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Abstract 

Ethereum is one of the leading cryptocurrencies utilizing blockchain technology for peer-to-peer financial 

transactions. This study aims to forecast Ethereum's price using the Autoregressive Integrated Moving 

Average (ARIMA) model. Historical price data from January 1, 2023, to January 15, 2025, covering 534 

periods, was analyzed. The ARIMA (0,1,9) model was selected based on AIC, SC, and Adjusted R-squared 

criteria, with forecast evaluation showing a Mean Absolute Percentage Error (MAPE) of 15.01% and a 

Root Mean Squared Error (RMSE) of 649.702. Forecast results indicate an upward trend in Ethereum's 

price over the next 30 periods, with fluctuations being less pronounced compared to historical data. The 

study concludes that ARIMA provides reasonably accurate short-term predictions, although forecasting 

errors increase with longer prediction periods. These findings can serve as a reference for investors in 

developing short-term investment strategies for Ethereum.  
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1. INTRODUCTION 

Cryptocurrency is one of the fastest-growing forms of investment in the last decade 

[1]. Ethereum is one of the largest cryptocurrencies besides Bitcoin [2]. Like Bitcoin, 

investing in Ethereum requires careful planning, including understanding price volatility, 

market trends, and forecasting methods [2]. Crypto investments like Ethereum offer high 

profit potential. However, the accompanying price volatility poses substantial risks that 

demand effective risk management strategies. As a result, accurate price prediction 

becomes essential for mitigating potential losses and making informed decisions. 

Crypto assets have three key characteristics: they are decentralized, unregulated, 

and anonymous [3]. These unique characteristics have contributed to the growing interest 

of Indonesians in investing, as evidenced by the increasing number of crypto investors. 

According to data from the Commodity Futures Trading Regulatory Agency (Badan 

Pengawas Perdagangan Berjangka Komoditi—Bappebti), as of August 2024, there were 

20.9 million registered crypto investors in Indonesia. The increase of 500,000 investors in 

just one month indicates a rising public interest in cryptocurrency investments. Younger 

generations, including Millennials and Gen Z, are also becoming more involved in crypto 

investments, highlighting the widespread appeal of these assets. 

Ethereum is one of the largest cryptocurrencies, created by Vitalik Buterin in 2013 

as a platform for executing smart contracts and decentralized applications [1]. Ethereum 

has grown increasingly popular in recent years, leading more people to invest in this 

crypto asset. Various algorithms for predicting and forecasting crypto asset prices have 

been developed to support crypto investments in the digital world [4]. 

Several forecasting methods are used to predict cryptocurrency prices, such as 

Triple Exponential Smoothing (TES) and ARIMA. ARIMA is effective for non-stationary 

data [5] and is used to predict stock and cryptocurrency prices, though its accuracy in the 

highly volatile crypto market requires further research. [6] found that ARIMA 

outperformed SARIMAX in predicting Bitcoin prices, with a Mean Squared Error (MSE) 

of 54,791. However, [7] noted that ARIMA is only accurate for short-term predictions as it 

struggles to capture sharp price fluctuations. Conversely, [8] found that LSTM was more 

accurate than ARIMA for crypto price prediction. [9] concluded that ARIMA 

outperformed deep learning models, achieving a Mean Absolute Percentage Error 

(MAPE) of 2.76%. [10]compared four univariate models and found that ARMA was 

suitable for certain crypto assets, emphasizing the importance of selecting forecasting 

models based on cryptocurrency characteristics. [11] stated that K-Nearest Neighbors 

(KNN) performed better than ARMA and GARCH in predicting cryptocurrency liquidity, 

whereas GARCH was more effective in emerging markets. [12] proposed a hybrid LSTM-

VAR model, which was found to be superior to ARIMA due to its lower evaluation 

metrics, indicating the high potential of combining time series and deep learning methods 

for cryptocurrency price prediction. 

