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Abstract 

Mycobacterium tuberculosis is a bacterium that causes tuberculosis, which is the second most common infectious 

disease in the world and generally attacks the lungs. It is important to formulate the dynamics of interactions and 

the effects of antibiotic administration on Mycobacterium tuberculosis into a mathematical model, especially using 

a fractional order approach. In this study, a model was developed using the Caputo-Fabrizio derivative. The 

purpose of the study was to study the dynamics of interactions between bacteria and antibiotics, where the 

administration of antibiotics causes the bacterial population to be divided into two types, namely sensitive bacteria 

and bacteria resistant to antibiotics. Based on the model built, four equilibrium points were obtained. Stability 

analysis shows that these equilibrium points are locally asymptotically stable under certain conditions. To support 

the results of the analysis, numerical simulations were carried out using the three-step Adams-Bashforth method 

with the Caputo-Fabrizio derivative. The simulation results showed that the smaller the value of the fractional 

order parameter 𝛼, the faster the system reaches the equilibrium point. Although the value of 𝛼 affects the speed of 

convergence, it does not affect the stability of the equilibrium point. 
 

Keywords: Antibiotics, Caputo-Fabrizio, Fractional, Mycobacterium tuberculosis, Numerical simulation 

 

: https://doi.org/10.30598/parameterv4i1pp233-248 

 This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution-ShareAlike 4.0 International License.  

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:jurnalparameter@gmail.com
https://ojs3.unpatti.ac.id/index.php/parameter
mailto:yudi.adi@math.uad.ac.id
https://doi.org/10.30598/parameterv4i1pp233-248
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Parameter: Jurnal Matematika, Statistika dan Terapannya | August 2025 | Vol. 04 No. 2 | Pages 223-238 224 

 

1. INTRODUCTION 

Tuberculosis (TB) is one of the most dangerous infectious diseases, with a high global 

mortality rate [1][2]. Mycobacterium tuberculosis (Mtb) is transmitted through the air when 

individuals with TB sneeze, cough, or spit in public, allowing others to inhale the bacteria and 

become infected [3][4]. Approximately 1.6 million people died from tuberculosis (TB) in 2021, 

including 187,000 individuals who were HIV-positive. The World Health Organization (WHO) 

reported that there were 10.6 million TB cases worldwide, affecting 1.2 million children, 3.4 

million women, and 6 million men [5]. Indonesia ranks third in the world for TB cases, after India 

and China. The Global TB Report 2021 recorded 824,000 TB cases in Indonesia, but only 393,323 

were detected and treated. In 2022, treatment coverage reached 39%, with a treatment success 

rate of 74% [6]. The Government of Indonesia aims to reduce the incidence of TB, which in 2017 

stood at 393,444 per 100,000 population to 190 per 100,000 population by 2024, primarily through 

improving access to and quality of health services [7]. 

Mycobacterium tuberculosis (Mtb) is a facultative intracellular pathogen that grows slowly 

and is capable of surviving within macrophages and other mammalian cells. Infection typically 

begins in the lungs but may disseminate through the bloodstream or lymphatic system to other 

organs. Upon entry into the body, macrophages attempt to eliminate the bacteria with assistance 

from T cells and other components of the immune system [8] [9]. Mtb can be classified as either 

antibiotic-sensitive or antibiotic-resistant. Infected macrophages are eventually destroyed by T 

cells, although these cells are not able to directly kill the bacteria. The immune response, 

particularly the activity of white blood cells, plays a critical role in controlling Mtb infection; an 

increased white blood cell count enhances macrophage effectiveness [10]. T cells, especially CD4⁺ 

and CD8⁺ subsets, are central to this immune defense: CD4⁺ T cells help activate various immune 

components, while CD8⁺ T cells directly target and destroy infected host cells [11]. 

An increase in infected macrophages, particularly those harboring drug-resistant bacteria, 

can result from bacterial infection. Mycobacterium tuberculosis develops resistance through 

spontaneous genetic mutations, which vary depending on the type of antibiotic used [12]. 

Patients with untreated active TB may carry drug-resistant strains of the disease. For instance, 

isoniazid resistance may require prolonged therapy, although various combinations of anti-TB 

drugs can still lead to successful treatment outcomes [13]. 

Mathematical modeling has been extensively applied across various disciplines, including 

biology, economics, and health sciences, as a powerful tool for representing real-world 

phenomena through systems of equations. In the context of infectious diseases, modeling 

facilitates a deeper understanding of transmission dynamics and enables the evaluation of 

intervention strategies [14][15]. The behavior of Mycobacterium tuberculosis (Mtb), particularly 

antibiotic-sensitive strains, has been the focus of numerous studies. For instance, [13] explored 

the interaction between sensitive and resistant bacteria and their impact on the immune response. 

Additionally, [16] analyzed the stability and existence of periodic solutions in a bacterial 

resistance model driven by mutation and plasmid transfer. In another study, [17] investigated the 

growth dynamics of both intracellular and extracellular Mtb bacteria. 

The use of Fractional Differential Equation Systems (FDES), a generalization of Ordinary 

Differential Equation Systems (ODES), has emerged as an alternative approach in infectious 

disease modeling. This shift is motivated by the complexity of many biological systems, which 

are inherently nonlinear and often not solvable through analytical methods. FDES provides a 

more realistic framework for simulating disease dynamics by incorporating memory effects that 

are characteristic of biological processes. Furthermore, by reducing errors associated with 
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neglected parameters, stability analysis within the FDES framework enables more accurate 

predictions compared to traditional ODES models [18]. 

