Evaluasi Keefektifan Metode Moving Average dan Exponential Smoothing sebagai Pendekatan Statistik dalam Memprediksi Nilai Tukar Rupiah terhadap Dolar AS
Abstract
Exchange rate of the Indonesian Rupiah against the US Dollar is a crucial economic indicator that significantly impacts Indonesia's macroeconomic stability. Exchange rate fluctuations can affect trade, investment, inflation, and monetary policy. Therefore, an accurate forecasting method is essential to support economic decision-making. This article aims to evaluate the effectiveness of Moving Average and Exponential Smoothing methods in predicting the Rupiah exchange rate against the US Dollar. Using a qualitative approach based on literature review, this study compares findings from various previous studies on these two methods. The analysis results indicate that Exponential Smoothing is more effective in highly volatile market conditions due to its adaptability to trend changes, while Moving Average performs better in stable market conditions. These findings provide insights for academics, financial analysts, and policymakers in selecting appropriate forecasting methods to support economic stability.
Downloads
References
Achsani, N. A., Fauzi, A., & Abdullah, P. (2010). The relationship between inflation and exchange rate in Indonesia: An empirical study. Journal of Indonesian Economy and Business, 25(3), 347-360.
Amalia, S. J., Oktaviani, N., Prameswara, G. I., Prasetyo, Y. D., Fathoni, M. Y. (2022, Agustus). Perbandingan metode Moving Average dan Exponential Smoothing pada peramalan nilai tukar Rupiah terhadap Dollar AS. JURIKOM (Jurnal Riset Komputer, 9(4), 974-979.
Arifin, S., & Mayasya, S. (2018, April). Faktor–faktor yang mempengaruhi nilai tukar Rupiah terhadap Dolar Amerika Serikat. Jurnal Ekonomi-Qu, 8(1).
Aziza, J. N. (2022, Maret). Perbandingan metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing pada peramalan permintaan tabung gas LPG PT Petrogas Prima Services. Jurnal Teknologi dan Manajemen Industri Terapan, 1(1), 35-41.
Brown, R. G. (1959). Smoothing, forecasting and prediction of discrete time series. Prentice-Hall.
Chatfield, C., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2001). A new look at Exponential Smoothing. Journal of the Royal Statistical Society: Series D (The Statistician, 50(2), 147-159.
Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.
Djulius, H., & Nurdiansyah, I. (2014). Dampak suku bunga terhadap nilai tukar Rupiah di Indonesia: Analisis jangka panjang dan pendek. Jurnal Ekonomi dan Bisnis, 15(1), 55-70.
Dornbusch, R., Fischer, S., & Startz, R. (2018). Macroeconomics (13th ed.). McGraw-Hill.
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice (2nd ed.). OTexts.
Kemendag. (2021). Dampak fluktuasi nilai tukar terhadap perdagangan Indonesia. Kementerian Perdagangan Republik Indonesia.
Kristanti, N., & Darsyah, M. Y. (2018). Perbandingan peramalan metode Single Exponential Smoothing dan Double Exponential Smoothing pada karakteristik penduduk bekerja di Indonesia tahun 2017. Prosiding Seminar Nasional Mahasiswa Unimus, 1, 368-374.
Krugman, P. R., & Obstfeld, M. (2020). International economics: Theory and policy (11th ed.). Pearson.
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2019). Forecasting: Methods and applications (4th ed.). John Wiley & Sons.
Maricar, M. A. (2019, Mei). Analisa perbandingan nilai akurasi Moving Average dan Exponential Smoothing untuk sistem peramalan pendapatan pada Perusahaan XYZ. Jurnal Sistem dan Informatika, 13(2), 36-45.
Mishkin, F. S. (2019). The economics of money, banking, and financial markets (12th ed.). Pearson.
Muchlas, M. (2015). Pengaruh jumlah uang beredar terhadap nilai tukar Rupiah terhadap Dolar AS. Jurnal Ekonomi dan Keuangan, 20(2), 78-95.
Nasution, A. (2021). Dampak fluktuasi nilai tukar terhadap stabilitas makroekonomi di Indonesia. Jurnal Ekonomi dan Keuangan Indonesia, 69(3), 112-130.
Nasution, A. H. (2021). Kebijakan moneter dan stabilitas nilai tukar di Indonesia: Analisis empiris. LP3ES.
Newton, A., Roberts, B., & Zhang, W. (2023). An empirical comparison of Moving Average and Exponential Smoothing in exchange rate forecasting. International Journal of Economics and Finance, 18(1), 112-130.
OJS Unikom. (2022). Perbandingan metode Moving Average dan Exponential Smoothing dalam prediksi nilai tukar Rupiah. Open Journal System Universitas Komputer Indonesia.
Putra, R. W., & Solikin, M. (2019). Analisis akurasi Moving Average dan Exponential Smoothing dalam peramalan nilai tukar Rupiah. Jurnal Ekonomi dan Keuangan, 22(1), 33-50.
Rachman, A. (2018). Model peramalan dengan teknik Moving Average dan implementasinya dalam analisis ekonomi makro. Jurnal Statistika dan Ekonomi, 7(1), 12-24.
Rachman, R. (2018, September). Penerapan metode Moving Average dan Exponential Smoothing pada peramalan produksi industri garment. Jurnal Informatika, 5(1), 211-220.
STMIK Budidarma. (2023). Perbandingan akurasi model Moving Average dan Exponential Smoothing dalam peramalan nilai tukar Rupiah. Jurnal Ilmu Komputer dan Ekonomi, 14(2), 45-58.
Susilowati, I. H., & Rosento. (2020, Maret). Peramalan nilai tukar kurs IDR terhadap Dollar USD dengan metode Moving Average dan Exponential Smoothing. Perspektif: Jurnal Ekonomi & Manajemen Universitas Bina Sarana Informatika, 18(1), 91-98.
Taylor, J. W. (2003). Exponential Smoothing with a damped multiplicative trend. International Journal of Forecasting, 19(4), 715-725.
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342.
Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed.). SAGE Publications.
Zhang, W., & Qi, J. (2021). Enhancing exchange rate forecasting using hybrid machine learning models: A case study of LSTM and ARIMA integration. Journal of Financial Data Science, 3(2), 112-129.
Copyright (c) 2025 Accounting Research Unit (ARU Journal)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.











