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Abstract
This study investigates the application of the Trimming Gaussian Mixture Model (TGMM) for clustering
monthly rice productivity time series data in West Java from 2018 to 2023. TGMM is a robust clustering
approach that reduces the influence of outliers by trimming a specified portion of the data prior to
parameter estimation. The dataset, sourced from Open Data Jabar, was analyzed to identify the most
representative number of clusters using the Silhouette Score. The optimal clustering solution was achieved
with two main clusters (k = 2) and a trimming proportion of 15%. The results revealed three distinct
regional groups: two dominant clusters characterized by moderate-stable and high-consistent productivity
patterns, and a separate group of outliers marked by low and highly fluctuating productivity. Cluster
stability was assessed using the Adjusted Rand Index (ARI), yielding values of 0.41 (bootstrap) and 0.545
(subsampling), which indicate a reasonably consistent clustering structure. These findings demonstrate
the effectiveness of TGMM in capturing underlying productivity patterns while accounting for noise and
outliers, suggesting its potential as a robust decision-support tool for data-driven agricultural planning
and policy formulation.
Keywords: Adjusted rand Index, rice productivity, silhouette Score, time series clustering, trimming
gaussian mixture model.
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1. INTRODUCTION

In the era of modern agriculture, optimal data utilization is key to enhancing food
security and production efficiency. Statistics play a vital role in modeling and analyzing
complex phenomena across various fields, including the agricultural sector. One
increasingly adopted approach is time series clustering, which enables the grouping of
objects based on similarities in temporal patterns. This technique is relevant for supporting
data-driven decision-making, including understanding the dynamics of agricultural
productivity [1], [2].

West Java Province is one of Indonesia’s main rice-producing regions, experiencing
significant monthly fluctuations in productivity. These variations are influenced by
multiple factors such as weather conditions, cultivation technologies, and dynamic
government policies. Such uncertainty directly impacts farmers' income and regional food
security. Therefore, comprehensively understanding rice productivity patterns is crucial.
Clustering regions based on time series patterns of rice productivity has the potential to
assist governments and policymakers in formulating more effective, targeted, and
responsive intervention strategies [3].

Previous research has widely explored time series clustering techniques, for instance,
Dynamic Time Warping (DTW) and k-medoids, to analyze agricultural data. However,
these approaches generally lack robustness when handling data with outliers or highly
complex patterns, which may lead to biased clustering results [4], [5]. The Gaussian Mixture
Model (GMM) is a widely adopted probabilistic clustering technique that represents the
underlying structure of data as a mixture of multiple Gaussian distributions. This model
offers high flexibility in capturing the latent structure of data [6], and its parameters are
typically estimated using the Expectation-Maximization (EM) algorithm [2]. Nevertheless,
GMM has a major drawback —its sensitivity to outliers, which can reduce the reliability of
the clustering results [7], [8].

As a solution, the Trimming Gaussian Mixture Model (TGMM) was developed by
integrating a trimming technique, which removes a portion of the data deemed as outliers
before estimation. This technique maximizes the likelihood only on a subset of
representative data, producing more stable and accurate estimates [8]. The concept of
trimming was formally introduced in the context of clustering by Cuesta-Albertos et al. [9]
through the trimmed k-means method, which aims to enhance the robustness of the
algorithm against outliers by excluding a small proportion of the most extreme data points.
Compared to other robust methods such as M-estimators or mixtures of t-distributions,
TGMM has the advantage of explicitly identifying outliers without modifying the
underlying distributional assumptions. This makes it more interpretable in practical
contexts, including time series data on agricultural productivity [7].

In addition to previous studies on clustering agricultural time series data [10], [11],
[12]. Recent research has emphasized the importance of robust techniques that can
withstand noisy or nonstationary data [13], [14]. TGMM represents a compelling alternative
due to its balance of flexibility and robustness [7], [8], [15]. Moreover, studies have
demonstrated the usefulness of TGMM in other domains where time series behavior is
irregular or subject to disruption [8]. These developments suggest a promising opportunity
to bring these advances into the agricultural productivity domain.