These various studies indicate that the best model for forecasting crypto asset prices 

may vary depending on the study period and dataset used. This aligns with the findings 

of [13], who emphasized that the choice of data period significantly impacts model 

performance in cryptocurrency forecasting, with some models being more effective for 

short-term predictions and others for long-term forecasts. ARIMA, which has been proven 

effective in analyzing non-stationary data, can be utilized to capture Ethereum’s price 

patterns over specific periods. ARIMA-based research using recent data has the potential 

to provide deep insights into Ethereum market behavior while serving as a foundation for 

developing more targeted investment strategies. 
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Therefore, this study aims to use the ARIMA method with the best model to predict 

Ethereum's future value using the most recent data. This is done to provide research 

findings that can serve as a reference for investors before making Ethereum investment 

decisions. The study includes an evaluation of forecasting results using Mean Absolute 

Percentage Error (MAPE) and Root Mean Squared Error (RMSE). The findings are 

expected to assist crypto investors in making informed decisions when investing in 

Ethereum. 

 

2. METHODOLOGY 

The data used in this study is secondary data. The analyzed data includes Ethereum 

(ETH) prices over 534 periods, spanning from January 1, 2023, to January 15, 2025, sourced 

from https://id.investing.com/crypto/ethereum/historical-data. To ensure model 

reliability, the dataset is divided into two categories: training data and testing data, with 

proportions of 80% and 20%, respectively. Thus, the training data consists of 428 periods, 

while the remaining 106 periods are reserved for performance testing. The training data 

is used to build the model, whereas the testing data is used to evaluate the model’s 

performance. This study follows several key stages: data collection, model identification, 

residual diagnostics, and forecasting. Data analysis is conducted using the E-Views 

software. 

2.1. Autoregressive Integrated Moving Average (ARIMA) 

ARIMA is a forecasting method that utilizes historical data for prediction. This 

method is widely used in financial forecasting because it often produces the best 

estimation models. ARIMA does not incorporate other independent variables; instead, it 

relies solely on current and past values to predict future values. The ARIMA method is 

highly accurate for short-term forecasting; however, its accuracy tends to decline in long-

term forecasts as predictions often flatten or remain constant over extended periods. It is 

known to perform well for short-term forecasts, although its predictive power tends to 

diminish for longer horizons due to the tendency of forecasts to converge or flatten 

ARIMA works by leveraging historical and current data from a single time series 

variable (univariate) to generate accurate forecasts. This method is particularly effective 

when observations in a time series are statistically dependent. The ARIMA model 

combines two key approaches: the Autoregressive (AR) model, which explains variable 

patterns using past data of the variable itself, and the Moving Average (MA) model, which 

analyzes variable movements based on residual values from previous periods [14]. 

 

2.2.  Autoregressive (AR) Model 

The Autoregressive (AR) model describes the forecasting process as a relationship 

between the current value and past values within a time series [15]. An autoregressive 

model of order p (AR(p)), also known as an ARIMA (p,0,0) model, has the general form 

as follows: 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡                 (1) 

Or expressed in backshift notation as follows: 

𝜙𝑝(𝐵)𝑌𝑡 =  𝜀𝑡               (2) 

                𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝   

Description: 

𝑌𝑡   : Value of the Variable at Period t 

𝑌𝑡−𝑖    : Value of the Variable in the Previous Period at Time t-i, where 𝑖 = 1,2, … , 𝑝 
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𝜙1, … , 𝜙𝑝 : Estimated AR Coefficients 

𝜀𝑡  : Error Value at period t 

𝐵𝑝    : Backshift Operator, where 𝐵𝑝𝑌𝑡 = 𝑌𝑡−𝑝 
 

2.3. Moving Average (MA) Model 

The Moving Average (MA) represents the value of a time series at a specific time, 

which is influenced by the current error as well as the weighted errors from previous 

periods [15]. A moving average model of order q (MA(q)) or ARIMA(0,0,q) can generally 

be expressed as follows: 

𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞             (3) 

 Or expressed in backshift notation as follows:    

  𝑌𝑡 = 𝜃𝑞(𝐵)𝜀𝑡                 (4) 

 𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞 

Keterangan: 

𝑌𝑡     : Value of the Variable at Period t 

𝜃1, … , 𝜃𝑞  : Estimated MA Coefficients 

𝜀𝑡 , 𝜀𝑡−1, … , 𝜀𝑡−𝑝 : Error Values at Periods t to t-q 

𝐵𝑞   : Backshift Operator, 𝐵𝑞𝑌𝑡 = 𝑌𝑡−𝑝 

 

2.4. Mixed Model 

 

ARMA Model 

The autoregressive moving average model, denoted as ARMA(p,q), is a 

combination of the autoregressive and moving average models without involving 

differentiation. In general, the ARMA model can be written as follows: 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞          (5) 

Or expressed in backshift notation as follows: 

𝜙𝑝(𝐵)𝑌𝑡 = 𝜃𝑞(𝐵)𝜀𝑡                     (6) 
 

ARIMA Model 

The Autoregressive Integrated Moving Average (ARIMA) model is an extension of 

the ARMA(p,q) model designed to analyze non-stationary data. In this model, non-

stationary data is transformed into stationary data through differentiation d times. Once 

differentiation is completed, the ARMA(p,q) model is converted into an ARIMA(p,d,q) 

model. The mathematical form of the ARIMA model can be described as follows: 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃𝑞(𝐵)𝜀𝑡                          (7) 

2.5. Forecasting Steps with the ARIMA Method 

 

1. Model Identification 

At this stage, the stationarity test of the data is conducted by analyzing the 

patterns in the time series data. The stationarity identification process can be carried 

out by observing data patterns using plots, ACF graphs [16], or by applying the 

Augmented Dickey-Fuller (ADF) test. The hypotheses and test statistics used in the 

ADF test are as follows. 
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Hypothesis 

𝐻0: 𝛿 = 0 (there is a unit root or data is not stationary) 

𝐻1: 𝛿 ≠ 0 (no unit root or data is stationary) 

 

Test Statistic 

𝜏 =
�̂�

𝑠𝑒(�̂�)
~𝜏𝑛                    (8) 

Keterangan: 

�̂�      : Coefficient of 𝑌𝑡−1 

𝑠𝑒(�̂�)   : Standard Error of the Coefficient 𝑌𝑡−1 
 

Based on the test statistic value, the research hypothesis leads to the rejection 

of H₀ when |𝜏| > |𝜏𝛼,𝑛| or p-value ≤ 𝛼. 
 

If the data is not yet stationary, differentiation must be applied to the original 

data (Yt) to make it stationary. Differentiation is performed by calculating the 

difference between the data value at a given period and the value from the previous 

period. The differentiation notation using the backshift operator is as follows: 

(1 − 𝐵)𝑑𝑌𝑡                  (9) 

where 𝑑 is the number of differentiations 

After the data is declared stationary, a correlogram analysis is conducted to 

determine the order values of p, d, and q. These three orders will be used in the 

model-building process. The order p is obtained from the PACF data pattern, while 

the order q is taken based on the ACF data pattern. This step is essential because 

ARIMA requires stationarity for reliable modeling. 

