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Abstract 

The Shewhart control chart exhibits limitations in detecting small process shifts and monitors the mean 

and variance separately. To address these shortcomings, this study introduces the Adaptive EWMA with 

Measurement Error (Covariate Method) and Auxiliary Information Max (AEWMA ME C AI Max) 

control chart. This novel approach integrates memory-based monitoring, joint mean-variance detection, 

measurement error correction through the covariate method, utilization of auxiliary variables, and 

adaptive adjustment mechanisms to enhance sensitivity across various shift magnitudes. The AEWMA 

ME C AI Max chart was applied to cement production data from PT XYZ, using Blaine fineness as an 

auxiliary variable for monitoring compressive strength. Comparative analysis demonstrates that the 

adaptive chart consistently produces control statistics closer to the upper control limit compared to the 

non-adaptive Max-EWMA ME C AI chart, validating its superior sensitivity in shift detection. 

Furthermore, the cement production process at PT XYZ was found to be statistically capable, with a 

lower capability index (Ppl) and process performance index (Ppk) of 1.45, indicating consistent 

compliance with lower specification limits and centered process performance. These results affirm the 

practical effectiveness of the AEWMA ME C AI Max chart in enhancing process monitoring and 

capability assessment in industrial applications. 
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1. INTRODUCTION 

A process is considered to exhibit good quality when its variability is reduced and the 

process outputs approach the target value, as quality is inversely related to variability [1]. 

Consequently, quality improvement is achieved through the reduction and control of 

process variability, which forms the foundation of Statistical Quality Control (SQC) or 

Statistical Process Control (SPC), with control charts serving as one of the principal tools 

[2]. Conventional control charts, first introduced by Shewhart, are memoryless, meaning 

they do not incorporate information from past observations [3]. To address this limitation, 

Page (1954) proposed the Cumulative Sum (CUSUM) control chart, and Roberts (1959) 

introduced the Exponentially Weighted Moving Average (EWMA) control chart, both 

designed to enhance sensitivity to small shifts in the process (Roberts, 1959). 

Subsequently, EWMA was extended to monitor process variability by Crowder and 

Hamilton (1992) and by MacGregor and Harris (1993), leading to the development of the 

Exponentially Weighted Moving Variance (EWMV) chart [4], [5]. 

Initially, monitoring of the process mean and variance was conducted separately. 

Quensenberry (1995) and Chen & Cheng (1998) introduced the Max chart for the 

simultaneous monitoring of mean and variance, which was further extended by Xie (1999) 

into the Max-EWMA chart [6]. However, the Max-EWMA chart assumes the absence of 

measurement error—an assumption that is often violated in practice and can significantly 

impair chart performance [7], [8], [9], [10], [11].  To mitigate this issue, Maravelakis et al. 

(2004) recommended incorporating covariate adjustment and multiple measurement 

methods. Auxiliary variables are those highly correlated with the quality characteristic of 

interest but do not directly define or constitute it, and their use can enhance measurement 

precision [12], [13]. Several studies have demonstrated that leveraging auxiliary 

information can substantially improve the efficiency of control charts [3], [7], [14]. As a 

consequence, the Max-EWMA chart has been further developed to account for 

measurement errors and auxiliary information, resulting in the Max-EWMA ME AI chart 

[3], [15], [16], [17]. Given that the EWMA chart is highly sensitive to small shifts, Capizzi 

& Masarotto (2003) developed the Adaptive EWMA (AEWMA) chart, which incorporates 

adaptive weighting mechanisms to improve detection of both small and large process 

shifts. Building upon these developments, this study proposes a further extension: the 

Adaptive Exponentially Weighted Moving Average with Measurement Error (Covariate 

Method) and Auxiliary Information Max (AEWMA ME C AI Max) control chart, which 

integrates measurement error adjustments, auxiliary information, and adaptive 

mechanisms.  

The objective of this study is to evaluate the application of the AEWMA ME 

(Covariate) AI Max control chart on cement data. Specifically, the study aims to obtain the 

control results for cement compressive strength by utilizing blaine as an auxiliary variable 

in the cement production process at PT XYZ. This is done by simultaneously monitoring 

process mean and variability using the AEWMA ME (Covariate) AI Max chart, comparing 

its sensitivity to the Max-EWMA ME (Covariate) AI chart, and determining whether PT 

XYZ's cement production process is statistically capable. 
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2. RESEARCH METHODOLOGY 

2.1. Literature Review 

Correlations Valuep 

According to Karl Pearson (1990), the correlation coefficient quantifies the strength 

and direction of the linear relationship between two continuous variables. This metric, 

commonly referred to as the Pearson correlation coefficient, is computed using the 

following formula [18]: 

𝑟 =
𝑛 ∑ 𝑋𝑖𝑌𝑖 − ∑ 𝑋𝑖

𝑛
𝑖=1 ∙ ∑ 𝑌𝑖

𝑛
𝑖=1

𝑛
𝑖=1

√[𝑛 ∑ 𝑋𝑖
2𝑛

𝑖=1 − (∑ 𝑋𝑖
𝑛
𝑖=1 )2][𝑛 ∑ 𝑌𝑖

2𝑛
𝑖=1 − (∑ 𝑌𝑖

𝑛
𝑖=1 )2]

 
(1) 

The Pearson correlation coefficient ranges from -1 to 1, reflecting the degree and direction 

of a linear association between two continuous variables. A coefficient with an absolute 

value of |𝑟|  = 1 indicates a perfect linear relationship, whereas a value of 𝑟 =  0 signifies 

the absence of any linear correlation [18]. A negative correlation implies that an increase 

in one variable corresponds with a decrease in the other, while a positive correlation 

denotes that both variables tend to increase together. The statistical significance of the 

observed correlation can be evaluated through a t-test, based on the null hypothesis is no 

significant correlation between variables ( 𝜌 = 0 ) and the alternatif hypothesis is there is 

a significant correlation between variables ( 𝜌 ≠ 0 ) [19]. The t-test statistic for assessing 

the significance of the Pearson correlation coefficient can be computed using the following 

equation [19]. 

𝑡 =
𝑟√𝑛 − 2

√1 − 𝑟2
 (2) 

Statistics 𝑡 denotes the test statistic for the significance of the Pearson correlation, 𝑟 

represents the observed correlation coefficient, and 𝑛 refers to the sample size. The null 

hypothesis (𝐻0) is rejected if the absolute value of the calculated 𝑡-statistic exceeds the 

critical value 𝑡𝛼; 𝑛−2, or equivalently, if the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than the significance level 𝛼 

[19]. 

Estimations of Indivisual Variance Parameters (𝝈𝟐)  

One of the estimating variance method is to use moving average value 𝑀𝑅̅̅̅̅̅ =
∑ 𝑀𝑅𝑖

𝑚−1

𝑖=1

𝑚−1
=

∑ (𝑥𝑖+1−𝑥𝑖)
𝑚−1

𝑖=1

𝑚−1
 and the adjustment factor 𝑑2 = 1,128 for normally distributed individual data. 

