The Influence of Quantum Trading Algorithm on LQ45 Stock Price Volatility

Keywords: Quantum Trading Algorithm, Stock Price Volatility, LQ45, Quantum Computing, Market Microstructure

Abstract

This study examines the impact of quantum trading algorithm implementation on the dynamics of LQ45 stock price volatility on the Indonesia Stock Exchange. The main objective of the study is to analyze changes in volatility patterns that occur after the implementation of quantum trading, as well as evaluate its effectiveness in predicting price movements. The research uses an experimental quantitative approach with tick-by-tick data of LQ45 stocks during the period 2020-2024. The applied methodology combines quantum feature mapping and quantum kernel estimation for algorithm development, as well as GARCH and realized volatility models for volatility measurement. The results showed that the implementation of the quantum trading algorithm significantly affected the market microstructure, with a decrease in volatility of 18.5% in the post-implementation period. The quantum algorithm exhibits 87.3% predictive accuracy in identifying price movements, far surpassing conventional methods. The findings have important implications for regulators in developing a regulatory framework for algorithmic trading, as well as for market participants in optimizing investment strategies. The research makes a significant contribution through the development of a hybrid model that integrates quantum computing with conventional volatility analysis, opening a new paradigm in the study of the microstructure of the Indonesian capital market.

Downloads

Download data is not yet available.

Author Biographies

Supri Yanto, Politeknik Negeri Lampung

Jurusan Ekonomi dan Bisnis

Putri Irmala Sari, Politeknik Negeri Lampung

Jurusan Ekonomi dan Bisnis

References

Alexandri, M.B. and Supriyanto (2021) ‘The influence of oil price volatility and price limit in Indonesia energy sub-sector for the period before and after COVID-19’, International Journal of Energy Economics and Policy, 11(5), pp. 538–544. Available at: https://doi.org/10.32479/ijeep.11557.

Alexandri, M.B. and Supriyanto (2022) ‘Volatility Spillover between Stock Returns and Oil Prices during the Covid-19 Pandemic in ASEAN’, International Journal of Energy Economics and Policy, 12(1), pp. 126–133. Available at: https://doi.org/10.32479/ijeep.11945.

Ayuning Putri, A.F. (2020) ‘Faktor-Faktor Penentu Volatilitas Harga Saham Sektor Perusahaan Properti, Real Estate Dan Building Construction’, Jurnal Akuntansi dan Keuangan, 8(2), p. 109. Available at: https://doi.org/10.29103/jak.v8i2.2563.

Bunescu, L. and Vârtei, A.M. (2024) ‘Modern finance through quantum computing —A systematic literature review’, PLoS ONE, 19(7 July), pp. 1–22. Available at: https://doi.org/10.1371/journal.pone.0304317.

Cahyani, C.P., Permadhy, Y.T. and Aziz, A. (2021) ‘Analisis return saham lq45 di bursa efek indonesia’, Korelasi, 2(2020), pp. 349–361.

Ersan, O. and Management, F. (2019) ‘High-Frequency Trading and its Impact on Market Liquidity : A Review of Literature Yüksek Frekanslı İşlemler ve Piyasa Likiditesine Etkileri : Yazın Taraması 1 Özet Anahtar Sözcükler : Yüksek frekanslı işlemler , YFİ , Likidite , Güniçi şoklar , Uç fiyat’, Tubitak, pp. 1–18.

Gunarto, T. et al. (2020) ‘Accurate estimated model of volatility crude oil price’, International Journal of Energy Economics and Policy, 10(5), pp. 228–233. Available at: https://doi.org/10.32479/ijeep.9513.

Herman, D. et al. (2023) ‘Quantum computing for finance’, Nature Reviews Physics, 5(8), pp. 450–465. Available at: https://doi.org/10.1038/s42254-023-00603-1.

How, M.-L. and Cheah, S.-M. (2023) ‘Business Renaissance: Opportunities and Challenges at the Dawn of the Quantum Computing Era’, Businesses, 3(4), pp. 585–605. Available at: https://doi.org/10.3390/businesses3040036.