 

2. Parameter Estimation 

After determining the orders for AR and MA, the next step is to estimate the 

AR and MA parameters to identify significant parameters. Parameter estimation is 

performed on all temporary ARIMA models to ensure whether the generated 

parameters are significant or not. A model is considered significant if the parameter 

significance value is less than alpha (α), with α set at 0.05. If more than one model 

meets the significance criteria, model selection is guided by three commonly used 

metrics that assess both model fit and complexity. Model selection is based on the 

values of Akaike’s Information Criterion (AIC) and Schwarz Criterion (SC), as well 

as the adjusted R-Square value, which serve to identify the best model from the 

dataset. Akaike’s Information Criterion (AIC) and Schwarz Criterion (SC) evaluate 

the trade-off between goodness of fit and the number of parameters, helping to 

avoid overfitting by penalizing overly complex models [15], [17]. Adjusted R-

squared, meanwhile, measures how well the model explains variation in the 

dependent variable while accounting for the number of predictors, with higher 

values indicating better explanatory power [17]. These metrics serve as standard 

tools in model selection by quantifying both the fit of the model and its complexity, 

making them especially useful when comparing competing models. 

 

Hypothesis 

𝐻0: 𝜃𝑖 = 0 (parameter is not significant) 

𝐻1: 𝜃𝑖 ≠ 0 (parameter is significant) 
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Test Statistic 

𝑡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
�̂�𝑙

𝑠𝑒(�̂�𝑙)
 ~ 𝑡(𝛼,𝑑𝑓)          (10) 

 

Based on the test statistic value, the research hypothesis results in the decision to   

reject 𝐻0 when |𝑡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐| > 𝑡𝛼

2
,𝑛−𝑝 or p-value < 𝛼. 

 

3. Residual Diagnostic Checking 

Residual diagnostic checking is conducted to ensure that the model used is 

adequate and suitable for forecasting purposes. In this study, diagnostics include 

normality tests, white noise tests, and homoscedasticity tests.  

 

a. Normality Test 

The optimal ARIMA model is one whose residuals follow a normal 

distribution. Therefore, a normality test of the residuals is required to confirm that 

the residuals conform to a normal distribution. This test can be conducted using 

the Kolmogorov-Smirnov test, with the hypothesis and test statistics explained as 

follows. 

 

Hypothesis 
𝐻0: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
𝐻1: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑑𝑜 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

Test Statistic 

𝐷 = 𝑀𝑎𝑥 |𝐹(𝑥) − 𝑆(𝑥)|           (11) 

Description: 

𝐹(𝑥) : Cumulative distribution function of the sample 

𝑆(𝑥) : Proportion of sample observations less than or equal to 𝑥 

 

Based on the test statistic value, the research hypothesis results in the 

decision to reject 𝐻0 when 𝐷 >  𝐷𝑡𝑎𝑏𝑙𝑒 atau p-value < 𝛼 

 

b. White Noise Non-Autocorrelation Residual Test 

A good ARIMA model has residuals that are white noise, meaning they are 

random, patternless, and free from autocorrelation. In other words, the residuals 

must be independent, non-autocorrelated, and have homogeneous variance. The 

white noise assumption can be tested using the Ljung-Box test with the following 

hypothesis and test statistics. 

 

Hypothesis 

𝐻0: 𝜌1 =  𝜌2 = ⋯ = 𝜌𝑘 = 0 (residuals are not autocorrelated/white noise 

assumption is satisfied) 

   𝐻1: at least one 𝜌𝑘 ≠ 0 (residuals are autocorrelated/white noise 

assumption is not satisfied) 

  

Test Statistic 

     𝑄 = 𝑛(𝑛 + 2) ∑
𝑝𝑘

2

(𝑛−𝑘)
𝐾
𝑘=1 ~𝜒(1−𝛼;𝐾)

2             (12) 
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         Description: 

n  : Number of Observations 

k : Time Lag 

�̂�𝑘
2  : Sample Autocorrelation Function of the K-th Lag Residual 

 

Based on the test statistic value, the research hypothesis results in the 

decision to reject 𝐻0 when 𝑄 >  𝜒(1−𝛼;𝐾)
2  or p-value < 𝛼. 

 

c. Homoscedasticity Test 

The homoscedasticity test aims to identify the variance pattern. 

Variance can be constant (homoscedasticity) or variable (heteroscedasticity). 