Estimated variance calculated by this following equation [20]. 

�̂�𝑀𝑅̅̅ ̅̅ ̅
2 = (

𝑀𝑅̅̅ ̅̅ ̅

𝑑2
)

2

  (3) 

Normality Test 

One test used to assess bivariate normality is the Shapiro-Wilk Multivariate 

Normality Test, which evaluates whether a set of bivariate data follows a multivariate 

normal distribution. Random vector comprising 𝑝 variables is said to follow a 

miltoivariate nornal distribution, denoted by  𝐗~𝐍𝐩(𝛍, 𝚺), if it possesses the following 

probability density function f(𝐗) =
1

(2π)p/2 |𝚺|1/2
e−

1

2
(𝐗−𝛍)T𝚺−1(𝐗−𝛍) where 𝐗 = [𝐗1 𝐗1 . . . 𝐗p] T 

represents the vector of observed variables, 𝝁 denotes the mean vector and 𝚺 is the 

covariance matrix. To assess the assumption of multivariate normality, one may employ 

the Shapiro-Wilk test, adapted for multivariate data. The null hypothesis is data follow a 
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multivariate normal distribution and the alternatif hypothesis is data do not follow a 

multivariate normal distribution [21]. Test statistics W∗following the equation [21] 

W∗ =
1

p
∑

[∑ aijxij
n
j=1 ]2

∑ (xij−x̅i)
2n

j=1

p
i=1   (4) 

Where W∗is a mutivariate normal test statistic, p is the number of variables, n is the 

number of observations, 𝑎𝑖𝑗 is the eigenvalue ke − j of the variable ke − i, xij which is the 

observation value ke − j variable ke − i, and x̅i is the average of the variable ke − i. The 

decision rule for the test is based on the test statistic 𝑊∗ where the null hypothesis 𝐻0 is 

rejected if 𝑊∗ < 𝐶𝛼;𝑛;𝑝, the 𝐶𝛼;𝑛;𝑝 denoting the critical value at significance level 𝛼 for a 

sample of size 𝑛 and dimension 𝑝 Alternatively, the null hypothesis may be rejected if the 

corresponding p-value is less than the predefined significance threshold 𝛼, i.e., 𝑝 −

𝑣𝑎𝑙𝑢𝑒 < 𝛼 [21]. 

Max-EWMA ME (Covariate) AI 

Covariate variable is defined as the true value of quality characteristics, denoted by 

𝑋 that has a distribution 𝑋~𝑁(𝜇𝑥, 𝜎2) and 𝜀~𝑁(0, 𝜎𝑚
2 ). Within the covariate model 𝑌 = 𝐴𝑋 + 𝐵 +

𝜀, cuality characteristic (denoted by 𝑌) is thus normally distributed with expectation 𝐸(𝑌)  =

𝜇𝑦 = 𝐴 + 𝐵𝜇𝑥 and variance 𝑉𝑎𝑟(𝑌) = 𝜎𝑦
2  = 𝐵2𝜎2 + 𝜎𝑚

2  [16]. Futhermore, let 𝑊 be an auxiliary 

variable that exhibits a correlations 𝜌𝑌𝑊 with quality characteristics 𝑌. Those variables 

assumed that the joint distribution of the pair (𝑌𝑗, 𝑊𝑗) follows bivariate normal distribution 

with mean vector (𝜇𝑌, 𝜇𝑊) and varians components (𝜎𝑌
2, 𝜎𝑊

2 ) [22]. Based on these properties, 

define 𝑀𝑌𝑊𝑗
(1) as a differentiation estimator for mean and 𝑉𝑗

(1) as a differentiation estimator 

for varians by [3]. 

𝑀𝑌𝑊𝑗
(1)  = �̅�𝑗 + 𝜌 (

√𝐵2𝜎2 + 𝜎𝑚
2

𝜎𝑊
) (𝜇𝑊 − 𝑊𝑗

̅̅ ̅) (5) 

𝑉𝑗
(1) = 𝛷−1 [𝐻 {

(𝑛 − 1)𝑆𝑌,𝑗
2

𝐵2𝜎2 + 𝜎𝑚
2

, (𝑛 − 1)}] − 𝜌∗ 𝛷−1 [𝐻 {
(𝑛 − 1)𝑆𝑊,𝑗

2

𝜎𝑊
2 , (𝑛 − 1)}] (6) 

Given the expression for expectation of the mean differentiation estimator is 𝐸 (𝑀𝑌𝑊𝑗
(1) ) =

𝜇𝑌 and expectation of the mean differentiation estimator is 𝑉𝑎𝑟 (𝑀𝑌𝑊𝑗
(1) ) =

1

𝑛
(𝐵2𝜎2 +

𝜎𝑚
2 )(1 − 𝜌𝑌𝑊

2 ). the expectation and variance of the variance differentiation estimator are 

𝐸(𝑉𝑗
(1)) = 0 and 𝑉𝑎𝑟(𝑉𝑗

(1)) = 1 − 𝜌∗2. The samples means and variance express by  𝑌�̅� =

∑ 𝑦𝑖𝑗/𝑛
𝑛

𝑖=1
, 𝑊𝑗

̅̅ ̅ = ∑ 𝑊𝑖𝑗/𝑛
𝑛

𝑖=1
, 𝑆𝑌,𝑗

2 =
∑ (𝑌𝑖𝑗−�̅�𝑗)

2𝑛

𝑖=1

𝑛−1
 and 𝑆𝑊,𝑗

2 =
∑ (𝑊𝑖𝑗−�̅�𝑗)

2𝑛

𝑖=1

𝑛−1
. Furthermore, the function 

𝐻(𝜉, 𝑣) denotes the chi-square distribution with 𝑣 degrees of freedom, and 𝛷−1(. ) 

represents the quantile function (inverse cumulative distribution function) of the standard 

normal distribution [3]. 

Based on these properties, the transformed estimators for the population mean (𝑀𝑗𝑒
(1)) and 

variance (𝑉𝑗𝑒
(1)) are formulated accordingly 

𝑀𝑗𝑒
(1) =

𝑀𝑌𝑊𝑗 − (𝐴 + 𝐵𝜇𝑥)

√1
𝑛

 (𝐵2𝜎2 + 𝜎𝑚
2 ) (1 − 𝜌𝑌𝑊

2 )

 (7) 

𝑉𝑗𝑒
(1) =

𝑉𝑗

√1 − 𝜌∗2
 (8) 

The EWMA statistics for monitoring process mean ( 𝑃𝑖1) and process variance ( 𝑄𝑖1) are 

computed according to the values of 𝑀𝑗𝑒
(1) and 𝑉𝑗𝑒

(1) according to the following 

formulation 
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𝑃𝑖
(1)

= 𝜆𝑀𝑗𝑒 + (1 − 𝜆)𝑃𝑖−1;  𝑖 = 1,2, . . . , 𝑚 (9) 

𝑄𝑖
(1)

= 𝜆𝑉𝑗𝑒 + (1 − 𝜆)𝑄𝑖−1;  𝑖 = 1,2, . . . , 𝑚 (10) 

Futhermore,  Max-EWMAMEAI statistics 𝑀𝑖 express by 

Mi = max{|Pi|, |Qi|} (11) 

Given that the EWMA statistic 𝑀𝑖 is inherently non-negative, the lower control limit (LCL) 

is fixed at zero. Consequently, the upper control limit (UCL) for the Max-EWMA statistic 

can be expressed analytically as follows [6]. 

