Perpindahan Kalor Konveksi Natural Dari Silinder Horisontal Isothermal Set Dalam Saluran Vertikal

  • Nicolas Titahelu Universitas Pattimura
Keywords: Konveksi natural, laju aliran massa, gap rasio, silinder horizontal isotermal, saluran vertikal

Abstract

Abstrak Distribusi suhu dalam enclosure masih cukup tinggi yang mengindikasikan proses perpindahan kalor konveksi belum optimal. Hal ini dijumpai pada lemari pendingin pada bagian samping kiri dan kanan yang mana terdapat pipa kondensor. Pengaruh perubahan laju aliran massa fluida panas pada gap rasio tertentu terhadap perpindahan kalor konveksi natural dari silinder horizontal isothermal set dalam saluran vertikal telah diteliti. Model uji dimodifikasi dengan memberikan saluran udara masuk dan keluar agar bilangan Nusselt meningkat. Penelitian eksperimen dilakukan dengan variasi laju aliran massa fluida panas dari 0,0039 hingga 0,0191 (kg/s) dengan gap rasio (S/d) dari 1,26 hingga 1,56 untuk mengamati perpindahan kalor natural. Hasil penelitian menunjukkan bertambah besar laju aliran massa fluida panas optimal pada mh = 0,0191 (kg/s) dan gap rasio (S/d) = 5,06 total perpindahan panas semakin teraklerasi sebesar 56,18% dengan gradient cukup signifikan. Total perpindahan kalor konveksi natural maksimum didominasi oleh udara sebesar 98,8%. Disimpulkan bahwa perpindahan kalor natural dari silinder isothermal set dalam saluran vertikal menggunakan laju aliran massa fluida panas sebesar 0,0191 (kg/s) dengan gap rasio (S/d) = 5,06 untuk aplikasi pendinginan kondensor.

Downloads

Download data is not yet available.