Building on previous research, this study aims to integrate the models presented in  [13] 

and [14] into a novel mathematical framework that captures the interaction dynamics and 

treatment effects of antibiotics on Mycobacterium tuberculosis using a Fractional Differential 

Equation System (FDES). The analysis focuses on identifying and examining the equilibrium 

points of the system, supported by numerical simulations, with the goal of providing deeper 

insights into infection dynamics and the impact of antibiotic interventions. 

 

2. METHODS 

This study employed a mathematical modeling approach based on a Fractional Differential 

Equation System (FDES) to analyze the dynamics between Mycobacterium tuberculosis (Mtb), 

macrophages, and antibiotic treatment. The model included four key variables: healthy or 

uninfected macrophages (𝑴𝑼), infected macrophages (𝑴𝑰), antibiotic-sensitive Mtb bacteria (𝑩𝑺), 

and antibiotic-resistant Mtb bacteria (𝑩𝑹). These interactions were represented by a system of 

nonlinear fractional differential equations that incorporate both Caputo and Caputo–Fabrizio 

operators to capture memory effects inherent in biological processes [19]. 

Mtb infects about one-third of the global population, although only 10% develop active TB. 

Inadequate treatment can lead to multidrug-resistant TB (MDR-TB), especially if treatment is 

discontinued or administered inappropriately. Modelling such resistance was important for 

evaluating control strategies. This study followed the following steps: 

1) Flow Diagram: A visual representation of the compartmental transitions is provided to 

clarify the structure of the system dynamics. 

2) Model Formulation: The system of equations is constructed based on the biological 

interactions between macrophages and Mycobacterium tuberculosis (Mtb), including both 

sensitive and resistant strains. 

3) Definition of Fractional Operators: The Caputo and Caputo–Fabrizio derivatives are 

employed to incorporate long-term memory effects in the model. 

4) Equilibrium Analysis: Disease-free and endemic equilibrium points are determined by 

setting the rate of change in the system to zero. 

5) Basic Reproduction Number (𝑅0): Computed using the next-generation matrix approach 

as an indicator of the infection’s transmission potential 

6) System Stability: Local stability is analyzed through system linearization using the 

Jacobian matrix and evaluating its eigenvalues. 

7) Stability Analysis Based on R₀: The infection dynamics are assessed based on the value of 

𝑅0, whether the infection dies out (𝑅0 < 1) or persists (𝑅0 > 1), determined through the 

eigenvalues of the Jacobian matrix. 

8) Numerical Simulation: Implemented using the three-step Adams–Bashforth method for 

the Caputo–Fabrizio operator to visually and numerically verify the analytical results. 
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3. RESULTS AND DISCUSSIONS 

3.1. Model Formulation  

This study presented a mathematical model that describes the interaction dynamics and the 

effects of antibiotic treatment on Mycobacterium tuberculosis. The model included four variables: 

healthy or uninfected macrophages (𝑀𝑈), infected macrophages (𝑀𝐼), antibiotic-sensitive 

Mycobacterium tuberculosis (𝐵𝑆), and antibiotic-resistant Mycobacterium tuberculosis (𝐵𝑅). 

These components are illustrated in the schematic diagram shown in Figure 1 below: 

 

Figure 1. Schematic diagram of macrophage and bacteria interaction. 
 

In Figure 1, the population of uninfected macrophages, 𝑀𝑈(𝑡), was influenced by several 

factors: the recruitment rate of uninfected macrophages per unit of time, denoted by Λ; the natural 

death rate, represented by 𝜇𝑈𝑀𝑈(𝑡); and the rate of interaction between uninfected macrophages 

and both sensitive and resistant bacteria, expressed as 𝛽(𝐵𝑠(𝑡) + 𝐵𝑟(𝑡))𝑀𝑈(𝑡). Accordingly, the 

mathematical equation describing the dynamics of uninfected macrophages was given as follows: 

𝑑𝑀𝑈(𝑡)

𝑑𝑡
= Λ − 𝛽(𝐵𝑠(𝑡) + 𝐵𝑟(𝑡))𝑀𝑈(𝑡) − 𝜇𝑈𝑀𝑈(𝑡)   (1) 

The population of infected macrophages, 𝑀𝐼(𝑡), was influenced by several factors: the 

interaction between uninfected macrophages and both sensitive and resistant bacteria per unit of 

time, represented by 𝛽(𝐵𝑠(𝑡) + 𝐵𝑟(𝑡))𝑀𝑈(𝑡); the natural death rate of infected macrophages per 

unit of time, given by 𝜇𝐼𝑀𝐼(𝑡); and the death of infected macrophages due to T cell activity per 

unit of time, expressed as 𝑘𝑀𝐼(𝑡). The corresponding mathematical equation for infected 

macrophages was given as follows: 

𝑑𝑀𝐼(𝑡)

𝑑𝑡
=  𝛽(𝐵𝑠(𝑡) + 𝐵𝑟(𝑡))𝑀𝑈(𝑡) − 𝜇𝐼𝑀𝐼(𝑡) − 𝑘𝑀𝐼(𝑡)   (2) 

 The population of Mycobacterium tuberculosis bacteria that are sensitive to antibiotics, 

denoted by 𝐵𝑆(𝑡) was influenced by several factors per unit of time. First, the sensitive bacteria 

grow at a rate 𝑣 with a maximum carrying capacity 𝐾, represented by the logistic growth term 

(1 −
(𝐵𝑆(𝑡)+𝐵𝑅(𝑡))

𝐾
) 𝑣𝐵𝑆(𝑡). Second, the population of sensitive bacteria decreases due to mutation, 

where a fraction of replicating bacteria becomes antibiotic-resistant, represented by 𝑞𝑣𝐵𝑆(𝑡). 
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Third, the population is also reduced due to natural death, phagocytosis or destruction by 

uninfected macrophages, and antibiotic administration, represented by (𝛾𝑈𝑀𝑈 + 𝛼 + 𝜇𝐵𝑆)𝐵𝑆(𝑡). 

