nano Particle Coating,” vol. 10, no. 7, pp. 4187–4201, 2020.

N. Titahelu, D. S. Pelupessy, C. S. E. Tupamahu, and A. F. Rumagutawan, “Meningkatkan efektivitas kondensor vertikal pipa helikal koil untuk destilasi minyak atsiri sereh,” J. Rekayasa Mesin, vol. 14, no. 1, pp. 235–249, 2023, doi: 10.21776/jrm.v14i1.1219.

H. K. Jobair, “Improving of Photovoltaic Cell Performance by Cooling using Two different Types of Fins,” Int. J. Comput. Appl., vol. 157, no. 5, pp. 6–15, 2017, doi: 10.5120/ijca2017912691.

A. S. Rao, S. Sujeesh, A. Sanyal, P. K. Tewari, and L. M. Gantayet, “Effect of agitation speed and fluid velocity on heat transfer performance in agitated Bunsen reactor of iodine-sulphur thermo-chemical cycle,” Int. J. Nucl. Hydrog. Prod. Appl., vol. 3, no. 1, p. 65, 2016, doi: 10.1504/ijnhpa.2016.078425.

K. Pietrak and T. S. Wiśniewski, “A review of models for effective thermal conductivity of composite materials,” J. Power Technol., vol. 95, no. 1, pp. 14–24, 2015.

A. Ahmed, K. K. Esmaeil, M. A. Irfan, and F. A. Al-Mufadi, “Design methodology of heat recovery steam generator in electric utility for waste heat recovery,” Int. J. Low-Carbon Technol., vol. 13, no. 4, pp. 369–379, Dec. 2018, doi: 10.1093/ijlct/cty045.

C. Ononogbo, “Equipment Sizing and Method for the Application of Exhaust Gas Waste Heat to Food Crops Drying Using a Hot Air Tray Dryer,” Indian J. Sci. Technol., vol. 13, no. 5, pp. 502–518, Feb. 2020, doi: 10.17485/ijst/2020/v13i05/145593.

C. P. Kothandaraman, Fundamentals of Heat and Mass Transfer. New Delhi: New Age International (P) Limited, Publishers, 2006.

H. Deshpande, S. Taji, and V. Raibhole, “Assessment of heat transfer performance from modified horizontal rectangular heat sink under forced convection dominating mode of mixed convection,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 5618–5628. doi: 10.1016/j.matpr.2021.03.607.

S. Şevik, M. Aktaş, E. C. Dolgun, E. Arslan, and A. D. Tuncer, “Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology,” Sol. Energy, vol. 180, pp. 537–549, Mar. 2019, doi: 10.1016/j.solener.2019.01.049.

R. Said, N. Titahelu, and R. S. Ufie, “Analisis Laju Aliran Massa Fluida Dingin Terhadap Efaktivitas Penukar Kalor Shell and Tube Destilasi Minyak Atsiri Cengkeh (Syzygium aromaticum),” ALE Proceeding, vol. 4, pp. 140–145, 2021, doi: 10.30598/ale.4.2021.140-145.

S. Zohrabi, S. S. Seiiedlou, M. Aghbashlo, H. Scaar, and J. Mellmann, “Enhancing the exergetic performance of a pilot-scale convective dryer by exhaust air recirculation,” Dry. Technol., vol. 38, no. 4, pp. 518–533, Mar. 2020, doi: 10.1080/07373937.2019.1587617.

O. Chibuike, D. N. Olisaemeka Chukwudozie, D. N. Nnaemeka Reginald, D. O. Chukwunenye Anthony, D. I. Onyechege Johnson, and P. E. Enyioma Anyanwu, “Energy consumption of Yam slice drying in an exhaust gas waste heat recovery hot air tray dryer,” Sci. Res. J., vol. 9, no. 8, pp. 1–7, Aug. 2021, doi: 10.31364/scirj/v9.i08.2021.p0821872.

Published
2024-05-19