References

[1] S. Rath, M. K. Dash, and S. K. Dash, “Natural Convection From Horizontal Cylinders of Different Shapes in a Rectangular Enclosure,” no. March 2018, pp. 1615–1620, 2019, doi: 10.1615/ihmtc-2017.2240.
[2] K. Kitamura, F. Kami-iwa, and T. Misumi, “Heat transfer and fluid flow of natural convection around large horizontal cylinders,” Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions Japan Soc. Mech. Eng. Part B, vol. 42, no. 618, pp. 4093–4106, 1999, doi: 10.1299/kikaib.64.477.
[3] B. Sarper, M. Saglam, and O. Aydin, “Experimental and numerical investigation of natural convection in a discretely heated vertical channel: Effect of the blockage ratio of the heat sources,” Int. J. Heat Mass Transf., vol. 126, pp. 894–910, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.05.089.
[4] R. Bessaih and M. Kadja, “Turbulent natural convection cooling of electronic components mounted on a vertical channel,” vol. 20, pp. 141–154, 2000.
[5] A. C. Avelar and M. M. Ganzarolli, “Natural convection in an array of vertical channels with two-dimensional heat sources: Uniform and non-uniform plate heating,” Heat Transf. Eng., vol. 25, no. 7, pp. 46–56, 2004, doi: 10.1080/01457630490496273.
[6] T. Icoz and Y. Jaluria, “Numerical simulation of boundary conditions and the onset of instability in natural convection due to protruding thermal sources in an open rectangular channel,” Numer. Heat Transf. Part A Appl., vol. 48, no. 9, pp. 831–847, 2005, doi: 10.1080/10407780500226548.
[7] G. Desrayaud and A. Fichera, “On Natural Convective Heat Transfer in Vertical Channels With a Single Surface Mounted Heat-Flux Module,” Heat Transf., vol. 125, no. August 2003, 2016.
[8] D. Frédéric, T. Fabien, S. Sandrine, and B. Ruddy, “Two-dimension experimental study of the reverse flow in a free convection channel with active walls differentially heated,” Exp. Therm. Fluid Sci., vol. 47, pp. 150–157, 2013, doi: 10.1016/j.expthermflusci.2013.01.010.
[9] S. Durgam, S. P. Venkateshan, and T. Sundararajan, “Experimental and numerical investigations on optimal distribution of heat source array under natural and forced convection in a horizontal channel,” Int. J. Therm. Sci., vol. 115, pp. 125–138, 2017, doi: 10.1016/j.ijthermalsci.2017.01.017.
[10] G. E. Lau et al., “Modelling of natural convection in vertical and tilted photovoltaic applications,” Energy Build., vol. 55, pp. 810–822, 2012, doi: 10.1016/j.enbuild.2012.10.014.
[11] G. E. Lau, G. H. Yeoh, V. Timchenko, and J. A. Reizes, “Numerical investigation of passive cooling in open vertical channels,” Appl. Therm. Eng., vol. 39, pp. 121–131, 2012, doi: 10.1016/j.applthermaleng.2012.01.001.
[12] O. A. Tkachenko et al., “Numerical and experimental investigation of unsteady natural convection in a non-uniformly heated vertical open-ended channel,” Int. J. Therm. Sci., vol. 99, pp. 9–25, 2016, doi: 10.1016/j.ijthermalsci.2015.07.029.
[13] E. Sanvicente, S. Giroux-Julien, C. Ménézo, and H. Bouia, “Transitional natural convection flow and heat transfer in an open channel,” Int. J. Therm. Sci., vol. 63, pp. 87–104, 2013, doi: 10.1016/j.ijthermalsci.2012.07.004.
[14] M. Corcione, “Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array,” Int. J. Heat Mass Transf., vol. 48, no. 17, pp. 3660–3673, 2005, doi: 10.1016/j.ijheatmasstransfer.2005.01. 010.
[15] T. Yousefi and M. Ashjaee, “Experimental study of natural convection heat transfer from vertical array of isothermal horizontal elliptic cylinders,” Exp. Therm. Fluid Sci., vol. 32, no. 1, pp. 240–248, 2007, doi: 10.1016/j.expthermflusci.2007.04.001.
[16] M. Corcione, “Interactive free convection from a pair of vertical tube-arrays at moderate Rayleigh numbers,” Int. J. Heat Mass Transf., vol. 50, no. 5–6, pp. 1061–1074, 2007, doi: 10.1016/j.ijheatmasstransfer.2006.07. 034.
[17] T. Yousefi, M. Paknezhad, M. Ashjaee, and S. Yazdani, “Effects of confining walls on heat transfer from a vertical array of isothermal horizontal elliptic cylinders,” Exp. Therm. Fluid Sci., vol. 33, no. 6, pp. 983–990, 2009, doi: 10.1016/j.expthermflusci.2009.04.005.
[18] A. D’Orazio and L. Fontana, “Experimental study of free convection from a pair of vertical arrays of horizontal cylinders at very low Rayleigh numbers,” Int. J. Heat Mass Transf., vol. 53, no. 15–16, pp. 3131–3142, 2010, doi: 10.1016/j.ijheatmasstransfer.2010.03.014.