The resulting equation for the antibiotic-sensitive bacterial population was expressed as follows:  

𝑑𝐵𝑆(𝑡)

𝑑𝑡
= (1 −

(𝐵𝑆(𝑡)+𝐵𝑅(𝑡))

𝐾
) 𝑣𝐵𝑆(𝑡) −  𝑞𝑣𝐵𝑆(𝑡) − (𝛾𝑈𝑀𝑈 + 𝛼 + 𝜇𝐵𝑆)𝐵𝑆(𝑡)  (3) 

 The population of antibiotic-resistant bacteria, denoted by 𝐵𝑅(𝑡), was influenced by 

several factors per unit of time. First, resistant bacteria grow at a rate 𝑣1 with a maximum carrying 

capacity 𝐾, represented by the logistic growth term (1 −
(𝐵𝑆(𝑡)+𝐵𝑅(𝑡))

𝐾
) 𝑣1𝐵𝑅(𝑡). Second, the 

population of resistant bacteria increases due to the mutation of sensitive bacteria into resistant 

strains, represented by 𝑞𝑣𝐵𝑆(𝑡). Third, the resistant bacterial population decreases due to natural 

death and elimination by uninfected macrophages, expressed as (𝛾𝑈𝑀𝑈 + 𝜇𝐵𝑅)𝐵𝑅(𝑡). The 

resulting equation for the antibiotic-resistant bacterial population was formulated as follows: 

𝑑𝐵𝑅(𝑡)

𝑑𝑡
= (1 −

(𝐵𝑆(𝑡)+𝐵𝑅(𝑡)

𝐾
) 𝑣1𝐵𝑅(𝑡) +  𝑞𝑣𝐵𝑆(𝑡) − (𝛾𝑈𝑀𝑈 + 𝜇𝐵𝑅)𝐵𝑅(𝑡)   (4) 

 

3.2. Non-Dimensionalisation 

To reduce the number of parameters, the system was simplified by applying non-

dimensionalisation through following variable transformations: 

𝑀𝑈 =
𝑀𝑈

Λ
𝜇𝑈

⁄
 ;   𝑀𝐼 =

𝑀𝐼

Λ
𝜇𝑈

⁄
 ;   𝐵𝑆 =

𝐵𝑆

𝐾
 ;  𝐵𝑅 =

𝐵𝑅

𝐾
.  

In accordance with Equations (1)-(4), new variables were introduced through 

substitution, resulting in the following system of differential equations: 

𝑑𝑀𝑈(𝑡)

𝑑𝑡
= 𝜇𝑈 − 𝛽(𝐵𝑠(𝑡) + 𝐵𝑟(𝑡))𝑀𝑈(𝑡) − 𝜇𝑈𝑀𝑈(𝑡) 

(5) 

𝑑𝑀𝐼(𝑡)

𝑑𝑡
=  𝛽(𝐵𝑠(𝑡) + 𝐵𝑟(𝑡))𝑀𝑈(𝑡) − 𝜇𝐼𝑀𝐼(𝑡) − 𝑘𝑀𝐼(𝑡) 

𝑑𝐵𝑆(𝑡)

𝑑𝑡
= (1 − (𝐵𝑆(𝑡) + 𝐵𝑅(𝑡)))𝑣𝐵𝑆(𝑡) −  𝑞𝑣𝐵𝑆(𝑡)

− (𝛾𝑈𝑀𝑈 + 𝛼 + 𝜇𝐵𝑆)𝐵𝑆(𝑡) 

𝑑𝐵𝑅(𝑡)

𝑑𝑡
= (1 − (𝐵𝑆(𝑡) + 𝐵𝑅(𝑡)))𝑣1𝐵𝑅(𝑡) +  𝑞𝑣𝐵𝑆(𝑡) − (𝛾𝑈𝑀𝑈 + 𝜇𝐵𝑅)𝐵𝑅(𝑡) 

 

3.3. Fractional Model  

To incorporate the memory effect inherent in the dynamic system, the interaction and 

antibiotic response model of Mycobacterium tuberculosis, as described in Equation (5), was 

generalized by replacing the integer-order derivative with a non-integer (fractional) derivative. 

