ANALISIS EFEKTIVITAS PENGERING KONVEKTIF LIMBAH PANAS RUMPUT LAUT DENGAN SUHU MEDIA PENGERING BERBEDA

  • Anisah Wijayanti Universitas Pattimura
  • Nicolas Titahelu Universitas Pattimura
  • Samy Junus Litiloly Universitas Pattimura
Keywords: Efektivitas pengering konvektif, Temperatur ruang pengering, Penghematan daya listrik, Pemulihan limbah panas, penukar kalor staggered sirip pelat datar

Abstract

Abstrak Penerapan penukar panas tube bank sirip pelat datar staggered untuk sebagai sistem pemulihan limbah panas untuk memanfaatkan limbah panas dari pengering konvektif dengan suhu < 55 °C yang terbuang ke lingkungan. Penelitian bertujuan untuk memperoleh suhu media pengering yang efektif dan efektifitasnya maksimal untuk mempersingkat waktu pengeringan rumput laut dan menghemat konsumsi energi listrik. Metode penelitian eksperimental dilakukan dengan memvariasikan suhu media pengering dari 40 hingga 80 °C pada kecepatan udara 2 m/s, masukan panas 400 W, dan kelembaban relatif 30% konstan pada kondisi pengoperasian sebelum dan sesudah aplikasi sistem pemulihan panas limbah. Data suhu, kecepatan udara, kelembaban relatif, dan masukan panas diambil setelah mencapai kondisi tunak. Hasil penelitian menunjukkan efektivitas menurun dengan meningkatnya suhu media pengering, dimana efektivitas maksimum pada suhu 40°C sebesar 43,48% dan 89,00%, sedangkan efektivitas minimum pada suhu 80°C sebesar 20,05% dan 68,19% untuk kondisi operasi sebelum dan sesudah penerapan sistem pemulihan limbah panas. Waktu pengeringan minimal rumput laut pada tmp 40 °C  untuk kondisi sebelum dan sesudah penerapan waste heat recovery masing-masing adalah 11,75 dan 11 jam. Penghematan konsumsi energi listrik maksimum pada tmp 80 °C sebesar 5790,16 kWh atau 15,52%, dan penghematan minimum pada tmp 40  °C sebesar 2391,39 atau 23,13%. Disimpulkan bahwa pengering konvektif panas limbah rumput laut pada kondisi operasi temperatur ruang pengering 40°C  mempunyai tingkat efektif sebesar 46,03%, waktu pengeringan 11 jam, dan menghemat konsumsi energi listrik sebesar 23,13%.

Downloads

Download data is not yet available.

References

I. N. Radiarta and E. Erlania, “Performa Komoditas Budidaya Laut Pada Sistem Integrated Multi-Trophic Aquaculture (Imta) Di Teluk Gerupuk, Lombok Tengah, Nusa Tenggara Barat,” J. Ris. Akuakultur, vol. 11, no. 1, p. 85, 2016, doi: 10.15578/jra.11.1.2016.85-97.

D. Fithriani, L. Assadad, and Z. Arifin, “Karakteristik dan Model Matematika Kurva Pengeringan Rumput Laut Eucheuma cottonii,” J. Pascapanen dan Bioteknol. Kelaut. dan Perikan., vol. 11, no. 2, p. 159, Mar. 2017, doi: 10.15578/jpbkp.v11i2.290.

BSN, “SNI 2690:2015,” 2015. [Online]. Available: www.bsn.go.id

BPS Provinsi Maluku, “Provinsi Maluku dalam Angka,” 2022.

Subaryono, B. S. B. Utomo, and J. Basmal, “Quality of carrageenan extracted from Eucheuma cottonii cultivated at three different locations in Lampung,” IOP Conf. Ser. Earth Environ. Sci., vol. 919, no. 1, 2021, doi: 10.1088/1755-1315/919/1/012047.

M. Djaeni and D. A. Sari, “Low Temperature Seaweed Drying Using Dehumidified Air,” Procedia Environ. Sci., vol. 23, pp. 2–10, 2015, doi: 10.1016/j.proenv.2015.01.002.

A. L. Charles, K. Sridhar, and M. A. Alamsjah, “Effect of drying techniques on color and bioactive potential of two commercial edible Indonesian seaweed cultivars,” J. Appl. Phycol., vol. 32, no. 1, pp. 563–572, Feb. 2020, doi: 10.1007/s10811-019-01916-4.

M. U. H. Joardder and M. H. Masud, “Feasibility of Advance Technologies,” in Food Preservation in Developing Countries: Challenges and Solutions, Springer International Publishing, 2019, pp. 219–236. doi: 10.1007/978-3-030-11530-2_9.