These developments suggest a promising opportunity to bring these advances into
the agricultural productivity domain. To date, however, the specific application of TGMM
to rice productivity time series in Indonesia, particularly in West Java, has never been
conducted. This represents a significant research gap, as agricultural data in tropical
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regions are inherently prone to extreme shocks—such as climate anomalies or pest
outbreaks—that act as natural outliers

To date, the specific application of TGMM to rice productivity time series in
Indonesia, particularly in West Java, has never been conducted. This represents a significant
research gap, as agricultural data in tropical regions are inherently prone to extreme
shocks—such as climate anomalies or pest outbreaks —that act as natural outliers [16], [17],
[18]. Most existing studies in this region still rely on conventional approaches [5], [19] that
are less resilient to such disturbances, often resulting in biased clustering results [20], [21].
The novelty of this study lies in being the first to explicitly address this limitation by
deploying TGMM as a methodological solution in this context. As the pioneering
implementation of this approach in the region, this research demonstrates how the
trimming mechanism effectively isolates agricultural-specific outliers, thereby recovering
the true underlying productivity structure that conventional methods fail to capture [8], [9].

Therefore, this study aims to apply and evaluate the performance of TGMM in
clustering monthly rice productivity time series in West Java over the 2018-2023 period. In
addition to comparing it with conventional methods, this study seeks to assess TGMM's
ability to detect more accurate and outlier-resilient clusters. Thus, the resulting clusters are
expected to provide more representative and useful insights for planning and decision-
making in the agricultural sector.

Several recent publications have also explored high-resolution time series clustering
for agricultural policy support using advanced models, such as deep learning or entropy-
based clustering [22], [23]. Although powerful, such methods may lack interpretability
compared to probabilistic models like TGMM [6], [8]. The current study builds on this
foundation by combining statistical robustness with domain relevance, making it well-
suited for application in regional agricultural analysis where interpretability is key.
Furthermore, statistical techniques such as principal component analysis (PCA) and
silhouette coefficients have been used to validate cluster structure in high-dimensional time
series settings [24], [25], [26]. Incorporating these validation approaches strengthens the
analytical reliability of the proposed TGMM-based clustering.

2. RESEARCH METHODS

2.1. Data and Sources

This study uses rice productivity data based on the Area Sampling Frame obtained
from the official Open Data Jabar portal, managed by the West Java Provincial Government.
The dataset was compiled by the Department of Food Crops and Horticulture and includes
monthly rice productivity information from 2018 to 2023 for each regency and city in West
Java. The dataset is openly available and can be accessed through the Open Data Jabar
portal [27].

2.2. Research Procedure
All data processing, statistical modeling, and clustering procedures in this study were
carried out using the R programming language, which provides a comprehensive
platform for advanced statistical computing, time series analysis, and model-based
clustering. R offers a wide range of specialized packages such as mclust, cluster, and
tseries, which were used to implement the Gaussian Mixture Model (GMM) and the
Trimming Gaussian Mixture Model (TGMM), as well as to perform data
preprocessing and cluster evaluation [28]. The flexibility of R in handling various data
types and applying robust algorithms makes it particularly suitable for time series
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clustering in complex agricultural datasets. In addition, the visualization process was

supported by packages such as ggplot2 and factoextra, which facilitated the

interpretation and presentation of clustering results in an intuitive manner [29].

The analysis procedures were carried out in the following steps:

1. Data Exploration
The analysis begins with an initial exploration of the rice productivity data to
identify general characteristics, detect outliers, and understand the data
distribution for each region using boxplots. Boxplots are standard visualization
tools used to depict five-number summary statistics and outliers [30], [31].