Specifically, the first-order time derivative 
𝑑

𝑑𝑡
 was replaced with the Caputo–Fabrizio fractional 

derivative 𝐷𝑡
𝛼, where 𝛼 ∈ (0,1) denotes the order of the derivative. As a result, the fractional 

differential equation model describing the interaction dynamics of Mycobacterium tuberculosis 

and antibiotics for 𝑡 > 0 was formulated as follows:  

𝐷𝐶𝐹
𝑡
𝛼𝑀𝑈(𝑡) = 𝜇𝑈 − 𝛽(𝐵𝑠(𝑡) + 𝐵𝑟(𝑡))𝑀𝑈(𝑡) − 𝜇𝑈𝑀𝑈(𝑡)   
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𝐷𝐶𝐹
𝑡
𝛼𝑀𝐼(𝑡)  =  𝛽(𝐵𝑠(𝑡) + 𝐵𝑟(𝑡))𝑀𝑈(𝑡) − 𝜇𝐼𝑀𝐼(𝑡) − 𝑘𝑀𝐼(𝑡) 

𝐷𝐶𝐹
𝑡
𝛼𝐵𝑆(𝑡)  = (1 − (𝐵𝑆(𝑡) + 𝐵𝑅(𝑡))) 𝑣𝐵𝑆(𝑡) −  𝑞𝑣𝐵𝑆(𝑡) − (𝛾𝑈𝑀𝑈 + 𝛼 + 𝜇𝐵𝑆)𝐵𝑆(𝑡) 

𝐷𝐶𝐹
𝑡
𝛼(𝑡)       = (1 − (𝐵𝑆(𝑡) + 𝐵𝑅(𝑡)))𝑣1𝐵𝑅(𝑡) +  𝑞𝑣𝐵𝑆(𝑡) − (𝛾𝑈𝑀𝑈 + 𝜇𝐵𝑅)𝐵𝑅(𝑡), 

 

(6) 

with the initial condition 𝑀𝑈(0) ≥ 0, 𝑀𝐼(0) ≥ 0, 𝐵𝑆(0) ≥ 0, 𝐵𝑅(0) ≥ 0. 

 

3.4. Equilibrium points 

 

By algebraic manipulation, the equilibrium point was obtained, resulting in the Infection-

Free Equilibrium Point 𝑬𝟎 as follows: 

𝑬𝟎 = (𝑴𝑼, 𝑴𝑰, 𝑩𝑺,𝑩𝑹) = (𝟏, 𝟎, 𝟎, 𝟎) 

Next, to determine the basic reproduction number (𝑅_0 ), the next-generation matrix method was 

used. This yielded the following expression for 𝑅0: 

𝑅0 = max{ 𝑅1, 𝑅2}  

where, 

𝑅1 =
𝑣

𝑞𝑣 + 𝛾𝑈 + 𝛼 + 𝜇𝐵𝑆
, 𝑅2 =

𝑣1

𝛾𝑈 + 𝜇𝐵𝑅
. 

 

Furthermore, the endemic equilibrium point can be analyzed based on the equations derived 

from the infection-free equilibrium point 𝐸0. The endemic equilibrium consisted of two types: the 

infection equilibrium point 𝐸1 and the coexistence infection equilibrium point 𝐸2. Table 1 

presented a summary of the derived endemic equilibrium points: 

Table 1. Endemic equilibrium points 

Symbol  Type Equilibrium point 

𝐸1 Infected equilibrium point (𝑀𝑈
∗, 𝑀𝐼

∗, 0, 𝐵𝑅
∗) 

𝐸2 Coexistence infected equilibrium point (𝑀𝑈
∗∗, 𝑀𝐼

∗∗, 𝐵𝑆
∗∗, 𝐵𝑅

∗∗) 

where, 

𝑀𝑈
∗ =

𝜇𝑈

(𝛽𝐵𝑅
∗+𝜇𝑈)

, 𝑀𝐼
∗ =

𝛽𝐵𝑅
∗𝜇𝑈

(𝛽𝐵𝑅
∗+𝜇𝑈)(𝜇𝐼+𝑘)

, 𝑀𝑈
∗∗ =

𝜇𝑈

𝛽(𝐵𝑆
∗∗+𝐵𝑅

∗∗)+𝜇𝑈
 ,  

 𝑀𝐼
∗∗ =

𝛽(𝐵𝑆
∗∗+𝐵𝑅

∗∗)𝜇𝑈

(𝛽(𝐵𝑆
∗∗+𝐵𝑅

∗∗)+𝜇𝑈)(𝜇𝐼+𝑘)
,   

and  𝐵𝑅
∗ are the positive real roots of the equation 𝑎2𝐵𝑅

2 + 𝑎1𝐵𝑅 + 𝑎0 = 0, 𝐵𝑆
∗∗ are the positive 

real roots of the equation 𝑏2𝐵𝑆
2 + 𝑏1𝐵𝑆 + 𝑏0 = 0, and 𝐵𝑅

∗∗ are the positive real roots of the 

equation 𝑐3𝐵𝑅
3 + 𝑐2𝐵𝑅

2 + 𝑐1𝐵𝑅 + 𝑐0 = 0. 

 

3.5. Analysis of equilibrium point stability 

 

3.5.1. Stability of the equilibrium point 𝑬𝟎 

The stability analysis of the equilibrium point 𝐸0 is given in Theorem 1. 

Theorem 1. The infection-free equilibrium point 𝐸0 is locally asymptotically stable if 𝑅0 < 1. 
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Proof. By linearizing Equation (6) and calculating the Jacobian matrix of the system at point 𝐸0 =

(𝑀𝑈, 𝑀𝐼 , 𝐵𝑆,𝐵𝑅) = (1,0,0,0), we obtain  

𝐽(𝐸0) =  (

−𝜇𝑈 0 −𝛽 −𝛽
0 −𝜇𝐼 − 𝑘 𝛽 𝛽
0 0 𝑣 − 𝑞𝑣 − 𝛾𝑈 − 𝛼 − 𝜇𝐵𝑆 0
0 0 𝑞𝑣 𝑣1 − 𝛾𝑈 − 𝜇𝐵𝑅

) 

with eigen values: 