M. H. Masud, A. A. Ananno, N. Ahmed, P. Dabnichki, and K. N. Salehin, “Experimental investigation of a novel waste heat based food drying system,” J. Food Eng., vol. 281, Sep. 2020, doi: 10.1016/j.jfoodeng.2020.110002.

M. R. Akhtari, I. Shayegh, and N. Karimi, “Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations,” Renew. Energy, vol. 148, pp. 839–851, Apr. 2020, doi: 10.1016/j.renene.2019.10.169.

J. Wang, M. Zhang, and Z. Fang, “Recent development in efficient processing technology for edible algae: A review,” Trends in Food Science and Technology, vol. 88. Elsevier Ltd, pp. 251–259, Jun. 01, 2019. doi: 10.1016/j.tifs.2019.03.032.

A. Arabhosseini, H. Samimi-Akhijahani, and M. Motehayyer, “Increasing the energy and exergy efficiencies of a collector using porous and recycling system,” Renew. Energy, vol. 132, pp. 308–325, Mar. 2019, doi: 10.1016/j.renene.2018.07.132.

S. Suwati et al., “Comparison between Natural and Cabinet Drying on Weight Loss of Seaweed Euchuema cottonii Weber-van Bosse,” Sarhad J. Agric., vol. 37, no. SpecialIssue 1, pp. 1–8, Jun. 2021, doi: 10.17582/journal.sja/2021/37.s1.01.08.

A. Zamroni and M. Yamao, “Coastal resource management: Fishermen’s perceptions of seaweed farming in Indonesia,” World Acad. Sci. Eng. Technol., vol. 60, 2011, [Online]. Available: https://www.researchgate.net/publication/222102372

N. Titahelu and S. J. Litiloly, “Analisis laju kondensasi akibat pengaruh kecepatan udara terhadap karakteristik perpindahan pana oven pengering pati sagu,” in Seminar Nasional “Archipelago Engineering” (ALE), 2018, pp. 108–114. doi: https://doi.org/10.30598/ale.1.2018.108-114.

E. Uribe, A. Vega-Gálvez, V. Vásquez, R. Lemus-Mondaca, L. Callejas, and A. Pastén, “Hot-air drying characteristics and energetic requirement of the edible brown seaweed Durvillaea antarctica,” J. Food Process. Preserv., vol. 41, no. 6, Dec. 2017, doi: 10.1111/jfpp.13313.

N. Titahelu, “Eksperimen pengaruh beban panas terhadap karakteristik perpindahan panas oven pengering cengkeh,” Teknologi, vol. 3, no. May, pp. 744–750, 2002.

N. Titahelu and C. S. E. Tupamahu, “Analisis Pengaruh Masukan Panas Pada Oven Pengering Bunga cengkeh Terhadap Karakteristik Perpindahan Panas Konveksi Paksa,” in ALE Proceeding, 2019, pp. 108–114. doi: 10.30598/ale.2.2019.108-114.

N. Titahelu, “Eksperimen pengaruh beban panas terhadap karakteristik perpindahan panas oven pengering cengkeh,” J. Teknol., vol. 7, no. 1, pp. 744–750, 2002.

S. Gupta, S. Cox, and N. Abu-Ghannam, “Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed,” LWT, vol. 44, no. 5, pp. 1266–1272, 2011, doi: 10.1016/j.lwt.2010.12.022.

M. U. H. Joardder, M. Mourshed, and M. Hasan Masud, “Bound Water Removal Techniques,” in State of Bound Water: Measurement and Significance in Food Processing, Springer International Publishing, 2019, pp. 93–118. doi: 10.1007/978-3-319-99888-6_6.

Z. Erbay and A. Hepbasli, “Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method,” Energy, vol. 127, pp. 502–515, 2017, doi: 10.1016/j.energy.2017.03.148.

M. Mohanraj, “Performance of a solar-ambient hybrid source heat pump drier for copra drying under hot-humid weather conditions,” Energy Sustain. Dev., vol. 23, pp. 165–169, 2014, doi: 10.1016/j.esd.2014.09.001.

R. Saidur, “Energy consumption, energy savings, and emission analysis in Malaysian office buildings,” Energy Policy, vol. 37, no. 10, pp. 4104–4113, 2009, doi: 10.1016/j.enpol.2009.04.052.

M. Hasanuzzaman, A. B. M. A. Malek, M. M. Islam, A. K. Pandey, and N. A. Rahim, “Global advancement of cooling technologies for PV systems: A review,” Sol. Energy, vol. 137, pp. 25–45, 2016, doi: 10.1016/j.solener.2016.07.010.