The homoscedasticity test is conducted using the Breusch-Pagan test with the 

following hypothesis and test statistics. 

 

Hypothesis 

𝐻0: 𝑣𝑎𝑟(𝑒𝑖) = 𝜎2 (homoscedasticity is satisfied) 

𝐻1: at least one 𝑣𝑎𝑟(𝑒𝑖) ≠ 𝜎2 (homoscedasticity is not 

satisfied/heteroscedasticity is present) 

 

   Test Statistic 

𝐵𝑃 =
1

2
 (𝐸𝑆𝑆)              (13) 

 

   Description: 

𝐸𝑆𝑆  : Explained Sum of Squares with 𝐸𝑆𝑆 =  ∑(�̂�𝑡 − 𝑦𝑡)2  

 

Based on the test statistic value, the research hypothesis results in the 

decision to reject 𝐻0 when 𝐵𝑃 >  𝜒(𝛼;𝑚)
2  or p-value < 𝛼. 

 

4. Forecasting 

The final stage is to perform data forecasting. After all tests and assumptions 

have been satisfied, the best model obtained will be used for forecasting. If the 

selected best ARIMA model exhibits violations of the homoscedasticity assumption 

in the residuals, the ARCH/GARCH approach can be applied to address this issue. 

However, if the homoscedasticity assumption is not violated, forecasting can be 

directly carried out using the ARIMA method based on the best-selected model. 

2.6. Best Model Selection 

In practical terms, AIC and SC are used to compare competing ARIMA models by 

penalizing models that are too complex. A lower AIC or SC value suggests a better-fitting 

model with fewer unnecessary parameters. Meanwhile, the Adjusted R-squared reflects 

how well the model explains variations in the data. A higher Adjusted R-squared indicates 

better explanatory power. When multiple models are statistically significant, the 

combination of low AIC/SC values and a high Adjusted R-squared is used to determine 

the most optimal model for forecasting [15]. According to [17], a model with lower AIC 

and SC values typically demonstrates better predictive performance and greater 

suitability for the underlying data pattern. These criteria help ensure the chosen model 

not only fits the data well but also avoids overfitting, maintaining a balance between 

complexity and forecasting reliability. 
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Akaike’s Information Criterion (AIC) Formula : 

𝐴𝐼𝐶 = ln (
𝑅𝑆𝑆

𝑛
) +

2

𝑛
𝑚                (14) 

 

Description: 

RSS : Residual  Sum of Squares 

𝑚 : Number of Parameters 

𝑛  : Number of Observations  

 

Schwarz Criterion (SC) Formula: 

 

𝑆𝐶 = ln (
𝑅𝑆𝑆

𝑛
) +

ln (𝑛)

𝑛
𝑚             (15) 

 

Description: 

RSS : Residual  Sum of Squares 

𝑚 : Number of Parameters 

𝑛  : Number of Observations  

 

In addition, the best model can also be determined by a higher coefficient of 

determination (R-Square). [18] explains that the coefficient of determination 

represents the contribution of independent variables to the variation of the 

dependent variable or measures the percentage of total variation in the dependent 

variable explained by the regression model. The coefficient of determination is a 

non-negative value ranging from 0 to 1. If the value approaches 0, the model's ability 

to explain the dependent variable is very weak. Conversely, if the value approaches 

1, the model becomes more effective in describing the dependent variable. 

  

R-Square Formula 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
              (16) 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 1 −

𝑆𝑆𝐸/(𝑛−𝑘−1)

𝑆𝑆𝑇/(𝑛−1)
              (17) 

Description: 

𝑅2  : Coefficient of Determination 

SSR  : Sum of Square Residual 

SSE : Sum of Square Error 

SST : Sum of Square Total 

n  : Number of Observations 

k  : Number of Independent Variables 

 

2.7. Forecasting Accuracy 

The optimal forecasting method is one with a relatively low error rate. According to 

[15], forecasting accuracy can be evaluated using several measures, such as Mean 

Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and 

Mean Absolute Percentage Error (MAPE). In this study, forecasting accuracy is measured 

using two metrics: MAPE and RMSE. 