2. Determining the Optimal Number of Clusters
The optimal number of clusters is determined using the Silhouette Score, a
measure that evaluates how well an object fits within its assigned cluster
compared to its distance from other clusters. Higher values reflect stronger
internal cohesion and greater separation between clusters [26]. The Silhouette
Score is defined by the following formula:

. b(i) — a(i)
s() = —" ey
max{a(i), b(i)}
with:
e a(i) represents the mean distance between point i and all other points within the same
cluster.

e b(i) denotes the smallest average distance from point i to all points in the
nearest neighboring cluster.

A value of s(i) close to 1 indicates a well-clustered point.

3. Determining the Optimal Trimming Proportion
The selection of the data proportion to be trimmed is based on the average
Silhouette Score computed for the optimal number of clusters. This approach
ensures that the chosen trimming proportion enhances clustering quality by
maximizing both cluster cohesion and separation.

4. Construction of the Trimming Gaussian Mixture Model
The Trimming Gaussian Mixture Model (TGMM) constitutes a robust refinement
of the traditional Gaussian Mixture Model (GMM), designed to mitigate the
influence of outliers by excluding a subset of data points during parameter
estimation via the Expectation-Maximization (EM) algorithm. This enhancement
results in more stable and representative model estimations [7], [8]. Formally, the
GMM posits that the observed data x are generated from a finite mixture of K
multivariate Gaussian distributions, expressed as.

K

p(rel) = D e N (i, Ze) @

k=1

with:

e 1 indicates the mixing weight (prior probability) associated with the k-th
component, subject to the constraints YK m=1danm =0,

o N (x|pg, Zx) describes the multivariate Gaussian distribution characterized by
the mean vector y; and and the covariance matrix X;:
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The objective of TGMM is to maximize the trimmed log-likelihood function on a
subset of data that excludes the aproportion of observations with the lowest
likelihoods. The objective function is defined as:

K 3)
Lirim(0) = Z log (Z e N (x| g, Zie ))

i€Hy k=1
with H, is the subset of indices containing the [n(1 — a)] observations with the
highest likelihood values. The model parameters © = {my, yx, 2y }5_; are obtained
by maximizing the likelihood function, a process carried out using the
Expectation-Maximization (EM) algorithm as described below.

o E-Step (Expectation): Calculate the posterior probability (soft assignment) that
data point x; belongs to cluster k:

n,(f_l)]\f (xi |u,(f_1), Z,((t_l)) 4)

K D D -
KN (ual 0, 20)

® _
VieWk =

Compute the individual likelihood of each data point:
K
- 1) (- ®)
Lg(t) _ Z n}({t 1) N(x|ﬂl(<t 1)’21(: 1))
k=1

e Trimming step:
Order the data instances from lowest to highest according to their
corresponding likelihood values Lgt). Select a subset Xg;ser consisting of the
top n(1 — a) data points with the highest likelihoods, where « is the trimming

proportion.
e M-Step (Maximization) : Update the parameters using only the trimmed
subset X S(Z)bs ot .
® _ ® 6
Wt X Y ©
Xsubset iEXs(l?bset
) )
® _ Ziexs(l?bset yik %i
M = y ®
iexgl)bset yi
8)
© (5. — 1O (5 — DY (
Z(t+1) — Z:L'EXs(l?bset yik (xl Hie )(xl Hie )
k )
Yiex® Y

subset

Repeat the E-step, trimming, and M-step iteratively until convergence, indicated
by changes in the parameters © or the trimmed log-likelihood falling below a
predefined threshold.

5. Cluster Visualization
After completing the clustering process using the Trimming Gaussian Mixture
Model (TGMM), scatter plots are employed to visualize the cluster distribution in
a low-dimensional space. Since the rice productivity time series data are high-
dimensional, dimensionality reduction techniques such as Principal Component
Analysis (PCA) [25] are first applied. The resulting reduced data are then
visualized in a two-dimensional scatter plot, where each point represents a single
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regency or city unit, and its color indicates the cluster assignment determined by
TGMM.