UCLMAX−EWMA = 1,128379 + 0,602810 ⋅ L√
λ

2 − λ
 (12) 

Adaptive EWMA 

The EWMA method is well-suited for detecting small process shifts but is overly 

sensitive to large shifts [2]. To address this limitation, Capizzi and Mosarotto developed 

a control chart that modifies the smoothing parameter to adapt effectively to both small 

and large shifts [23]. The deviation between the current observation and the previous 

target mean is referred to as the error, which is then considered for determining the weight. 

A smaller error leads to a larger selected weight to enhance sensitivity to small shifts, and 

vice versa [24]. An independent sample of the quality characteristic 𝑦𝑖 is taken, consisting 

of 𝑛 samples 𝑚 subgroups, and is assumed to follow a Normal distribution with mean 

(𝜇𝑦) and variance (𝜎𝑦
2). The AEWMA control chart statistic is formulated as follows [25]: 

𝐴𝐸𝑊𝑀𝐴𝑖 = 𝜙(𝑒𝑖)  +  𝐴𝐸𝑊𝑀𝐴𝑖−1  ,    𝑖 = 1,2, … , 𝑚 (13) 

denotes 𝑒𝑖 = 𝑦𝑖 − 𝐴𝐸𝑊𝑀𝐴𝑖−1 , 𝐴𝐸𝑊𝑀𝐴0 =  𝜇0 is the initial target mean value, and 𝜙(𝑒𝑖) is the 

score function. The score function [ 𝜙(𝑒𝑖) ] possesses the following characteristics [23]: 

a. 𝜙(𝑒𝑖) is a monotonically increasing function in 𝑒𝑖 

b. The score function satisfies the condition 𝜙(𝑒𝑖) =  − 𝜙 (−𝑒𝑖) 

c. The score function takes the value 𝜙(𝑒𝑖) ≈ 𝜆𝑒 when |𝑒| is small, with 0 < 𝜆 ≤ 1. It can 

be shown that for small shifts, the AEWMA statistic behaves similarly to the 

standard EWMA statistic as follows: 

𝐴𝐸𝑊𝑀𝐴𝑖 = 𝜙(𝑒𝑖) +  𝐴𝐸𝑊𝑀𝐴𝑖−1 

𝐴𝐸𝑊𝑀𝐴𝑖 = 𝜆𝑒 +  𝐴𝐸𝑊𝑀𝐴𝑖−1  

𝐴𝐸𝑊𝑀𝐴𝑖 = 𝜆[𝑦𝑖 − 𝐴𝐸𝑊𝑀𝐴𝑖−1] +  𝐴𝐸𝑊𝑀𝐴𝑖−1 

𝐴𝐸𝑊𝑀𝐴𝑖 = 𝜆 ∙ 𝑦𝑖 − 𝜆 ∙ 𝐴𝐸𝑊𝑀𝐴𝑖−1 +  𝐴𝐸𝑊𝑀𝐴𝑖−1 

𝐴𝐸𝑊𝑀𝐴𝑖 = 𝜆𝑦𝑖 + (1 − 𝜆) ∙ 𝐴𝐸𝑊𝑀𝐴𝑖−1 

d. The score function takes the value 𝜙(𝑒𝑖) ≈ 1 when |𝑒| is large. In this case, the 

AEWMA statistic behaves similarly to the Shewhart statistic for large shifts. 

Based on these four criteria, Capizzi and Mosarotto proposed three score functions: the 

Huber function, Tukey’s Bisquare function, and the Cubic Polynomial function. Among 

the three, the Huber function provides the best performance for various shift magnitudes 

[23]. The Huber score function is defined by the following equation: 

𝜙ℎ𝑢𝑏𝑏𝑒𝑟(𝑒𝑖) = {
𝑒𝑖 + (1 − 𝜆)𝑟

𝜆𝑟
𝑒𝑖 − (1 − 𝜆)𝑟

           
, 𝑤ℎ𝑒𝑛
, 𝑤ℎ𝑒𝑛
, 𝑤ℎ𝑒𝑛

 𝑒𝑖 < −𝑟
−𝑘 ≤ 𝑒𝑖 ≤ 𝑟

 𝑒𝑖 > 𝑟
 (14) 

Where 𝜆 is the EWMA weighting parameter, taking a value of 0 < 𝜆 ≤ 1 , 𝑟 is a positive 

constant. It is obtained that lim
𝑛→∞

𝜙ℎ𝑢𝑏𝑏𝑒𝑟(𝑒𝑖)/𝑒𝑖 = 1, but 𝜙ℎ𝑢𝑏𝑏𝑒𝑟(𝑒𝑖) ≠ 𝑒𝑖 for any nonzero 𝑒𝑖, the 
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function implies that the Huber function does not completely, but almost entirely, 

disregard past observations for large measurement errors. In contrast, the Tukey’s 

Bisquare and Cubic Polynomial functions fully ignore past observations. 

The upper control limit (UCL) and lower control limit (LCL) for the AEWMA control chart 

using the Huber function are given as follows [13], [23] 

𝑈𝐶𝐿 =  𝜇0 + ℎ 𝜎0 (15) 

𝑈𝐶𝐿 =  𝜇0 + ℎ 𝜎0 (16) 

Where ℎ  is a parameter chosen to meet desired in-control performance criteria, 𝜇0 

is equal to 1.128379, and 𝜎0 equals 0.60281. The UCL and LCL are derived from the EWMA 

control chart formulation with the consideration that the unit variance 𝜎0 no longer 

contains √
𝜆

(2−𝜆)
, as the AEWMA control chart has been adaptively smoothed using the 

corresponding score function [13], [26]. 

Process Capability 

Process capability analysis is a statistical method used in quality control to assess 

whether a process can consistently produce within specification limits. A process is 

deemed capable if its capability index exceeds 1.33, indicating sufficient precision [1]. For 

processes in statistical control, indices 𝐶𝑝 and 𝐶𝑝𝑘 are applied, while for out-of-control 

processes, performance indices 𝑃𝑝 and 𝑃𝑝𝑘 are used to evaluate overall process behavior  

[1]. The process capability index Cp can be computed using the following formula [1]. 