M. Hatami, M. Jafaryar, J. Zhou, and D. Jing, “Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O/(CH2OH)2 based nanofluids,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 10891–10900, Apr. 2017, doi: 10.1016/j.ijhydene.2017.01.196.

B. El Fil and S. Garimella, “Waste heat recovery in commercial gas-fired tumble dryers,” Energy, vol. 218, Mar. 2021, doi: 10.1016/j.energy.2020.119407.

G. B. Pradana, K. B. Prabowo, R. P. Hastuti, M. Djaeni, and A. Prasetyaningrum, “Seaweed drying process using tray dryer with dehumidified air system to increase efficiency of energy and quality product,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, 2019. doi: 10.1088/1755-1315/292/1/012070.

H.-K. Phang, C.-M. Chu, S. Kumaresan, M. Mizanur Rahman, and S. Md Yasir, “Preliminary Study of Seaweed Drying under A Shade and in A Natural Draft Solar Dryer,” Int. J. Sci. Eng., vol. 8, no. 1, pp. 10–14, 2015, doi: 10.12777/ijse.8.1.10-14.

S. Suherman, H. Rizki, N. Rauf, and E. E. Susanto, “Performance study of hybrid solar dryer with auxiliary heater for seaweed drying,” J. Phys. Conf. Ser., vol. 1295, no. 1, 2019, doi: 10.1088/1742-6596/1295/1/012002.

M. Mulyadi, Marhatang, and R. Nur, “The forced convection biomass and solar collector dryer for drying seaweed using exhaust fan,” in AIP Conference Proceedings, American Institute of Physics Inc., Jun. 2018. doi: 10.1063/1.5043023.

A. Fudholi, R. Yogaswara, D. A. Mardani, A. Ridho, S. Hidayati, and Z. H. Zen, “Modified Page Model for Solar Drying of Seaweed,” Int. J. Adv. Sci. Technol., vol. 29, no. 5, pp. 7407–7413, 2020.

M. K. M. Ali, A. Fudholi, M. S. Muthuvalu, J. Sulaiman, and S. M. Yasir, “Implications of drying temperature and humidity on the drying kinetics of seaweed,” in AIP Conference Proceedings, American Institute of Physics Inc., Nov. 2017. doi: 10.1063/1.5012223.

H. Y. Ju et al., “Step-down relative humidity convective air drying strategy to enhance drying kinetics, efficiency, and quality of American ginseng root (Panax quinquefolium),” Dry. Technol., vol. 38, no. 7, pp. 903–916, 2020, doi: 10.1080/07373937.2019.1597373.

S. Arufe, G. Della Valle, H. Chiron, F. Chenlo, J. Sineiro, and R. Moreira, “Effect of brown seaweed powder on physical and textural properties of wheat bread,” Eur. Food Res. Technol., vol. 244, no. 1, pp. 1–10, Jan. 2018, doi: 10.1007/s00217-017-2929-8.

F. Chenlo, S. Arufe, D. Díaz, M. D. Torres, J. Sineiro, and R. Moreira, “Air-drying and rehydration characteristics of the brown seaweeds, Ascophylum nodosum and Undaria pinnatifida,” J. Appl. Phycol., vol. 30, no. 2, pp. 1259–1270, Apr. 2018, doi: 10.1007/s10811-017-1300-6.

A. Santiago and R. Moreira, “Drying of edible seaweeds,” in Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications, Elsevier, 2020, pp. 131–154. doi: 10.1016/B978-0-12-817943-7.00004-4.

R. Moreira, F. Chenlo, J. Sineiro, M. Sánchez, and S. Arufe, “Water sorption isotherms and air drying kinetics modelling of the brown seaweed Bifurcaria bifurcata,” J. Appl. Phycol., vol. 28, no. 1, pp. 609–618, Feb. 2016, doi: 10.1007/s10811-015-0553-1.

R. R. Kermite, J. Louhenapessy, A. Hadi, and J. Ulath, “Analisis Efektivitas Pengering Konvektif Rumput Laut Terintegrasi Dengan Penukar Kalor Tube Bank Bare in-Line Pada Masukan Panas Berbeda,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 3, no. 2, pp. 15–28, 2023, doi: 10.30598/metiks.2023.3.2.15-28.

N. Titahelu, “Perpindahan kalor konveksi natural dari silinder horisontal isothermal set dalam saluran vertikal,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 1, no. 1, pp. 30–38, doi: 10.30598/metiks.2021.1.1.30-38.