 

1. Mean Absolute Percentage Error (MAPE) 
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MAPE (Mean Absolute Percentage Error) is one of the measures used to 

evaluate the accuracy of forecasting models. MAPE indicates how large the forecasting 

error is compared to the actual value in percentage form.  

 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑ |

𝑌𝑡−�̂�𝑡

𝑌𝑡
|𝑛

𝑡=1 ) × 100              (18) 

Description: 

𝑌𝑡  : Actual  Data at period t 

�̂�𝑡 : Forecasted Data at period t 

n  :  Number of Data Points 

A smaller percentage of error indicates higher forecasting accuracy. 

Accuracy level can be calculated using the formula: accuracy level = 100% - MAPE. 

 

Below are the MAPE value criteria [19]: 

Tablel 1. MAPE Value Criteria 

MAPE Value Interpretation 

<10% Very Good Forecasting Model 

10-20% Good Forecasting Model 

21-50% Fair Forecasting Model 

>50% Poor Forecasting Model 

 

These benchmarks provide an essential reference for interpreting forecast 

accuracy across studies and facilitate consistent evaluation, especially when 

comparing across different models and datasets. 

 

2. Root Mean Square Error (RMSE) 

RMSE (Root Mean Square Error) is a measurement method used to evaluate 

the level of error in forecasting models. RMSE calculates the square root of the average 

sum of squared differences between actual values and predicted values, making it 

more sensitive to large errors [15]. The goal is to determine how well the model 

predicts actual data, with a lower RMSE indicating a lower level of error [20].  

 

Root Mean Square Error (RMSE) Formula : 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑡 − �̂�𝑡)

2𝑛
𝑡=1              (19) 

Keterangan: 

𝑌𝑡  : Actual Data at period t 

�̂�𝑡 : Forecasted Data at period t 

n  : Number of Data Points 

 

3. RESULTS AND DISCUSSION 

3.1 Data Patterns and Stationarity Test 

The initial step in the forecasting process is identifying data patterns and 

testing data stationarity, both visually and through statistical tests. Data used in 

forecasting with the ARIMA method must be stationary to ensure homogeneous 

results and meet the assumption of no autocorrelation. 
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Figure 1. Stationarity Test with graphic method 

The output in Figure 1 shows that Ethereum's price exhibits both upward and 

downward trends and does not center around a mean value, indicating that the Ethereum 

data for the observed period is non-stationary. In March 2024, Ethereum's price 

experienced a significant surge, driven by a network upgrade known as Dencun, aimed 

at increasing throughput and reducing transaction costs. This upgrade was intended to 

enhance Ethereum's efficiency and competitiveness compared to other blockchains [21]. 

The stationarity test can be conducted using a statistical test, specifically the unit root test.  

Table 2. Summary of Stationarity Test at Level and 1st Differencing 

Variable Level 1st  Differencing 

t-Statistic -2.0970 -21.0661 

Prob. Value 0.2461 0.0000 

Critical Value 5% -2.8681 -2.8681 

Conclusion Non-Stationary Stationary 

 

The stationarity test conducted at the level, as shown in Table 2, indicates that the 

Augmented Dickey-Fuller (ADF) statistic for the Ethereum variable is -2.097 with a p-

value of 0.2461. Since the p-value exceeds 0.05, the data is not stationary, which violates a 

key assumption for ARIMA modeling. To address this, first-order differencing is applied 

to remove trends and stabilize the mean over time. After differencing, the ADF statistic 

becomes -21.066 with a p-value of 0.000, indicating the data is now stationary and suitable 

for ARIMA analysis. Thus, all subsequent modeling uses the first-differenced data. Visual 

trends in Figure 1 are supported by statistical confirmation in Table 2, reinforcing the 

appropriateness of differencing for ARIMA preprocessing. This dual-check strengthens 

the reliability of the transformation stage. 
 