𝐶𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6𝜎
 (17) 

Where σ denotes is the sample standard deviation, 𝑈𝑆𝐿 and 𝐿𝑆𝐿  represent the upper and 

lower specification limits, respectively. The Index Cpk refines of the Cp index by 

incorporating process centering, thus capturing both precision and accuracy. It is 

computed using the following expression[1]. 

𝐶𝑝𝑘 = 𝑚𝑖𝑛 (
𝑈𝑆𝐿 − 𝜇

3𝜎
,
𝜇 − 𝐿𝑆𝐿

3𝜎
) (18) 

For quality characteristics constrained by a one-sided specification limit, the Cpk   index 

remains computable, despite the inability to define  Cp In such cases, one-sided capability 

indices are applied  𝐶𝑝𝑙 = (
𝜇−𝐿𝑆𝐿

3𝜎
) when a lower specification limit exists, or 𝐶𝑝𝑢 = (

𝑈𝑆𝐿−𝜇

3𝜎
) 

when only an upper specification limit is defined [1]. 

Cement Quality 

This study utilizes two primary quality characteristics of cement, each of which serves 

as a critical indicator of performance: 

1) Compressive Strength 

Compressive strength quantifies the capacity of a material to resist compressive 

loading, predominantly influenced by the cement's mineralogical composition. 

Standard practice involves measuring compressive strength at designated curing 

intervals—specifically on the 3rd, 7th, and 28th days. The test is conducted using 

a calibrated compressive strength testing machine by applying axial pressure to 

mortar specimens (cured for a defined age and pre-dried for 24 hours), prepared 

using 740 grams of cement, 2,035 grams of Ottawa standard sand, and 260 

milliliters of water [27]. 
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2) Blaine (Fineness of cement) 

Blaine fineness, denoted as specific surface area (in cm²/g), is an indirect measure 

of the cement’s particle size distribution and is empirically associated with early-

age compressive strength. Finer particles accelerate the hydration reaction, thereby 

enhancing reactivity and strength development [28]. The test involves measuring 

113.2 grams of cement and determining air permeability through a packed bed of 

the sample under controlled conditions  [29]. The apparatus operates on the 

principle of flow resistance, where air is drawn through the compacted cement bed 

and the time taken is used to estimate fineness based on grain size characteristics 

[30]. 

The quality specification limits for both compressive strength and Blaine fineness are 

governed by the Indonesian National Standard (SNI), as issued by the National 

Standardization Agency (BSN) [30]. 

Table 1 . Quality Spesification Limit by BSN 

Quality Characteristics Unit Type Requirements 

IP-U IP-K 

Blaine m 2 /kg Min. 280 Min. 280 

Compressive strength at 3 days Kg/cm 2 Min. 130 Min. 110 

 

2.2. Data Structure 

The dataset comprises compressive strength values (𝑌 in 𝑘𝑔/𝑐𝑚²) for 3-day-old 

cement and corresponding blaine measurements (𝑊 in 𝑚²/𝑘𝑔) from samples produced 

between 1 January and 30 November 2023, structured as paired observations for analysis. 

Table 2. Research Data Structure 

Subgroup Subgroup Units 
Quality Characteristics 

Y W 

1 

1 Y 11 W 11 

2 Y 22 W 22 

… … … 

n Y n1 W n1 

… … … … 

i 

1 Y 1m W 1m 

2 Y 2m W 2m 

… … … 

n Y nm W nm 

  

2.3. Analysis Steps 

The analytical procedure employed in this study is outlined as follows. 

1. Obtain cement quality data from January 1st 2023 until November 30th 2023, 

2. Perform exploratory data analysis on compressive strength and blaine, 

3. Segment the dataset into phase I data, that is data produced January 1st until August 

31th , and phase II data , that is data produced September 1st until November 30th 2023. 

4. Compute Pearson’s correlations coefficient (𝜌𝑌𝑊) using Equation 1 and test its 

statistical significace by Equation 2, 



PARAMETER: Jurnal Matematika, Statistika dan Terapannya | April 2025 | Vol 04 No.01 | Page 29-46 

  

36 

5. Testing the bivariate normal asumption for Cement Compressive strangth and the 

auxiliary blainee using the shapiro-Wilk normal multivariate test for phase I dataset 

using Equation 4, 

6. Monitoring quality of cement production using Maximum Exponentially Weighted 

Moving Average with Measurement Error (Covariate Method) with Axiliary Variable 

(Max-EWMA ME C AI) based on Phase I and Phase II data. 

7. Monitoring quality of cement production using Adaptive Exponentially Weighted 

Moving Average with Measurement Error (Covariate Method) with Auxiliary 

Variable Maximum (AEWMA ME C AI Max) based on Phase I data with steps: 

1) Defines covariate model parameters A and B in the model 𝑌 = 𝐴 + 𝐵𝐶 + 𝜀 , 

2) Estimates the populations variance of the true value X and its covariates model 

error using Equation 3 and calculate  𝜎𝑚
2 ÷ 𝜎𝑥

2, 

3) Considering the desired 𝐴𝑅𝐿0 ≅ 370 for given combinations of parameter 𝜌𝑌𝑊, 𝐴, 𝐵,  

and 𝜎𝑚
2 ÷ 𝜎𝑥

2 , the parameters values are determined to be combinations of 𝜆 and 𝑟, 

4) Calculate 𝑈𝑀𝐸 𝐴𝐼 𝐶𝑖𝑒
 with the following equation and its components below 

𝑈𝑀𝐸 𝐴𝐼 𝐶𝑖𝑒 =
𝑈𝑌𝑊 𝑀𝐸 𝐴𝐼 𝐶 𝑖 − (𝐴 + 𝐵𝜇𝑥)

√1
𝑛

(𝐵2𝜎2 + 𝜎𝑚
2 )(1 − 𝜌𝑌𝑊

2 )

 

Where 

𝑈𝑌𝑊 𝑀𝐸 𝐴𝐼 𝐶 𝑖 = �̅�𝑖 + 𝜌𝑌𝑊 (
√𝐵2𝜎𝑥

2 + 𝜎𝑚
2

𝜎𝑊
) (𝜇𝑊 − 𝑊𝑖

̅̅ ̅) 

𝑌�̅� = ∑ 𝑦𝑖𝑗/𝑛

𝑛

𝑖=1

   ;   𝑊𝑗
̅̅ ̅ = ∑ 𝑊𝑖𝑗/𝑛

𝑛

𝑖=1

 