Lawrence Damilare Oyeniyi, Chinonye Esther Ugochukwu and Noluthando Zamanjomane Mhlongo (2024) ‘Analyzing the impact of algorithmic trading on stock market behavior: A comprehensive review’, World Journal of Advanced Engineering Technology and Sciences, 11(2), pp. 437–453. Available at: https://doi.org/10.30574/wjaets.2024.11.2.0136.

Ridho, M. (2024) ‘Faktor-Faktor Yang Mempengaruhi Volatilitas Harga Saham pada Perusahaan LQ45 di Bursa Efek Indonesia’, 3(2), pp. 1–10.

Saputri, A.D. (2023) ‘Analisis Dampak Teknologi Quantum Computing Dalam Kriptografi Dan Keamanan Informasi’, Jurnal Teknologi Terkini, 3(7), pp. 1–21. Available at: http://teknologiterkini.org/index.php/terkini/article/view/468.

Sari, L.K., Achsani, N.A. and Sartono, B. (2017) ‘Pemodelan Volatilitas Return Saham: Studi Kasus Pasar Saham Asia’, Jurnal Ekonomi dan Pembangunan Indonesia, 18(1), pp. 35–52. Available at: https://doi.org/10.21002/jepi.2018.03.

Sulviani, A., Sugema, T.M. and Sundari, F.M. (2022) ‘Perdagangan Saham, Return dan Indeks LQ45Periode 2028-2021’, Jurnal Ekonomi Syariah dan Bisnis, 5(2), pp. 307–328. Available at: https://ejournal.unma.ac.id/index.php/maro/article/view/4869.

Supriyanto et al. (2022) ‘Impact of Green Innovation, Cultural Environment, Company Performance During Covid-19’, Proceedings of the 2nd International Indonesia Conference on Interdisciplinary Studies (IICIS 2021), 606(Iicis), pp. 285–294. Available at: https://doi.org/10.2991/assehr.k.211206.040.

Supriyanto, S., Alexandri, M.B. and Novel, N.J.A. (2022) ‘The Effect of Investment Risk, Macroeconomics on Stock Prices in IPO Companies during the Covid-19 Pandemic’, Global Conference on Business and Social Sciences Proceeding, 13(1), pp. 1–1. Available at: https://doi.org/10.35609/gcbssproceeding.2022.1(3).

Suripto et al. (2021) ‘Impact of oil prices and stock returns: Evidence of oil and gas mining companies in indonesia during the covid-19 period’, International Journal of Energy Economics and Policy, 11(4), pp. 312–318. Available at: https://doi.org/10.32479/ijeep.11290.

Suripto et al. (2022) ‘Effect of Green Management and Earning Management of Energy Companies in Indonesia’, International Journal of Energy Economics and Policy, 12(3), pp. 192–196. Available at: https://doi.org/10.32479/ijeep.12970.

Suripto and Supriyanto (2021) ‘The effect of the covid-19 pandemic on stock prices with the event window approach: A case study of state gas companies, in the energy sector’, International Journal of Energy Economics and Policy, 11(3), pp. 155–162. Available at: https://doi.org/10.32479/ijeep.10999.

Triya, P., Suarna, N. and Dienwati Nuris, N. (2024) ‘Penerapan Machine Learning Dalam Melakukan Prediksi Harga Saham Pt. Bank Mandiri (Persero) Tbk Dengan Algoritma Linear Regression’, JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), pp. 1207–1214. Available at: https://doi.org/10.36040/jati.v8i1.8958.

Published
2025-04-15
How to Cite
Yanto, S., & Sari, P. I. (2025). The Influence of Quantum Trading Algorithm on LQ45 Stock Price Volatility. Accounting Research Unit (ARU Journal), 6(1), 68-77. https://doi.org/10.30598/arujournalvol6iss1pp68-77