3.2 Tentative Model Identification 

The identification of a possible ARIMA(p,d,q) model is conducted by 

analyzing the Autocorrelation Function (ACF) and Partial Autocorrelation Function 

(PACF) plots. Based on the ACF and PACF plots, potential models can be 

determined based on the lags observed in the correlogram 
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              Figure 2. ACF and PACF plot 

The selection of p and q values is conducted by identifying lags that exceed 

the Bartlett line. In Figure 2, it is observed that Lag 9 surpasses the Bartlett line. 

Thus, the AR(p) value is 9 and the MA(q) value is 9. Since the ACF and PACF are 

stationary at the 1st differencing, the d value for the model is 1. Therefore, the 

potential models that can be formed are ARIMA (9,1,9), ARIMA (9,1,0), and 

ARIMA (0,1,9). The PACF spike at Lag 9 provides a strong signal for 

autoregressive order, while the ACF behavior justifies the moving average term. 

These diagnostics guide the structural configuration of the ARIMA model. 
 

3.3 ARIMA Model Evaluation 

To determine the best model, a comparison is made using Akaike's 

Information Criterion (AIC), Schwarz Criterion (SC), and Adjusted R-squared. A 

lower AIC and SC value indicate a more potential model, while a higher Adjusted 

R-squared value signifies a better fit. 
 

Table 3. Comparison of AIC, SC, and Adjusted R-Squared Values 

Lag ARIMA(9,1,9) ARIMA(0,1,9) ARIMA(9,1,0) 

AR(9) 0.0087 - -0.2068* 

MA(9) 0.2263 -0.2180* - 

AIC 12,570 12,565 12,567 

SC 12,608 12,593 12,596 

Adj R-

squared 
0,040 0,042 0,039 

* Significance at 𝛼 = 5% 

Based on Table 3, the ARIMA (0,1,9) model has the lowest AIC value, while 

the lowest SC value is found in the ARIMA (9,1,9) model. The highest Adjusted R-

squared value is also in the ARIMA (0,1,9) model. Given these results, ARIMA 

(0,1,9) is selected as the best model because it satisfies two out of the three evaluation 

criteria, offering an optimal trade-off between simplicity and predictive accuracy. 

Date: 01/16/25   Time: 22:09

Sample (adjusted): 2 428

Included observations: 427 after adjustments

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.024 -0.024 0.2478 0.619

2 0.016 0.016 0.3600 0.835

3 0.003 0.003 0.3629 0.948

4 0.016 0.016 0.4791 0.976

5 -0.025 -0.025 0.7593 0.980

6 0.008 0.006 0.7877 0.992

7 -0.044 -0.043 1.6198 0.978

8 -0.026 -0.029 1.9176 0.983

9 -0.210 -0.210 21.263 0.012

10 0.082 0.075 24.216 0.007

11 0.018 0.029 24.359 0.011

12 -0.054 -0.057 25.627 0.012

13 -0.007 -0.006 25.652 0.019

14 0.055 0.046 26.985 0.019

15 0.046 0.054 27.917 0.022

16 -0.017 -0.037 28.045 0.031

17 -0.033 -0.047 28.523 0.039

18 -0.008 -0.048 28.549 0.054

19 -0.036 -0.004 29.129 0.064

20 -0.035 -0.036 29.681 0.075
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The performance evaluation reflects model parsimony and goodness-of-fit. By 

achieving the lowest AIC and highest Adjusted R-squared, ARIMA (0,1,9) offers the 

best trade-off between complexity and predictive reliability. 
 