H. F. Elattar, A. Fouda, S. A. Nada, H. A. Refaey, and A. Al-Zahrani, “Thermal and hydraulic numerical study for a novel multi tubes in tube helically coiled heat exchangers: Effects of operating/geometric parameters,” Int. J. Therm. Sci., vol. 128, pp. 70–83, Jun. 2018, doi: 10.1016/j.ijthermalsci.2018.02.020.

N. S. F. Syatauw, A. Simanjuntak, and N. Titahelu, “Analisis kinerja panel surya akibat pendinginan aktif,” Isometri, vol. 2, no. 1, 2023.

N. Titahelu, “Analisis pengaruh diameter pada susunan setengah tube heat exchanger dalam enclosure terhadap karakteristik perpindahan panas,” Teknologi, vol. 8, no. 1, pp. 889–894, 2011.

S. Zakeralhoseini, B. Sajadi, M. A. Akhavan Behabadi, S. Azarhazin, and H. Fazelnia, “Experimental investigation of the heat transfer coefficient and pressure drop of R1234yf during flow condensation in helically coiled tubes,” Int. J. Therm. Sci., vol. 157, Nov. 2020, doi: 10.1016/j.ijthermalsci.2020.106516.

T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, vol. 21, no. 1. John Wiley and Sons Inc, 2011.

Y. A. F. El-Samadony, A. S. Abdullah, and Z. M. Omara, “Experimental study of stepped solar still integrated with reflectors and external condenser,” Exp. Heat Transf., vol. 28, no. 4, pp. 392–404, Jul. 2015, doi: 10.1080/08916152.2014.890964.

A. Fouda, S. A. Nada, H. F. Elattar, H. A. Refaey, and A. S. Bin-Mahfouz, “Thermal performance modeling of turbulent flow in multi tube in tube helically coiled heat exchangers,” Int. J. Mech. Sci., vol. 135, pp. 621–638, Jan. 2018, doi: 10.1016/j.ijmecsci.2017.12.015.

R. Jadar, K. S. Shashishekar, and S. R. Manohara, “Performance Evaluation of Al-MWCNT based Automobile Radiator,” in Materials today: Proceedings, 2019, pp. 380–388. [Online]. Available: www.sciencedirect.com

N. Titahelu, J. Louhenapessy, J. S. Litiloly, and A. Arson, “Studi perbandingan efektivitas berbagai model tube penukar kalor sebagai sistem pemulihan limbah panas,” in Seminar Nasional “ARCHIPELAGO ENGINEERING,” N. Titahelu, Ed., Ambon: Fakultas Teknik Universitas Pattimura, 2023, pp. 20–31. doi: 10.30598/ale.6.2023.20-31.

A. Hatumessen, N. Titahelu, and C. S. Tupamahu, “Analisis efektivitas penukar kalor pipa helikal destilasi minyak atsiri kayu putih,” in Archepelago Engineering, N. Titahelu, Ed., Amon: Fakultas Teknik Universitas Pattimura, 2021, pp. 127–132. doi: 10.30598/ale.4.2021.127-132.

P. Bhandari and Y. K. Prajapati, “Thermal performance of open microchannel heat sink with variable pin fin height,” Int. J. Therm. Sci., vol. 159, Jan. 2021, doi: 10.1016/j.ijthermalsci.2020.106609.

A. M. González, M. V. Jr, and P. S. B. Zdanski, “A hybrid numerical-experimental analysis of heat transfer by forced convection in plate- fi nned heat exchangers,” Appl. Therm. Eng., vol. 148, no. May 2018, pp. 363–370, 2019, doi: 10.1016/j.applthermaleng.2018.11.068.

C. K. Mangrulkar, A. S. Dhoble, J. D. Abraham, and S. Chamoli, “Experimental and numerical investigations for effect of longitudinal splitter plate configuration for thermal-hydraulic performance of staggered tube bank,” Int. J. Heat Mass Transf., vol. 161, Nov. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120280.

P. Promvonge, P. Promthaisong, and S. Skullong, “Experimental and numerical heat transfer study of turbulent tube flow through discrete V-winglets,” Int. J. Heat Mass Transf., vol. 151, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119351.

N. Titahelu, J. Latuny, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Pitch ratio effect on the effectiveness of condenser for essential oil distillation,” J. Energy, Mech. Mater. Manuf. Eng., vol. 6, no. 2, pp. 145–154, 2021, doi: 10.22219/jemmme.v6i2.19461.

C. Ononogbo et al., “Investigation of the Thermal Profile of a Crop Dryer Powered by Generator Exhaust Gas Waste Heat,” Int. J. Adv. Sci. Eng., vol. 8, no. 3, p. 2235, Feb. 2022, doi: 10.29294/ijase.8.3.2022.2235-2241.