6. Exploration of Each Cluster
Descriptive statistics and boxplots are utilized to compare characteristics across
clusters, such as average productivity or variability among regions, thereby
enriching the interpretation of clustering results.

7. Cluster Stability Evaluation
To ensure that the clustering results are stable and not overly sensitive to data
variation, cluster stability is assessed using the Adjusted Rand Index (ARI). ARI
quantifies the similarity between two clustering outcomes—specifically, the
original clustering and a replicated clustering derived from modified versions of
the dataset. ARI serves as a measure of agreement between two partitions,
correcting for chance. Given a set of n elements and two partitions U = {uy, ..., ug}
and V = {vy, ..., v¢}, the ARl is computed as follows:

ARI = Zti(nzij) B} [Zi(?) Z ; (l;’)] /G
NOEONGIEINOINEITE

where nyrepresents the number of objects common to clusters u;and v;, while

©)

a;and bjdenote the number of objects in clusters u;and vj, respectively. An ARI
value close to 1 implies high stability, whereas a value near 0 indicates random
labeling. Two approaches are employed: bootstrap sampling, which involves
generating multiple resampled datasets with replacement from the original data
[7], and subsampling, where a portion of the data is selected without replacement
[24]. This process provides insight into how consistent the resulting clusters are
under data variation. A high ARI value indicates that the clustering is stable and
reliable, and not significantly affected by data fluctuations.

3. RESULTS AND DISCUSSION

3.1. Data Exploration

Based on Figure 1, the boxplot of rice productivity by regency/city in West Java
Province from January 2018 to December 2023 provides a comprehensive overview of the
distribution and variability patterns across regions. Each boxplot represents the monthly
productivity distribution for a given regency/city, with the central line indicating the
median. The box illustrates the interquartile range (IQR), while the points outside the
whiskers indicate the presence of outliers. It is evident that Depok City exhibits the widest
spread, with extreme value ranges and a relatively high number of outliers, indicating
significant fluctuations in rice productivity. Bekasi City and Bogor City also display similar
characteristics, though to a lesser extent than Depok. In contrast, areas such as Bandung
City, Karawang Regency, Kuningan Regency, and Indramayu Regency show narrower
spreads with higher medians, indicating more stable and consistently strong productivity
performance over time.

These differences in distribution patterns reflect the heterogeneity of regional
characteristics in terms of cultivation techniques, agroclimatic conditions, and socio-
economic factors influencing agricultural output. Regions with numerous outliers and wide
spreads are likely to face extreme seasonal disruptions, climate dependency, or even
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structural issues within their production systems. Meanwhile, regions with more stable
distributions tend to have well-established agricultural systems that are more resilient to
seasonal variability.
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Figure 1. Boxplot of Rice Productivity by Administrative Region

3.2. Trimming Gaussian Mixture Model

Selecting the optimal cluster count is a fundamental aspect of the clustering
procedure, especially when applying the Trimming Gaussian Mixture Model (TGMM).
Figure 2 displays the average Silhouette Scores for different numbers of clusters (k),
evaluated over a range from 2 to 10. The Silhouette Score serves as an indicator of clustering
quality, where higher values reflect clearer separation between clusters and stronger
internal cohesion. Based on Figure 2, the highest Silhouette Score is achieved at two clusters
(k = 2), approximately 0.42. The score then declines significantly from k = 3 tok = 10,
indicating that increasing the number of clusters does not necessarily improve data
segmentation quality.

Average Silhouette Score
0.2 0.3 0.4
| L
-

0.1
/
/
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Figure 2. Optimal Clustering Based on Silhouette Score
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These findings suggest that the natural structure of the monthly rice productivity data
in West Java tends to form two statistically distinct groups. In the context of TGMM,
selecting k = 2 as the optimal number of clusters implies that the trimming process
effectively excludes outliers and yields two dominant clusters that best represent the
general productivity patterns.