3.4 Residual Diagnostic Testing 

Tablel 4. ARIMA Model Residual Tests 

Test Decision 

Normality Fulfilled 

White Noise Fulfilled 

Homoscedasticity Fulfilled 
 

Table 4 shows that all residual assumptions are fulfilled, including 

normality, white noise, and homoscedasticity. These results indicate that the 

ARIMA (0,1,9) model is statistically adequate and suitable for forecasting. Meeting 

these diagnostic criteria confirms the model's validity and supports its use for 

short-term prediction, as residuals free from autocorrelation and 

heteroscedasticity reduce the risk of biased or inefficient forecasts. 

These diagnostic tests ensure that the residuals are random, normally distributed, 

and exhibit constant variance, fulfilling the classical assumptions that underpin 

reliable statistical inference in time series forecasting. 

3.5 Model Verification and Forecasting Results 
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Figure 3. Ethereum Forecasting Results Using the ARIMA (0,1,9) Model  

Figure 3 displays the forecasted Ethereum prices using the ARIMA (0,1,9) 

model, along with ±2 standard error bands, which represent the 95% confidence 

interval around the forecast. The blue line shows the predicted values, while the 

orange lines depict the upper and lower confidence bounds. The boxed panel on the 

right summarizes key forecast accuracy metrics such as RMSE, MAE, MAPE, and 

Theil coefficients. After selecting the best model and confirming that all model 

assumptions are met, the next step is to perform forecasting and assess its accuracy 

using MAPE and RMSE. As shown in Figure 3, the Ethereum price forecast using 

the ARIMA (0,1,9) model yields a MAPE of 15.01% and an RMSE of 649.702. Based 

on the MAPE classification in Table 1, as proposed by [19], the model falls within 

the "Good Forecasting Model" category. Given the high volatility of cryptocurrency 

markets, a MAPE in the 10%–20% range is considered reasonable for short-term 

forecasts. For context, [9] reported a MAPE of 2.76% using ARIMA for Bitcoin, while 

[14] obtained a MAPE of 44.8% for Ethereum using ARIMA (1,1,0), highlighting the 
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variability in model performance across datasets and timeframes. In addition, [7] 

noted that ARIMA models typically yield lower forecasting errors in short-term 

horizons, but their accuracy declines as the forecast window extends. This is also 

reflected in the present study, where the standard error bands grow wider over the 

30-period forecast, indicating increased uncertainty. Consequently, the ARIMA 

(0,1,9) model is considered suitable for short-term Ethereum forecasting, while more 

robust or hybrid approaches may be required for long-term prediction. 
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Figure 4. Comparison of Actual and Forecasted Ethereum Values. 
 

Figure 4 displays a visual comparison between the actual Ethereum high prices and 

the forecasted values produced by the ARIMA (0,1,9) model. The solid brown line 

represents actual market data, while the dashed blue line shows the model’s forecast for 

the next 30 periods. As shown in Figure 4, the forecast for Ethereum's value over the next 

30 periods indicates an upward trend. Some of the forecasted values overlap with the 

actual data, suggesting that the model's predictions align well with observed values. The 

ARIMA (0,1,9) model estimates that Ethereum's value will rise over the next 30 periods, 

with a minimum forecasted value of $2,861.46 and a maximum of $2,949.68. However, the 

fluctuations in the forecast are not as pronounced as in historical data. If the forecasting 

period is extended further, the predicted Ethereum values will continue to rise and 

deviate more from actual data, making long-term forecasts increasingly inaccurate. 
 

4. CONCLUSION 

The ARIMA (0,1,9) model provides reasonable short-term predictions for 

Ethereum’s price, with a MAPE value indicating good accuracy. However, its 

performance diminishes over longer prediction periods, highlighting the challenge of 

forecasting in highly volatile markets like cryptocurrency. This underscores the model's 

suitability for short-term investment strategies. Future research could explore hybrid 

models or integrate external variables to improve long-term forecasting accuracy. This 

study contributes to the application of ARIMA in cryptocurrency forecasting and offers 

valuable insights for investors making short-term decisions. 
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