𝜆1 = −𝜇𝑈 

𝜆2 = −𝜇𝐼 − 𝑘 

 𝜆3 =  𝑣 − 𝑞𝑣 − 𝛾𝑈 − 𝛼 − 𝜇𝐵𝑆 = (𝑅1 − 1)( 𝑞𝑣 + 𝛾𝑈 + 𝛼 + 𝜇𝐵𝑆) 

 𝜆4 = 𝑣1 − 𝛾𝑈 − 𝜇𝐵𝑅 = (𝑅2 − 1)( 𝛾𝑈 + 𝜇𝐵𝑅) 

where  𝑅1 =
𝑣

𝑞𝑣+𝛾𝑈+𝛼+𝜇𝐵𝑆
, 𝑅2 =

𝑣1

𝛾𝑈+𝜇𝐵𝑅
, so 𝑅0 = max{ 𝑅1, 𝑅2}. If 𝑅0 < 1 then 𝑅1 < 1 and 𝑅2 < 1, so 

that all of the eigenvalues are negative. Then, 𝐸0 locally asymptotically stable if 𝑅0 < 1. 

 

3.5.2. Stability of the equilibrium point 𝑬𝟏 

The stability analysis of the equilibrium point 𝐸1 is given in Theorem 2. 

Theorem 2. The equilibrium point 𝐸1 = (𝑀𝑈
∗, 𝑀𝐼

∗, 0, 𝐵𝑅
∗) locally asymptotically stable if 𝑅2 > 1 and 

𝑣(1 − 𝐵𝑅
∗) < 𝑞𝑣 + 𝛾𝑈𝑀𝑈

∗ + 𝛼 + 𝜇𝐵𝑆 ,  𝑠2𝑠1 − 𝑠0 > 0.  

Proof. The Jacobian matrix at the equilibrium point 𝐸1 is: 

𝐽(𝐸1) = (

−𝐹 0 −𝑃 𝑃
𝐺 −𝐿 𝑃 −𝑃
0 0 𝑄 − 𝑅 0

−𝐼 0 −𝑇 𝑊 − 𝑋

) 

with 

𝐹 = 𝛽𝐵𝑅
∗ + 𝜇𝑈 ; 𝐺 = 𝛽𝐵𝑅

∗ ; 𝐼 = 𝛾𝑈𝐵𝑅
∗ ; 𝐿 = 𝜇𝐼 + 𝑘 ; 𝑃 = 𝛽𝑀𝑈

∗ ; 

𝑄 = 𝑣(1 − 𝐵𝑅
∗) ; 𝑅 = 𝑞𝑣 + 𝛾𝑈𝑀𝑈

∗ + 𝛼 + 𝜇𝐵𝑆 ; 𝑇 = 𝑣1𝐵𝑅
∗ + 𝑞𝑣 ; 

𝑊 = 𝑣1(1 − 2𝐵𝑅
∗) ; 𝑋 = 𝛾𝑈𝑀𝑈

∗ + 𝜇𝐵𝑅 ;  

The characteristic equation is 

(𝜆 − 𝑄 + 𝑅)(𝜆3 + 𝜆2𝑠2 + 𝜆𝑠1 + 𝑠0) = 0  

where: 

𝑠2 =  𝑋 + 𝐹 + 𝐿 − 𝑊 

𝑠1 =  𝐹𝑋 + 𝐿𝑋 + 𝐹𝐿 − 𝐹𝑊 − 𝐿𝑊 

𝑠0 =  𝐹𝐿(𝑋 − 𝑊) 

The first eigenvalue is: 

𝜆1 = 𝑄 − 𝑅 = 𝑣(1 − 𝐵𝑅
∗) − (𝑞𝑣 + 𝛾𝑈𝑀𝑈

∗ + 𝛼 + 𝜇𝐵𝑆) 

and the other three eigenvalues are the roots of a cubic equation: 

𝜆3 + 𝑠2𝜆2 + 𝑠1𝜆 + 𝑠0 = 0 
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So we find that 𝜆1  <  0 if 𝑣(1 − 𝐵𝑅
∗)  <  (𝑞𝑣 + 𝛾𝑈𝑀𝑈

∗ + 𝛼 𝜇𝐵𝑆) and according to the Routh-

Hurwitz criterion, all of the eigenvalues will have a negative real part if 𝑠2, 𝑠1,𝑠0 > 0 , 𝑠2𝑠1 − 𝑠0 >

0. This condition will be fulfilled if  |arg(𝜆𝑖)| >
𝛼𝜋

2
, 𝑖 = 1,2,3. Thus, the equilibrium point 𝐸1 will 

be locally asymptotically stable 𝑅2 > 1 and 𝑣(1 − 𝐵𝑅
∗) < 𝑞𝑣 + 𝛾𝑈𝑀𝑈

∗ + 𝛼 + 𝜇𝐵𝑆 ,  𝑠2𝑠1 − 𝑠0 > 0. 

 

3.5.3  Stability of the equilibrium point 𝑬𝟐 

The stability analysis of the equilibrium point 𝐸2 is given in Theorem 3. 

Theorem 3. The equilibrium point 𝐸2 = (𝑀𝑈
∗∗, 𝑀𝐼

∗∗, 𝐵𝑆
∗∗, 𝐵𝑅

∗∗) locally asymptotically stable if 

𝑅1 > 1, 𝑅2 > 1, 𝑦3 > 0, 𝑦3𝑦2 − 𝑦1 > 0, and 𝑦3𝑦2𝑦1 − 𝑦3
2𝑦0 − 𝑦1

2 > 0. 