[19] M. S. Chae and B. J. Chung, “Effect of pitch-to-diameter ratio on the natural convection heat transfer of two vertically aligned horizontal cylinders,” Chem. Eng. Sci., vol. 66, no. 21, pp. 5321–5329, 2011, doi: 10.1016/j.ces.2011.07.021.
[20] J. H. Heo and B. J. Chung, “Natural convection of two staggered cylinders for various prandtl numbers and vertical and horizontal pitches,” Heat Mass Transf. und Stoffuebertragung, vol. 50, no. 6, pp. 769–777, 2014, doi: 10.1007/s00231-013-1285-x.
[21] M. S. Sadeghipour and M. Asheghi, “Free convection heat transfer from arrays of vertically separated horizontal cylinders at low Rayleigh numbers,” Int. J. Heat Mass Transf., vol. 37, no. 1, pp. 103–109, 1994, doi: 10.1016/0017-9310(94)90165-1.
[22] E. R. G. Eckert and E. E. Soehngen, “Studies on heat transfer in laminar free convection with the Zehnder- Mach Interferometer,” AF Tech. Reuort, 1948.
[23] J. Lieberman, “Interactions in natural convection from an array of heated elements, experimental,” 1969.
[24] G. F. Marsters, “Arrays of heated horizntal cylinders in natural convection,” Heat Transf., vol. 15, pp. 921–933, 1972.
[25] E. M. Sparrow and J. E. Niethammer, “Effect of Vertical Separation Distance and Cylinder-to-Cylinder Temperature Imbalance on Natural Convection for a Pair of Horizontal Cylinders,” Heat Transf., vol. 103, pp. 638–644, 1981.
[26] I. Tokura, H. Saito, K. Kishinami, and K. Muramoto, “An Experimental Study of Free Convection Heat Transfer From a Horizontal Cylinder in a Vertical Array Set in Free Space Between Parallel Walls,” Heat Transf., vol. 105, no. February 1983, pp. 102–107, 2016.
[27] E. M. Sparrow and D. S. Boessneck, “Effect of Transverse Misalignment on Natural Convection From a Pair of Parallel , Vertically Stacked , Horizontal Cylinders,” Heat Transf., vol. 105, no. May 1983, pp. 241–247, 1983.
[28] B. Farouk, “Natural convection from horizontal cylinders in interacting flow fields,” HEAT MASS Transf., vol. 26, no. 2, pp. 231–243, 1983.
[29] H. Rezvantalab, O. Ghazian, T. Yousefi, and M. Ashjaee, “Effect of flow diverters on free convection heat transfer from a pair of vertical arrays of isothermal cylinders,” Exp. Therm. Fluid Sci., vol. 35, no. 7, pp. 1398–1408, 2011, doi: 10.1016/j.expthermflusci.2011.05.008.
[30] K. Kitamura, A. Mitsuishi, T. Suzuki, and F. Kimura, “Fluid flow and heat transfer of natural convection induced around a vertical row of heated horizontal cylinders,” HEAT MASS Transf., vol. 92, pp. 414–429, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.086.
[31] Z. Razzaghpanah and N. Sarunac, “Natural convection heat transfer from a bundle of heated circular cylinders with staggered arrangement immersed in molten solar salt,” Int. J. Heat Mass Transf., vol. 156, p. 119900, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119900.
[32] Z. Razzaghpanah and N. Sarunac, “Natural convection heat transfer from a bundle of in-line heated circular cylinders immersed in molten solar salt,” Int. J. Heat Mass Transf., vol. 148, no. xxxx, p. 119032, 2020, doi: 10.1016/j.ijheatmasstransfer.2019.119032.
[33] Y. Lu, Q. Yu, W. Du, and Y. Wu, “Natural convection heat transfer of molten salts around a vertically aligned horizontal cylinder set ☆,” Int. Commun. Heat Mass Transf., vol. 76, pp. 147–155, 2016, doi: 10.1016/j.icheatmasstransfer.2016.04.022.
[34] Z. Brodnianská and S. Kotšmíd, “Numerical Study of Heated Tube Arrays in the Laminar Free Convection Heat Transfer,” 2020, doi: 10.3390/en13040973.
[35] S. R. Yan et al., “A critique of effectiveness concept for heat exchangers; theoretical-experimental study,” Int. J. Heat Mass Transf., vol. 159, p. 120160, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120160.
[36] Theodore L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and Mass Transfer. 2011.
[37] J. Fernández-Seara, C. Piñeiro-Pontevedra, and J. A. Dopazo, “On the performance of a vertical helical coil heat exchanger. Numerical model and experimental validation,” Appl. Therm. Eng., vol. 62, no. 2, pp. 680–689, 2014, doi: 10.1016/j.applthermaleng.2013.09.054.
Published
2021-11-25