0.5
L

0.4

1

(X1} /.... e eooe

Y Y
!

Average Silhouette Score

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Alpha (Trimming)

Figure 3. Silhouette Score as a Function of Trimming Proportion in 2-Cluster Analysis

In the parameter optimization stage for the Gaussian Mixture Model (GMM), a
trimming analysis was conducted to identify the most appropriate trimming proportion,
particularly when the number of clusters (k) was fixed at 2. Figure 3 presents a plot of the
average Silhouette Score against varying values of the trimming parameter a (Alpha).
Higher Silhouette Scores indicate better clustering quality. From the graph, it can be
observed that the Silhouette Score fluctuates significantly as a increases. The highest peak
in the Silhouette Score occurs around @ = 0.15, reaching an average value above 0.45.
Although there are other peaks at higher o values, @ = 0.15 was selected as the optimal
trimming proportion. This choice is based on the consideration that excessively high
trimming values may remove a large portion of relevant data, whereas 0.15 successfully
maintains good clustering quality (indicated by the high Silhouette Score) without
sacrificing too many observations. Thus, trimming at 0.15 is considered most effective in
enhancing the robustness of the GMM against outliers while preserving a clear cluster
structure for k = 2.

After determining the optimal trimming parameter (a = 0.15), TGMM was applied
to cluster the rice productivity data. Figure 4 shows the clustering results with two clusters
k = 2 in the PCl and PC2 space obtained through PCA. PCA reduces the data’s
dimensionality while preserving the largest variance. PC1 and PC2 capture the first and
second highest variances, respectively, and are orthogonal. Each region’s position in the
plot reflects its rice productivity characteristics, making cluster patterns easier to interpret.
The objective of this clustering is to categorize regions based on their rice productivity
characteristics, while simultaneously excluding outlier observations identified through the
trimming process. As illustrated in Figure 4, the data are partitioned into two primary
clusters—depicted in green and blue—whereas several observations, identified as outliers
and shown in red, are excluded from the main clusters due to their deviation from the
overall data distribution.
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Figure 4. Trimming GMM Clustering of Rice Productivity

Cluster 0 (represented in red) comprises observations that were trimmed or identified
as outliers, including regions such as Depok City, Cimahi City, Bekasi City, and Bogor City.
Their considerable distance from the centers of the other clusters indicates that these
regions exhibit markedly different or atypical rice productivity characteristics compared to
the majority of other areas. This likely reflects specific conditions such as high levels of
urbanization, extremely limited agricultural land, or an economic focus not centered on rice
cultivation, resulting in rice productivity levels that fall outside the general pattern. These
observations are effectively isolated through the trimming process to prevent bias in the
formation of the main clusters.

Cluster 2 (depicted in blue), which comprises regions such as Kuningan Regency,
Majalengka Regency, Indramayu Regency, Subang Regency, and Bandung Regency,
exhibits a concentration that is somewhat distinct from Cluster 1. The regions in this cluster
are likely characterized by high or optimal rice productivity. These areas may serve as key
rice-producing centers, benefiting from favorable conditions such as fertile soil, suitable
climate, and effective agricultural practices. Their relatively close proximity within the
cluster indicates similar productivity patterns, suggesting a high degree of efficiency and
strong production potential.

Based on Figure 5, clear differences in characteristics are observed among the clusters.
Cluster 0 (red), previously identified as trimmed observations or outliers, exhibits a very
wide and generally low range of rice productivity. Although the median productivity is
50.0 quintals per hectare, the mean is only 37.6 quintals per hectare, indicating the presence
of several extremely low values that pull the average downward. The notably high standard
deviation (24.3) further confirms the extreme variability within this cluster, with many data
points falling below the first quartile and several extreme values even below zero. This
supports the interpretation that Cluster 0 comprises regions with anomalous or inconsistent
rice productivity, often substantially lower than those in the other clusters, which explains
why these observations were trimmed by the GMM model.
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Cluster 1 (green) exhibits a more consistent distribution of rice productivity
compared to Cluster 0. With a mean of 52.6 quintals per hectare and a median of 53.9
quintals per hectare, this cluster represents regions with moderate to relatively high levels
of rice productivity. The lower standard deviation (10.1) indicates more controlled
variability within the data, suggesting that regions in this cluster tend to have similar
productivity patterns that exceed the overall average but do not reach the highest
productivity levels.