D. Kumar, P. Mahanta, and P. Kalita, “Energy and exergy analysis of a natural convection dryer with and without sensible heat storage medium,” J. Energy Storage, vol. 29, Jun. 2020, doi: 10.1016/j.est.2020.101481.

T. Kogawa, J. Okajima, A. Komiya, and S. Maruyama, “Effect of gas radiation-depended natural convection on the transition of spatially developing boundary layers,” Int. J. Heat Mass Transf., vol. 177, Oct. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121580.

N. Titahelu, D. S. Pelupessy, C. S. E. Tupamahu, and A. F. Rumagutawan, “Meningkatkan efektivitas kondensor vertikal pipa helikal koil untuk destilasi minyak atsiri sereh,” J. Rekayasa Mesin, vol. 14, no. 1, pp. 235–249, 2023, doi: 10.21776/jrm.v14i1.1219.

H. K. Jobair, “Improving of Photovoltaic Cell Performance by Cooling using Two different Types of Fins,” Int. J. Comput. Appl., vol. 157, no. 5, pp. 6–15, 2017, doi: 10.5120/ijca2017912691.

F. Moukalled and S. Acharya, “Natural convection in the annulus between concentric horizontal circular and square cylinders,” J. Thermophys. Heat Transf., vol. 10, no. 3, pp. 524–531, 1996, doi: 10.2514/3.820.

A. S. Rao, S. Sujeesh, A. Sanyal, P. K. Tewari, and L. M. Gantayet, “Effect of agitation speed and fluid velocity on heat transfer performance in agitated Bunsen reactor of iodine-sulphur thermo-chemical cycle,” Int. J. Nucl. Hydrog. Prod. Appl., vol. 3, no. 1, p. 65, 2016, doi: 10.1504/ijnhpa.2016.078425.

K. Pietrak and T. S. Wiśniewski, “A review of models for effective thermal conductivity of composite materials,” J. Power Technol., vol. 95, no. 1, pp. 14–24, 2015.

A. Ahmed, K. K. Esmaeil, M. A. Irfan, and F. A. Al-Mufadi, “Design methodology of heat recovery steam generator in electric utility for waste heat recovery,” Int. J. Low-Carbon Technol., vol. 13, no. 4, pp. 369–379, Dec. 2018, doi: 10.1093/ijlct/cty045.

C. Ononogbo, “Equipment Sizing and Method for the Application of Exhaust Gas Waste Heat to Food Crops Drying Using a Hot Air Tray Dryer,” Indian J. Sci. Technol., vol. 13, no. 5, pp. 502–518, Feb. 2020, doi: 10.17485/ijst/2020/v13i05/145593.

C. P. Kothandaraman, Fundamentals of Heat and Mass Transfer. New Delhi: New Age International (P) Limited, Publishers, 2006.

H. Deshpande, S. Taji, and V. Raibhole, “Assessment of heat transfer performance from modified horizontal rectangular heat sink under forced convection dominating mode of mixed convection,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 5618–5628. doi: 10.1016/j.matpr.2021.03.607.

S. Şevik, M. Aktaş, E. C. Dolgun, E. Arslan, and A. D. Tuncer, “Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology,” Sol. Energy, vol. 180, pp. 537–549, Mar. 2019, doi: 10.1016/j.solener.2019.01.049.

R. Said, N. Titahelu, and R. S. Ufie, “Analisis Laju Aliran Massa Fluida Dingin Terhadap Efaktivitas Penukar Kalor Shell and Tube Destilasi Minyak Atsiri Cengkeh (Syzygium aromaticum),” ALE Proceeding, vol. 4, pp. 140–145, 2021, doi: 10.30598/ale.4.2021.140-145.

S. Zohrabi, S. S. Seiiedlou, M. Aghbashlo, H. Scaar, and J. Mellmann, “Enhancing the exergetic performance of a pilot-scale convective dryer by exhaust air recirculation,” Dry. Technol., vol. 38, no. 4, pp. 518–533, Mar. 2020, doi: 10.1080/07373937.2019.1587617.

O. Chibuike, D. N. Olisaemeka Chukwudozie, D. N. Nnaemeka Reginald, D. O. Chukwunenye Anthony, D. I. Onyechege Johnson, and P. E. Enyioma Anyanwu, “Energy Consumption of Yam Slice Drying in an Exhaust Gas Waste Heat Recovery Hot Air Tray Dryer,” Sci. Res. J., vol. 9, no. 8, pp. 1–7, Aug. 2021, doi: 10.31364/scirj/v9.i08.2021.p0821872.

Published
2024-05-19