5) Calculate 𝑈𝑀𝐸 𝐴𝐼 𝐶𝑖𝑒
 with the following equation and its components below 

𝑉𝑀𝐸 𝐴𝐼 𝐶 𝑖𝑒
=

𝑉 𝑀𝐸 𝐴𝐼 𝐶 𝑖

√1 − 𝜌∗2
 

Where 
𝑉𝑀𝐸 𝐴𝐼 𝐶 𝑖

= 𝑉𝑌,𝑖   𝑀𝐸 𝐴𝐼 𝐶 − 𝜌∗ 𝑉𝑊,𝑖  𝑀𝐸 𝐴𝐼 𝐶 

𝑉𝑌,𝑖  𝑀𝐸 𝐴𝐼 𝐶 = 𝛷−1 [𝐻 {
(𝑛 − 1)𝑆𝑌,𝑖

2

𝐵2𝜎𝑥
2 + 𝜎𝑚

2 , (𝑛 − 1)}] 

 𝑉𝑊,𝑖  𝑀𝐸 𝐴𝐼 𝐶 = 𝛷−1 [𝐻 {
(𝑛 − 1)𝑆𝑊,𝑖

2

𝜎𝑊
2 , (𝑛 − 1)}] 

𝑆𝑌,𝑖
2 =

∑ (𝑌𝑖𝑗 − �̅�𝑖)
2𝑛

𝑗=1

𝑛 − 1
   ;   𝑆𝑊,𝑖

2 =

∑ (𝑊𝑖𝑗 − �̅�𝑖)
2𝑛

𝑗=1

𝑛 − 1
 

6) Calculate Max- Statistics 𝑀𝑀𝐸 𝐴𝐼 𝐶𝑖𝑒
 for simultaneous control chart with the 

following equation 
𝑀𝑀𝐸 𝐴𝐼 𝐶 𝑖𝑒

= max (|𝑈𝑀𝐸 𝐴𝐼 𝐶 𝑖𝑒|, |𝑉𝑀𝐸 𝐴𝐼 𝐶 𝑖𝑒|) 

7) Calculate statistic 𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶0 =  𝜇𝑀 , the average of characteristics quality 

observations that becomes target value 

8) Calculate error value with this equation 
𝑒𝑀𝐸 𝐴𝐼 𝐶𝑖

= 𝑀𝑀𝐸 𝐴𝐼 𝐶 𝑖𝑒
− 𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶𝑖−1                    

𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶0 =  𝜇𝑀 

9) Determined hubber scor function as the adaptive scor function for calculating 

statistics 𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶𝑖 

𝜙ℎ𝑢𝑏𝑏𝑒𝑟(𝑒𝑖) = {
𝑒𝑖 + (1 − 𝜆)𝑟

𝜆𝑟
𝑒𝑖 − (1 − 𝜆)𝑟

            
, 𝑘𝑒𝑡𝑖𝑘𝑎
, 𝑘𝑒𝑡𝑖𝑘𝑎
, 𝑘𝑒𝑡𝑖𝑘𝑎

 𝑒𝑖 < −𝑟
−𝑟 ≤ 𝑒𝑖 ≤ 𝑟

 𝑒𝑖 > 𝑟
 

10) Calculate statistics 𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶𝑖 with this equation 
𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶𝑖 = 𝜙(𝑒𝑖)  +  𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶𝑖−1 

for 𝑖 = 1,2,3, … , 𝑚 

11) Calculate the Upper Control Limit (UCL) with previously determined 𝜆 and 𝑟 

parameter values by this equation 
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𝑈𝐶𝐿 =  𝜇𝑀 + ℎ 𝜎𝑀 =  𝜇𝑀 +  𝑟√
𝜆

2 − 𝜆
 𝜎𝑀 

12) If the overall test statistic is within the control limits, the process is considered 

statistically in control. If the test statistic falls outside the control limits, the cause 

of the out-of-control point is identified. If the cause is assignable, the observation 

is removed, and Steps 1) until 10) are repeated until the control limits reflect a 

statistically in-control process. Then, Calculate the control limits for the Max-

EWMA ME (Covariate) control chart, ensuring Phase I data is statistically in 

control. 

13) Apply the Max-EWMA ME (Covariate) control chart to the Phase II data. 

14) Plot the test statistics for Phase II data using the control limits obtained from 

Phase I, ensuring the process remains in control. 

8. Perform process capability analysis to evaluate the ability of the process to meet 

specification limits. 

9. Derive conclusions based on the analysis of the research results. 

 

3. RESULT AND DISCUSSION 

3.1. Exploratory Data Analysis for Cement Quality Characteristics 

Compressive Strength Exploratory Data Analysis 

The descriptive statistics of the compressive strength quality characteristic for each 

phase are summarized in Table 3. 

Table 3. Statistics Descriptive Compressive Strength 

Periode N Mean Variance Stdev Min Max Skewness Kurtosis 

Phase I 100 252.582 737.6583 27.16 180.6 335.6 0.461 0.481 

Phase II 56 256.354 1015.712 31.870 194.4 320.186 0.290 -0.554 

Based on Table 3, the mean compressive strength in Phase I is 252.5823 kg/cm², 

increasing to 256.3538 kg/cm² in Phase II. The variance of compressive strength in Phase I 

is lower than in Phase II, indicating that Phase I data are more homogeneous. Referring to 

Table 2.4, the minimum specification limit for compressive strength is 130 kg/cm², 

confirming that both Phase I and Phase II data comply with BSN standards. Both datasets 

exhibit low skewness values, suggesting distributions concentrated around their 

respective means. The descriptive statistics are visualized through the raincloud plot in 

Figure 1. 
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Figure 1. Raincloud Compressive Strength 

 

Blaine Exploratory Data Analysis 

The descriptive statistics of auxiliary variable, blaine, for each phase are 

summarized in Table 4. 

Table 4. Statistics Descriptive Blaine 

Periode N Mean Variance Stdev Min Max Skewness Kurtosis 

Phase I 100 341.047 140.27 11.844 302.992 390.409 0.355 1.41 

Phase II 56 344.642 139.751 11.822 323.737 369.906 0.061 -0.688 

Table 4 shows that the mean Blaine fineness in Phase I is 341.0365 m²/kg, increasing 

to 344.6416 m²/kg in Phase II. The variance in Phase I is greater than in Phase II, indicating 

that Phase I data are more dispersed (heterogeneous) compared to the more homogeneous 

Phase II data. Referring to Table 4, the minimum specification limit for Blaine fineness is 

280 m²/kg, confirming that both Phase I and Phase II data meet BSN standards. Both 

datasets exhibit low skewness values, suggesting that observations are symmetrically 

distributed around the mean. The descriptive statistics are further visualized using the 

raincloud plot in Figure 2. 

 

Figure 2. Raincloud Compressive Strength 
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3.2. Correlations 

The results of the correlation test are presented in Table 3. 