Proof. The Jacobian matrix at the equilibrium point 𝐸2 is: 

𝐽(𝐸2) = (

−𝐹 − 𝜇𝑈 0 −𝐽 −𝐽
𝐹 −𝐼 𝐽 𝐽

−𝐺 0 𝑄 − 𝑅 −𝑍
−𝐻 0 −𝑇 + 𝑞𝑣 𝑊 − 𝑋

), 

with  

𝐹 = 𝛽𝐵𝑆
∗∗ + 𝛽𝐵𝑅

∗∗ ; 𝐺 = 𝛾𝑈𝐵𝑆
∗∗ ; 𝐻 = 𝛾𝑈𝐵𝑅

∗∗ ; 𝐼 = 𝜇𝐼 + 𝑘 ; 𝐽 = 𝛽𝑀𝑈
∗ ; 

𝑄 = 𝑣(1 − 2𝐵𝑆
∗∗ − 𝐵𝑅

∗∗) ; 𝑅 = 𝑞𝑣 + 𝛾𝑈𝑀𝑈
∗∗ + 𝛼 + 𝜇𝐵𝑆 ; 𝑇 = 𝑣1𝐵𝑅

∗∗ ; 

𝑊 = 𝑣1(1 − 2𝐵𝑅
∗∗ − 𝐵𝑆

∗∗) ; 𝑋 = 𝛾𝑈𝑀𝑈
∗∗ + 𝜇𝐵𝑅 ; 𝑍 = 𝑣𝐵𝑆 .  

 

The characteristic equation is: 

 𝜆4+𝑦3𝜆3 + 𝑦2𝜆2 + 𝑦1𝜆 + 𝑦0 = 0, 

with 

𝑦3 = 𝐹 + 𝜇𝑈 + 𝑅 + 𝑋 + 1 − 𝑄 − 𝑊 

𝑦2 = (𝐹 + 𝜇𝑈)(𝑅 + 𝑋 + 1 − 𝑄 − 𝑊) + 𝑊𝑄 + 𝑅𝑋 + 𝑅 − 𝐽𝐺 − 𝑊𝑅 − 𝑋𝑄 − 𝑄 − 𝑊 − 𝑋 

𝑦1 =  𝜇𝑈(𝑊𝑄 + 𝑋𝑅 + 𝑅 − 𝑅𝑊 − 𝑋𝑄 − 𝑄 − 𝑊 − 𝑋) + 𝐹(𝑊𝑄 + 𝑋𝑅 − 𝑋𝑄 − 𝑄 − 𝑊 − 𝑅 − 𝑋) +
𝐽𝐺𝑊 + 𝐽𝐺 + 𝑄𝑊 + 𝑄𝑋 − 𝑋𝐽𝐺 − 𝑅𝑊 − 𝑅𝑋  

𝑦0 = 𝜇𝑈(𝑄𝑊 + 𝑄𝑋 − 𝑅𝑊 − 𝑅𝑋) + 𝐹(𝑄𝑊 + 𝑄𝑋 − 𝑅𝑋) + 𝐽𝐺(𝑊 + 𝑋) 

According to the Routh-Hurwitz criterion, all of the eigenvalues have a negative real part if and 

only if  𝑦3 > 0, 𝑦3𝑦2 − 𝑦1 > 0 and 𝑦3𝑦2𝑦1 − 𝑦3
2𝑦0 − 𝑦1

2 > 0, which fulfilled if |arg(𝜆𝑖)| >
𝛼𝜋

2
, 𝑖 =

1,2,3,4, 𝑅1 > 1, 𝑅2 > 1.  

 

3.6. Numerical results 

3.6.1. Simulation with the System of Differential Equations of order 1 

In this section, a numerical simulation was conducted to examine the stability of the 

infection-free equilibrium point 𝐸0, using a system of ordinary differential equations (first-order). 

The simulation employed the parameter value 𝑣1 = 0.1, with a time interval from 𝑡 = 0 to 𝑡 =

400, and a step size of 0.2. The initial conditions were set as follows: 𝑀𝑈(0) = 0.3 , 𝑀𝐼(0) =

0.2, 𝐵𝑆(0) = 0.1, 𝐵𝑅(0) = 0.7. The purpose of the simulation was to observe the interactions 
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among these components over time and determined whether the system converges to the 

infection-free equilibrium. The graph in Figure 2 illustrated the dynamics of 𝑀𝑈 , 𝑀𝐼 , 𝐵𝑆,  and 𝐵𝑅 

with respect to time 𝑡. In other words, Figure 2 illustrated the interaction between uninfected 

macrophages, infected macrophages, antibiotic-sensitive Mycobacterium tuberculosis (Mtb), and 

antibiotic-resistant Mtb bacteria. The populations of infected macrophages, sensitive bacteria, 

and resistant bacteria declined toward zero because of the antibiotic’s effectiveness in reducing 

the bacterial load. Meanwhile, the population of uninfected macrophages increased and 

approached one.  

 

Figure 2. Interaction graph of 𝑴𝑼,  𝑴𝑰,  𝑩𝑺, and 𝑩𝑹 over time 𝒕 under the condition 𝑹𝟎  <  𝟏. 