80 4
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)
= Outlier (Trimmed
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g E Cluster 1 (Moderate)
= .
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v
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Outlier (Trimmed) Cluster 1 (Moderate) Cluster 2 (High)

Figure 5. Boxplot Distribution of Rice Productivity by Cluster

Cluster 2 (blue) stands out with the highest and most consistent rice productivity
levels among the three groups. With a mean of 59.2 quintals per hectare and a median of
58.9 quintals per hectare, this cluster represents regions characterized by optimal and stable
rice productivity. The narrowest boxplot range and the lowest standard deviation (6.39)
confirm that the regions within this cluster exhibit highly uniform and elevated
productivity levels. This finding reinforces the assumption that Cluster 2 comprises key
rice-producing areas that are highly efficient and contribute the most to overall rice
productivity.

Overall, this distribution analysis confirms that the trimming Gaussian Mixture
Model (TGMM) successfully clustered regions based on both the level and consistency of
their rice productivity, effectively separating outliers (Cluster 0) from the moderate
productivity group (Cluster 1) and the high productivity group (Cluster 2). This
classification provides a deeper understanding of the characteristics of each cluster and
their implications for rice productivity management.

3.3. Cluster Stability

Following clustering using the Gaussian Mixture Model (GMM) with trimming,
evaluating cluster stability is essential to ensure consistent results. Stability was assessed
using the Adjusted Rand Index (ARI) through two internal approaches: bootstrap and
subsampling. The ARI varies between -1 and 1, with values approaching 1 signifying
greater clustering stability. The bootstrap test yielded an average ARI of 0.41, indicating
moderate stability and some variability in cluster assignments due to resampling with
replacement. In contrast, the subsampling test produced a higher average ARI of 0.545,
reflecting greater stability and consistency despite sampling without replacement.
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Overall, the ARI results from both methods suggest that the obtained cluster
partitions are reasonably stable and reliable for data interpretation, although there remains
room for improvement, particularly in the bootstrap approach. These findings align with
Hennig [24], which emphasized that trimming in GMM improves robustness by excluding
extreme observations, thus enhancing stability under noisy conditions. Furthermore,
Mouret et al. [32] demonstrated that robust GMM techniques could effectively reconstruct
satellite-derived time series and detect agricultural anomalies even in contaminated
datasets, reinforcing the suitability of trimming-based clustering for spatio-temporal
agricultural analysis. In this study, the application of TGMM to rice productivity data
confirms its potential to produce stable clusters that remain interpretable and resilient to
variability, supporting informed decision-making in agricultural policy.

4. CONCLUSION

This study successfully applied the Trimming Gaussian Mixture Model (TGMM) to
cluster monthly rice productivity time series data in West Java (2018-2023), identifying an
optimal structure with two main clusters and a trimming proportion of 0.15. The results
effectively distinguished significant productivity patterns, comprising a high-productivity
group characterized by low variability, a moderate-stable group, and a distinct outlier
group marked by low productivity and high fluctuations. The stability of these clusters was
confirmed through the Adjusted Rand Index (ARI), yielding values of 0.41 (bootstrap) and
0.545 (subsampling), which demonstrates the consistency and reliability of TGMM as a
robust method for agricultural time series analysis. While this study was limited to the
geographic scope of West Java and a specific number of clusters, future research is
recommended to extend this approach to other regions or commodities, explore a more
diverse range of cluster numbers, and integrate TGMM with predictive models to provide
a comprehensive tool for agricultural planning and policy formulation.
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