Table 5. Correlation Test Result 

Phase Notation 
Correlation 

Value 
𝒕-Statistics 𝒕𝜶

𝟐
=𝟎.𝟎𝟐𝟓;𝒏−𝟐

 Test decision Information 

I ρ 0.2551 2.6115 1.984 Reject 𝐻0 Significant 

ρ * -0.1449 -0.7022 2.005 Fail to reject 𝐻0  Not significant 

II ρ 0.5541 4.8919 1.984 Reject 𝐻0  Significant 

ρ * 0.1207 0.4213 2.005 Fail to reject 𝐻0  Not significant 

Based on Table 5 the correlation between compressive strength and Blaine values 

for both Phase I and Phase II data is significantly positive, indicating that an increase in 

compressive strength is associated with an increase in Blaine. Meanwhile, the correlation 

between the variances of compressive strength and Blaine is not statistically significant, 

suggesting that changes in compressive strength variability are not necessarily 

accompanied by changes in Blaine variability. However, since the correlation is not exactly 

zero, a portion of the variability can still be explained, supporting the use of Blaine as an 

auxiliary variable in the Max-EWMAMEAI control chart for compressive strength 

monitoring. 

3.3. Normality Asumption Test 

The results of the Bivariate Normal test are presented in Table 6. 

Table 6. Shapiro-Wilk Multivariate Normality Test 

W* p-value 

0.97825 0.05427 

Using a significance level of α = 0.05, the critical region for rejecting H₀ occurs when the 

p-value is less than α. Based on Table 4.5, the multivariate normality test yields a p-value 

of 0.05427, which exceeds α, leading to a failure to reject H₀. Thus, it can be concluded that 

the data follow a bivariate normal distribution, validating the appropriateness of applying 

control charts based on this dataset. 

 

3.4. Max- EWMA ME (Covariate) AI Control Chart 

Max-EWMA ME (Covariate) AI Control Chart Phase I 

Max-EWMA ME (Covariate) AI control chart was formed using phase I data and 

severals parameters, among others 𝜇𝑥  =  251.490902, 𝜇𝑤  =  341.0465041, 𝜎𝑥
2  =

 975.8091, 𝜎𝑤
2  =  163.0266, 𝜎𝑚

2  =  917.798, 𝐴 =  198.1430044, 𝐵 =  0.2164664, 𝜌 =

 0.2550732, 𝜌∗ =  −0.1448688, 𝜆 =  0.05, and 𝐿 =  2.709 for a number of 𝑚 = 25 

subgrubs and 𝑛 = 4 number of observations. A summary of the results of statistics 

𝑀𝑖𝑒, 𝑉𝑖𝑒 , 𝑃𝑖 , 𝑄𝑖, and 𝑀𝑎𝑥 − 𝐸𝑊𝑀𝐴𝑖 are obtaines as follows: 

Table 7. Max-EWMA ME C AI Statistics Phase I 

Subgrub 𝑴𝒚𝒘 𝑽𝒊 𝑴𝒊𝒆 𝑽𝒊𝒆 𝑷𝒊 𝑸𝒊 𝑴𝒂𝒙 − 𝑬𝑾𝑴𝑨𝒊 

1 255.8386 -1.61164 0.216985 -1.62882 0.010849 -0.08144 0.081441 

2 241.3177 -1.92128 -0.75063 -1.94176 -0.02722 -0.17446 0.174457 

3 226.1275 -0.68147 -1.76284 -0.68874 -0.11401 -0.20017 0.200171 

4 248.6839 -1.22522 -0.25977 -1.23828 -0.12129 -0.25208 0.252077 

5 234.8089 -2.00906 -1.18435 -2.03048 -0.17445 -0.341 0.340997 
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Subgrub 𝑴𝒚𝒘 𝑽𝒊 𝑴𝒊𝒆 𝑽𝒊𝒆 𝑷𝒊 𝑸𝒊 𝑴𝒂𝒙 − 𝑬𝑾𝑴𝑨𝒊 

6 279.4645 1.04872 1.791316 1.059901 -0.07616 -0.27095 0.270952 

7 253.9941 -1.16662 0.094076 -1.17906 -0.06765 -0.31636 0.316357 

8 251.0153 1.850722 -0.10442 1.870453 -0.06949 -0.20702 0.207017 

9 276.5034 -1.79588 1.594 -1.81502 0.013689 -0.28742 0.287417 

10 252.4919 -0.74066 -0.00603 -0.74856 0.012703 -0.31047 0.310474 

11 250.5965 -0.04449 -0.13233 -0.04496 0.005451 -0.2972 0.297199 

12 253.0245 0.033268 0.029463 0.033623 0.006652 -0.28066 0.280658 

13 263.7124 0.374208 0.74166 0.378197 0.043402 -0.24771 0.247715 

14 288.7264 0.410734 2.40849 0.415113 0.161656 -0.21457 0.214573 

15 253.3684 -0.67076 0.052382 -0.67791 0.156193 -0.23774 0.23774 

16 260.1155 -1.56782 0.501976 -1.58454 0.173482 -0.30508 0.30508 

17 255.824 -0.53634 0.216014 -0.54206 0.175609 -0.31693 0.316929 

18 230.4171 -1.82143 -1.477 -1.84084 0.092978 -0.39312 0.393125 

19 242.7622 -1.84738 -0.65437 -1.86707 0.055611 -0.46682 0.466822 

20 261.9919 0.103009 0.627014 0.104107 0.084181 -0.43828 0.438276 

21 249.7719 -1.05937 -0.18728 -1.07066 0.070608 -0.4699 0.469895 

22 236.1984 -1.04396 -1.09175 -1.05509 0.01249 -0.49915 0.499155 

23 261.7444 0.521848 0.610519 0.527411 0.042391 -0.44783 0.447827 

24 243.3709 0.127161 -0.61381 0.128516 0.009581 -0.41901 0.41901 

25 242.6881 -1.10377 -0.65931 -1.11553 -0.02386 -0.45384 0.453836 

Please Max-EWMA ME (Covariate) AI with decision parameters 𝐿 = 2,709 and 𝜆 = 0.05 

yields an UCL of 1.503018, which can be computed as follows (using Equation 12) 

𝑈𝐶𝐿𝑀𝐴𝑋−𝐸𝑊𝑀𝐴 = 1,128379 + 0,602810 ⋅ 𝐿√
𝜆

2 − 𝜆
= 1,128379 + 0,602810 ⋅ 2,709√

0,05

2 − 0,05
= 1.503018 

 Based on Table 7 and the UCL, Figure 3 illustrates the Max-EWMA control chart for 

Phase 1 data.  