 

Figures 3 and Figure 4 presented the stability of the infection-free equilibrium point 𝐸0 

under various initial conditions. Figure 3 showed simulations using different initial values, 

where the trajectories of uninfected macrophages and both sensitive and resistant bacterial 

populations converge toward the equilibrium point 𝐸0. Figure 4 illustrated the population 

dynamics under another set of initial conditions, revealing that infected macrophages, sensitive 

bacteria, and resistant bacteria all move toward the infection-free equilibrium point 𝐸0 = (1,0,0,0) 

with 𝑅0 = 0.5. This indicated that, on average, each newly infected macrophage leads to less than 

one secondary infection per day. Therefore, the equilibrium point 𝐸0 is locally asymptotically 

stable for 𝑅0 < 1, in accordance with Theorem 1. 

 
Figure 3. The graphs of 𝑴𝑼, 𝑩𝑺, 𝑩𝑹 with different initial values converge to the point 𝑬𝟎 when 𝑹𝟎 < 𝟏 
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Figure 4. The graphs of 𝑴𝑰, 𝑩𝑺, 𝑩𝑹 with different initial values converge to the point 𝑬𝟎 when 𝑹𝟎 < 𝟏. 

 

Next, a numerical simulation was carried out to examine the stability of the equilibrium 

point 𝐸1 = (𝑀𝑈
∗, 𝑀𝐼

∗, 0, 𝐵𝑅
∗), using the parameter value 𝑣1 = 0.25. The model based on a first-

order system of ordinary differential equations. The simulation was run over the time interval 

𝑡 = 0 to 𝑡 = 400 with a step size of 0.2. The initial conditions were set as follows: 𝑀𝑈(0) =

0.3 , 𝑀𝐼(0) = 0.2, 𝐵𝑆(0) = 0.1, 𝐵𝑅(0) = 0.7. Figure 5 illustrated the interaction of 𝑀𝑈 , 𝑀𝐼 , 𝐵𝑆, and 

 𝐵𝑅 over time 𝑡. It can be observed that the population of antibiotic-resistant bacteria increased 

over time, leading to a corresponding rise in the number of infected macrophages. Meanwhile, 

the population of uninfected macrophages declined due to the active presence of resistant 

bacteria, which continue to infect healthy macrophages. In contrast, the population of antibiotic-

sensitive bacteria decreased and approached zero. This decline was caused by the effect of 

antibiotics, which effectively kill or suppress sensitive bacteria. While antibiotics successfully 

reduced the population of sensitive bacteria, they had no effect on resistant strains, allowed the 

resistant bacteria to persist and become dominant. 

 

Figure 5. Interaction graph of 𝑴𝑼,  𝑴𝑰,  𝑩𝑺, and 𝑩𝑹 over time 𝒕 under the condition 𝑹𝟐 > 𝟏 
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.  

Figure 6. The graphs of 𝑴𝑼, 𝑩𝑺, 𝑩𝑹 with different initial values converge to the point 𝑬𝟏. 

 

The stability of the equilibrium point 𝐸1 under various initial conditions was illustrated 

in the next two figures. Figure 6 demonstrated that uninfected macrophages, sensitive bacteria, 

and antibiotic-resistant bacteria evolved toward the equilibrium point 𝐸1. Figure 7 further 

confirmed that infected macrophages, sensitive bacteria, and resistant bacteria converged to the 

equilibrium point 𝐸1 = (0.136697 , 0.143885 , 0 , 0.505237), with a basic reproduction number 

𝑅2 = 1.7. This indicated that the populations of uninfected macrophages, infected macrophages, 

sensitive bacteria, and resistant bacteria stabilized at this endemic equilibrium. The value 𝑅2 =

1.7, suggested that, on average, each newly infected macrophage gives rise to at least 1.7 

additional infections per day. These results confirmed that the equilibrium point 𝐸1 is locally 

asymptotically stable. 

 
Figure 7. The graphs of 𝑴𝑰, 𝑩𝑺, 𝑩𝑹 with different initial values converge to the point 𝑬𝟏. 

 

Next, to demonstrate the stability of the equilibrium point 𝐸2 = (𝑀𝑈
∗∗, 𝑀𝐼

∗∗, 𝐵𝑆
∗∗, 𝐵𝑅

∗∗), 

simulations were carried out using the parameter values 𝑣 = 0.9 and 𝑣1 = 0.3. This simulation 

used a first-order system of ordinary differential equations. The time interval considered from 

𝑡 = 0 to 𝑡 = 400, with a step size of 0.2. The initial conditions were set as follows: 𝑀𝑈(0) =
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0.3 , 𝑀𝐼(0) = 0.2, 𝐵𝑆(0) = 0.1, 𝐵𝑅(0) = 0.7. The interaction dynamics of 𝑀𝑈 , 𝑀𝐼 , 𝐵𝑆, and 𝐵𝑅 over 

time 𝑡 are illustrated in Figure 8. 

 

Figure 8. Interaction graph of 𝑴𝑼,  𝑴𝑰,  𝑩𝑺, and 𝑩𝑹 over time 𝒕 under the condition 𝑹𝟏 > 𝟏 and 𝑹𝟐 > 𝟏 

 

In Figure 8, it can be observed that the population of antibiotic-resistant bacteria 

continued to increase, leading to a rise in the number of infected macrophages over time. 

Meanwhile, the population of antibiotic-sensitive bacteria began to decline and approached zero 

around day 300, because of antibiotics that eliminate sensitive bacteria. The population of 

uninfected macrophages also decreased, as active resistant bacteria continued to infect them. 