 

Figure 3. Max-EWMA ME (Covariate) AI Control Chart Phase I 

As observed in Figure 3, all plotted points lie within the established control limits. This 

indicates that both the mean and variance of the cement production process are jointly 

monitored and remain under statistical control when assessed using the Max-EWMA ME 

(Covariate) AI control chart 

Max-EWMA ME (Covariate) AI Control Chart Phase II 

Using the same set of parameters as those applied in the Phase I control chart, the 

results for the statistics 𝑈𝑖, 𝑉𝑖 , 𝑃𝑖 , 𝑄𝑖, and 𝑀𝑎𝑥 − 𝐸𝑊𝑀𝐴𝑖 for the Phase II data, consisting of 

of 𝑚 = 14 subgrubs and 𝑛 = 4 number of observations, are obtained as follows: 
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Table 8. Max-EWMA ME C AI Statistics Phase II 

Subgrub 𝑴𝒚𝒘 𝑽𝒊 𝑴𝒊𝒆 𝑽𝒊𝒆 𝑷𝒊 𝑸𝒊 𝑴𝒂𝒙 − 𝑬𝑾𝑴𝑨𝒊 

26 229.2963 -0.78465 -1.55168 -0.79302 0.010309 -0.52208 0.522079 

27 213.4805 -1.00965 -2.60558 -1.02042 -0.12049 -0.547 0.546996 

28 254.2661 -0.9025 0.112199 -0.91213 -0.10885 -0.56525 0.565253 

29 260.5101 1.134513 0.528276 1.146609 -0.077 -0.47966 0.47966 

30 239.0567 -2.8587 -0.90129 -2.88918 -0.11821 -0.60014 0.600135 

31 246.7692 -0.79454 -0.38737 -0.80301 -0.13167 -0.61028 0.610279 

32 255.2952 1.166118 0.180771 1.178551 -0.11605 -0.52084 0.520838 

33 239.4217 -1.2825 -0.87697 -1.29617 -0.15409 -0.5596 0.559604 

34 239.2227 -0.59474 -0.89023 -0.60108 -0.1909 -0.56168 0.561678 

35 279.2152 -0.50845 1.774704 -0.51387 -0.09262 -0.55929 0.559288 

36 276.2304 -0.68452 1.57581 -0.69182 -0.0092 -0.56591 0.565914 

37 284.4274 -0.91436 2.122022 -0.92411 0.097363 -0.58382 0.583824 

38 278.0709 0.552237 1.698453 0.558125 0.177418 -0.52673 0.526727 

39 262.4805 -1.79952 0.659574 -1.81871 0.201526 -0.59133 0.591326 

Using UCL from Phase I data, Figure 4 illustrates the Max-EWMA control chart for Phase 

2 data. 

 

Figure 4. Max-EWMA ME (Covariate) AI Control Chart Phase II 

Based on Table 8 and Figure 4, all Phase II observation points fall within the 

control limits. Furthermore, its shows that the Max-EWMA statistics for each subgroup 

do not exceed the upper control limit of 1.503018. Thus, the joint monitoring of the process 

mean and variance for cement production using the Max-EWMA ME (Covariate) AI 

control chart indicates that the process is statistically in control. 

3.5. Adaptive EWMA ME (Covariate) AI Max Control Chart 

Adaptive EWMA ME (Covariate) AI Max Control Chart Phase I 

Adaptive EWMA ME (Covariate) AI Max control chart was formed using phase I 

data and several parameter among others 𝜌𝑌𝑊 = 0.2550732, 𝜎𝑚
2 ÷ 𝜎𝑥

2 = 0.9405508, 𝐴 =

198.1430044, and 𝐵 = 0.2164664. For given combinations of parameter 𝜌𝑌𝑊 , 𝐴, 𝐵,  and 

𝜎𝑚
2 ÷ 𝜎𝑥

2 , the parameters values are determined to be 𝜆 = 0.1 and 𝑟 = 2.712. Additional 

parameter combinations are also considered, specifically 𝜇𝑥 = 251.4909020 , 𝜇𝑤 =

341.0465041, 𝜎𝑥
2 = 975.8091000, and 𝜎𝑤

2 = 163.0266000 for a number of 𝑚 = 25 

subgrubs and 𝑛 = 4 number of observations. A summary of the results of statistics 

𝑈𝑖, 𝑈𝑒𝑖 , 𝑉𝑖 , 𝑉𝑒𝑖 , 𝑀𝑖, and 𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶𝑖 are obtaines as follows: 

Table 9. Adaptive EWMA ME C AI Max Statistics Phase I 
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Subgrub 𝑼𝒊 𝑼𝒆𝒊 𝑽𝒊 𝑽𝒆𝒊 𝑴𝒊 𝑨𝑬𝑾𝑴𝑨 𝑴𝑬 𝑨𝑰 𝑴𝒂𝒙 𝑪𝒊 

1 264.0534 0.764387 -1.61164 -1.62882 1.628819 1.178423 

2 254.5658 0.132169 -1.92128 -1.94176 1.941762 1.254757 

3 226.2501 -1.75467 -0.68147 -0.68874 1.754671 1.304748 

4 254.6748 0.139434 -1.22522 -1.23828 1.238281 1.298102 

5 243.0558 -0.63481 -2.00906 -2.03048 2.030484 1.37134 

6 280.6749 1.871972 1.04872 1.059901 1.871972 1.421403 

7 257.0721 0.299182 -1.16662 -1.17906 1.179059 1.397169 

8 254.9184 0.155664 1.850722 1.870453 1.870453 1.444497 

9 276.702 1.607233 -1.79588 -1.81502 1.815023 1.48155 

10 253.4289 0.056415 -0.74066 -0.74856 0.748561 1.408251 

11 265.3942 0.853727 -0.04449 -0.04496 0.853727 1.352798 

12 260.742 0.543724 0.033268 0.033623 0.543724 1.271891 

13 277.8229 1.681923 0.374208 0.378197 1.681923 1.312894 

14 279.4271 1.78882 0.410734 0.415113 1.78882 1.360487 

15 243.2206 -0.62383 -0.67076 -0.67791 0.677907 1.292229 

16 253.0153 0.028854 -1.56782 -1.58454 1.584539 1.32146 

17 249.2917 -0.21928 -0.53634 -0.54206 0.54206 1.24352 

18 228.4652 -1.60706 -1.82143 -1.84084 1.840845 1.303252 

19 239.615 -0.86409 -1.84738 -1.86707 1.867071 1.359634 

20 254.9336 0.156681 0.103009 0.104107 0.156681 1.239339 

21 245.2151 -0.49092 -1.05937 -1.07066 1.070661 1.222471 

22 228.5521 -1.60127 -1.04396 -1.05509 1.601273 1.260351 

23 253.1915 0.040595 0.521848 0.527411 0.527411 1.187057 

24 232.163 -1.36066 0.127161 0.128516 1.36066 1.204418 

25 238.1128 -0.96419 -1.10377 -1.11553 1.115535 1.195529 

 

Adaptive EWMA ME (Covariate) AI with decision parameters 𝜆 = 0.1 and 𝑟 =

2.712 yields an UCL of 1.503433, which can be computed as follows  

𝑈𝐶𝐿𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐶 𝐴𝐼 𝑀𝑎𝑥 = 1,128379 + 0,602810 ⋅ 𝑟√
𝜆

2 − 𝜆
= 1,128379 + 0,602810 ⋅ 2,712√

0,1

2 − 0.1
= 1.503433 

 Based on Table 9 and the UCL, Figure 5 illustrates the AEWMA ME (Covariate) AI Max 

control chart for Phase 1 data.  

 

Figure 5. Adaptive EWMA ME (Covariate) AI Max Control Chart Phase I 

Based on Figure 5, it can be observed that all observations in the Phase I AEWMA ME C 

AI Max control chart fall within the control limits. Therefore, it can be concluded that both 

the process mean and variance of the cement production process are statistically in control 

when jointly monitored using the AEWMA ME C AI Max control chart. Consequently, 

control chart monitoring may proceed with the Phase II data. 
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Adaptive EWMA ME (Covariate) AI Max Control Chart Phase II 

Using the same set of parameters as those applied in the Phase I control chart, the 

results for the statistics 𝑈𝑖, 𝑈𝑒𝑖 , 𝑉𝑖 , 𝑉𝑒𝑖 , 𝑀𝑖, and 𝐴𝐸𝑊𝑀𝐴 𝑀𝐸 𝐴𝐼 𝑀𝑎𝑥 𝐶𝑖 for the Phase II data, 

consisting of of 𝑚 = 14 subgrubs and 𝑛 = 4 number of observations, are obtained as 

follows: 

Table 10. Adaptive EWMA ME C AI Max Statistics Phase I 

Subgrub 𝑼𝒊 𝑼𝒆𝒊 𝑽𝒊 𝑽𝒆𝒊 𝑴𝒊 𝑨𝑬𝑾𝑴𝑨 𝑴𝑬 𝑨𝑰 𝑴𝒂𝒙 𝑪𝒊 

26 234.8567 -1.18116 -0.77265 -0.77835 1.181164 1.133657 

27 226.1511 -1.76126 -1.15699 -1.16552 1.761264 1.196418 

28 263.5158 0.728558 -0.6696 -0.67454 0.728558 1.149632 

29 259.1644 0.438599 0.669536 0.674471 0.674471 1.102116 

30 232.5211 -1.3368 -2.30885 -2.32587 2.32587 1.224491 

31 249.9383 -0.17619 -0.87008 -0.87649 0.876489 1.189691 

32 267.8574 1.017868 1.758322 1.771281 1.771281 1.24785 

33 246.0809 -0.43323 -0.99742 -1.00477 1.004771 1.223542 

34 240.0023 -0.83828 0.028877 0.02909 0.838278 1.185016 

35 278.1474 1.70355 0.098165 0.098888 1.70355 1.236869 

36 268.0389 1.029962 -0.67185 -0.6768 1.029962 1.216179 

37 283.1836 2.039139 -0.58301 -0.5873 2.039139 1.298475 

38 275.5461 1.530207 0.686543 0.691603 1.530207 1.321648 

39 263.9494 0.757457 -1.97298 -1.98752 1.987521 1.388235 
 

Using UCL from Phase I data, Figure 6 illustrates the Max-EWMA control chart for Phase 

2 data. 

 

Figure 6. Adaptive EWMA ME (Covariate) AI Max Control Chart Phase I 

According to Table 10 and Figure 6, all Phase II observation points remain within the 

control limits, and the Max-EWMA statistics for each subgroup consistently fall below the 

upper control limit of 1.503433. This confirms that the Adaptive EWMA ME (Covariate) 

AI Max control chart effectively demonstrates the cement production process is 

statistically stable and under control. 

3.6. Comparative Study on the Senstivity of Control Charts 

Max EWMA ME (Covariate) AI Control Chart has 𝑈𝐶𝐿 = 1.503018 and the 

Adaptive EWMA ME (Covariate) AI Max has the value of 𝑈𝐶𝐿 = 1.503433. The statistics 

plotted to the control chart given by Table 7-10. The sensitivity of a control chart can be 

evaluated by the number of out-of-control signals identified, i.e., the number of subgroups 

that fall outside the control limits. Additionally, sensitivity can be inferred from the 

pattern exhibited by the plotted statistics. 
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 Based on the quality control analysis using the Max-EWMA ME (Covariate) AI 

chart and the Adaptive EWMA ME (Covariate) AI Max chart, neither chart produced out-

of-control signals, indicating that the cement production process, as monitored by both 

methods, is statistically in control. However, a closer examination of the plotted control 

statistics reveals that the statistics on the Adaptive EWMA ME (Covariate) AI Max chart 

tend to be nearer to the UCL compared to those on the Max-EWMA ME (Covariate) AI 

chart. This indicates a higher sensitivity of the Adaptive EWMA ME (Covariate) AI Max 

chart. A control chart with higher sensitivity is more capable of detecting shifts in the 

process mean and variance simultaneously, and does so more promptly. Therefore, based 

on the proximity of the control statistics to the control limits, it can be concluded that the 

Adaptive EWMA ME (Covariate) AI Max chart exhibits greater sensitivity than the non-

adaptive Max-EWMA ME (Covariate) AI chart. This finding is consistent with the 

theoretical understanding that while the standard EWMA chart is particularly effective 

for detecting small shifts, the integration of an adaptive scoring function enhances its 

performance by allowing the control chart to dynamically adjust to both small and large 

process shifts. 

3.7. Process Capability Analysis 

The results of the process capability analysis for the compressive strength quality 

characteristic based on Phase I in-control data can be summarized as follows. 

 

Figure 7. Adaptive EWMA ME (Covariate) AI Max Control Chart Phase I 

Based on Figure 7, the process capability ratio (Ppl) for the compressive strength variable 

is 1.45. This indicates that the cement production process, in terms of the compressive 

strength quality characteristic, can be considered capable, as the Ppl value exceeds the 

critical threshold of 1.33. Additionally, the Ppk value is also reported as 1.45, which is 

greater than 1.33. This suggests that the production process is not only consistent but also 

exhibits a high level of accuracy, ensuring that the process is centered within specification 

limits and aligns with the desired target. 
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4. CONCLUSIONS 

1. Joint monitoring of the process mean and variance in cement production using 

both the Max-EWMA ME (Covariate) AI and Adaptive EWMA ME (Covariate) AI 

Max control charts indicates that the process remains statistically in control  

2. The control statistics from the Adaptive EWMA ME (Covariate) AI Max chart are 

consistently closer to the upper control limit (UCL) compared to those from the 

non-adaptive Max-EWMA ME chart. This reflects greater sensitivity of the 

adaptive chart in detecting shifts in both mean and variance. The adaptive 

mechanism enhances responsiveness to process changes, aligning with the 

theoretical premise that adaptive EWMA charts outperform standard EWMA 

charts by dynamically adjusting to varying shift magnitudes. 

3. The cement production process at PT XYZ (Persero) Tbk demonstrates high 

capability, with a lower capability index (Ppl) of 1.45, indicating that the process 

consistently meets lower specification limits. A process performance index (Ppk) 

of 1.45 confirms that the process is accurate and centered, ensuring the 

compressive strength quality characteristic meets target specifications. 
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