The stability of the equilibrium point 𝐸2 under various initial conditions was also 

illustrated in in the next two figures. Figure 9 showed that uninfected macrophages, sensitive 

bacteria, and resistant bacteria moved toward the equilibrium point 𝐸2. Figure 10 further 

demonstrated that infected macrophages, sensitive bacteria, and resistant bacteria also converged 

to the equilibrium point 𝐸2 = (0.118965 , 0.146875 , 0.0029726 , 0.584981), with basic 

reproduction numbers 𝑅1 = 2 and 𝑅2 = 2. This implied that, on average, each newly infected 

macrophage led to at least two new infections per day. The results confirmed that all state 

variables, uninfected macrophages, infected macrophages, sensitive bacteria, and resistant 

bacteria, stabilized at the endemic equilibrium point, 𝐸2, indicated that 𝐸2 is locally 

asymptotically stable. 

 
Figure 9. The graphs of 𝑴𝑼, 𝑩𝑺, 𝑩𝑹 with 

different initial values converge to the point 𝑬𝟐 

 
Figure 10. The graphs of 𝑴𝑰, 𝑩𝑺, 𝑩𝑹 with 

different initial values converge to the point 𝑬𝟐 
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 The equilibrium points 𝐸1 and 𝐸2 suggested that the number of infected macrophages could 

exceed that of uninfected macrophages. The existence of these endemic equilibria was possible 

only if the population of resistant bacteria could survive immune responses, allowed them to 

remain active within the host. Both the infection-free equilibrium and the locally stable endemic 

equilibria were asymptotically stable, indicated that the system tends to settle into a steady state 

without reactivating latent infection or disrupting the bacterial clearance process. While 

antibiotics contributed to the reduction or elimination of antibiotic-sensitive bacteria, they had 

limited effect on resistant strains. As a result, resistant bacteria persisted in the system, 

highlighted the need for additional or alternative treatment strategies beyond antibiotic therapy 

alone. 

3.6.2. Simulation with a fractional differential equation system  

In this simulation, several fractional orders are used, 𝛼 = 0.6, 0.7, 0.9, and 1, with the initial 

conditions 𝑀𝑈(0) = 0.3 , 𝑀𝐼(0) = 0.2, 𝐵𝑆(0) = 0.1, and  𝐵𝑅(0) = 0.7, along with a fixed set of 

parameter values. The simulation results, illustrated in Figure 11, showed that the uninfected 

macrophage population converges toward the equilibrium point for all values of 𝛼. Notably, for 

the same initial conditions, the system with 𝛼 = 0.6 reached the equilibrium faster than those 

with 𝛼 = 0.7, 0,9,  and 1. This highlighted the significant influence of the fractional order on the 

convergence rate of the system.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Population dynamics with different orders: (a) uninfected macrophages (𝑴𝑼), (b) 

infected macrophages (𝑴𝑰), (c) antibiotic-sensitive Mtb bacteria (𝑩𝑺), and (d) antibiotic-

resistant Mtb bacteria (𝑩𝑹). 
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As shown in Figure 11, the populations of uninfected macrophages, infected macrophages, 

antibiotic-sensitive bacteria, and antibiotic-resistant bacteria all converged toward their 

respective equilibrium points under varying fractional orders. With identical initial conditions, 

the system with 𝛼 = 0.6 consistently reached equilibrium faster than those with 𝛼 = 0.7, 0.8, and 

1. This result suggested that lower fractional orders accelerated the system’s convergence to 

equilibrium. The underlying reason lied in the memory effect intrinsic to the Caputo-Fabrizio 

fractional derivative: smaller values of 𝛼 placed greater weight on historical system behavior, 

thereby enhanced the damp of fluctuations and speed up stabilization. 

This finding aligned with the results reported in [20], which demonstrated that a fractional-

order model with 𝛼 = 0.93 provided a better fit to empirical data compared to a classical integer-

order model, and improved predictive accuracy by 28.5%. Additionally, research by [21] 

confirmed that the use of Caputo-Fabrizio derivatives in tuberculosis modeling yielded stable 

solutions and faster convergence relative to traditional approaches. These insights highlighted 

the potential utility of fractional-order models in the design of more effective and stable 

tuberculosis treatment strategies. 

 

4. CONCLUSION 

This paper presents a fractional-order mathematical model based on Caputo-Fabrizio 

derivatives to describe the dynamics of the interaction between Mycobacterium tuberculosis 

(Mtb) and antibiotic treatment, explicitly distinguishing between antibiotic-sensitive and 

antibiotic-resistant bacterial strains. Compared to conventional integer-order models, the 

fractional-order approach offers a more accurate depiction of biological processes by 

incorporating memory effects that are intrinsic to biological systems. The model introduces a 

basic reproduction number 𝑅0 as a threshold for disease control and identifies three equilibrium 

points: a disease-free equilibrium and two endemic equilibria. Stability analysis of these 

equilibriums is conducted through linearization and eigenvalue examination. Numerical 

simulations are performed using the three-step Adams-Bashforth method adapted for Caputo-

Fabrizio derivatives. The results indicate that the system converges to an equilibrium point 

regardless of variations in initial conditions. Notably, the fractional order parameter 𝛼 plays a 

significant role in the convergence behavior; smaller values of 𝛼 lead to faster convergence. This 

finding underscores the importance of memory effects in disease dynamics, which are overlooked 

in classical models. Overall, the fractional-order model enhances both analytical precision and 

biological realism, offering new insights for the development of more effective antibiotic 

treatment strategies, particularly in addressing antibiotic resistance. Future research should 

consider incorporating immune system interactions, combination drug therapies, and spatial 

heterogeneity to broaden the applicability of the model to more complex clinical and 

epidemiological contexts. 
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