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Abstract 

This study investigates the application of the Trimming Gaussian Mixture Model (TGMM) for clustering 

monthly rice productivity time series data in West Java from 2018 to 2023. TGMM is a robust clustering 

approach that reduces the influence of outliers by trimming a specified portion of the data prior to 

parameter estimation. The dataset, sourced from Open Data Jabar, was analyzed to identify the most 

representative number of clusters using the Silhouette Score. The optimal clustering solution was achieved 

with two main clusters (k = 2) and a trimming proportion of 15%. The results revealed three distinct 

regional groups: two dominant clusters characterized by moderate-stable and high-consistent productivity 

patterns, and a separate group of outliers marked by low and highly fluctuating productivity. Cluster 

stability was assessed using the Adjusted Rand Index (ARI), yielding values of 0.41 (bootstrap) and 0.545 

(subsampling), which indicate a reasonably consistent clustering structure. These findings demonstrate 

the effectiveness of TGMM in capturing underlying productivity patterns while accounting for noise and 

outliers, suggesting its potential as a robust decision-support tool for data-driven agricultural planning 

and policy formulation. 

Keywords: Adjusted rand Index, rice productivity, silhouette Score, time series clustering, trimming  

                    gaussian mixture model. 
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1. INTRODUCTION 

In the era of modern agriculture, optimal data utilization is key to enhancing food 

security and production efficiency. Statistics play a vital role in modeling and analyzing 

complex phenomena across various fields, including the agricultural sector. One 

increasingly adopted approach is time series clustering, which enables the grouping of 

objects based on similarities in temporal patterns. This technique is relevant for supporting 

data-driven decision-making, including understanding the dynamics of agricultural 

productivity [1], [2]. 

West Java Province is one of Indonesia’s main rice-producing regions, experiencing 

significant monthly fluctuations in productivity. These variations are influenced by 

multiple factors such as weather conditions, cultivation technologies, and dynamic 

government policies. Such uncertainty directly impacts farmers' income and regional food 

security. Therefore, comprehensively understanding rice productivity patterns is crucial. 

Clustering regions based on time series patterns of rice productivity has the potential to 

assist governments and policymakers in formulating more effective, targeted, and 

responsive intervention strategies [3]. 

Previous research has widely explored time series clustering techniques, for instance, 

Dynamic Time Warping (DTW) and k-medoids, to analyze agricultural data. However, 

these approaches generally lack robustness when handling data with outliers or highly 

complex patterns, which may lead to biased clustering results [4], [5]. The Gaussian Mixture 

Model (GMM) is a widely adopted probabilistic clustering technique that represents the 

underlying structure of data as a mixture of multiple Gaussian distributions. This model 

offers high flexibility in capturing the latent structure of data  [6], and its parameters are 

typically estimated using the Expectation-Maximization (EM) algorithm [2]. Nevertheless, 

GMM has a major drawback—its sensitivity to outliers, which can reduce the reliability of 

the clustering results [7], [8]. 

As a solution, the Trimming Gaussian Mixture Model (TGMM) was developed by 

integrating a trimming technique, which removes a portion of the data deemed as outliers 

before estimation. This technique maximizes the likelihood only on a subset of 

representative data, producing more stable and accurate estimates [8]. The concept of 

trimming was formally introduced in the context of clustering by Cuesta-Albertos et al. [9] 

through the trimmed k-means method, which aims to enhance the robustness of the 

algorithm against outliers by excluding a small proportion of the most extreme data points. 

Compared to other robust methods such as M-estimators or mixtures of t-distributions, 

TGMM has the advantage of explicitly identifying outliers without modifying the 

underlying distributional assumptions. This makes it more interpretable in practical 

contexts, including time series data on agricultural productivity [7]. 

In addition to previous studies on clustering agricultural time series data [10], [11], 

[12]. Recent research has emphasized the importance of robust techniques that can 

withstand noisy or nonstationary data [13], [14]. TGMM represents a compelling alternative 

due to its balance of flexibility and robustness [7], [8], [15]. Moreover, studies have 

demonstrated the usefulness of TGMM in other domains where time series behavior is 

irregular or subject to disruption [8]. These developments suggest a promising opportunity 

to bring these advances into the agricultural productivity domain. 

These developments suggest a promising opportunity to bring these advances into 

the agricultural productivity domain. To date, however, the specific application of TGMM 

to rice productivity time series in Indonesia, particularly in West Java, has never been 

conducted. This represents a significant research gap, as agricultural data in tropical 
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regions are inherently prone to extreme shocks—such as climate anomalies or pest 

outbreaks—that act as natural outliers 

To date, the specific application of TGMM to rice productivity time series in 

Indonesia, particularly in West Java, has never been conducted. This represents a significant 

research gap, as agricultural data in tropical regions are inherently prone to extreme 

shocks—such as climate anomalies or pest outbreaks—that act as natural outliers [16], [17], 

[18]. Most existing studies in this region still rely on conventional approaches [5], [19] that 

are less resilient to such disturbances, often resulting in biased clustering results [20], [21]. 

The novelty of this study lies in being the first to explicitly address this limitation by 

deploying TGMM as a methodological solution in this context. As the pioneering 

implementation of this approach in the region, this research demonstrates how the 

trimming mechanism effectively isolates agricultural-specific outliers, thereby recovering 

the true underlying productivity structure that conventional methods fail to capture [8], [9]. 

Therefore, this study aims to apply and evaluate the performance of TGMM in 

clustering monthly rice productivity time series in West Java over the 2018–2023 period. In 

addition to comparing it with conventional methods, this study seeks to assess TGMM's 

ability to detect more accurate and outlier-resilient clusters. Thus, the resulting clusters are 

expected to provide more representative and useful insights for planning and decision-

making in the agricultural sector. 

Several recent publications have also explored high-resolution time series clustering 

for agricultural policy support using advanced models, such as deep learning or entropy-

based clustering [22], [23]. Although powerful, such methods may lack interpretability 

compared to probabilistic models like TGMM [6], [8]. The current study builds on this 

foundation by combining statistical robustness with domain relevance, making it well-

suited for application in regional agricultural analysis where interpretability is key. 

Furthermore, statistical techniques such as principal component analysis (PCA) and 

silhouette coefficients have been used to validate cluster structure in high-dimensional time 

series settings [24], [25], [26]. Incorporating these validation approaches strengthens the 

analytical reliability of the proposed TGMM-based clustering. 

 

2. RESEARCH METHODS 

2.1. Data and Sources 

This study uses rice productivity data based on the Area Sampling Frame obtained 

from the official Open Data Jabar portal, managed by the West Java Provincial Government. 

The dataset was compiled by the Department of Food Crops and Horticulture and includes 

monthly rice productivity information from 2018 to 2023 for each regency and city in West 

Java. The dataset is openly available and can be accessed through the Open Data Jabar 

portal [27]. 

2.2. Research Procedure 

All data processing, statistical modeling, and clustering procedures in this study were 

carried out using the R programming language, which provides a comprehensive 

platform for advanced statistical computing, time series analysis, and model-based 

clustering. R offers a wide range of specialized packages such as mclust, cluster, and 

tseries, which were used to implement the Gaussian Mixture Model (GMM) and the 

Trimming Gaussian Mixture Model (TGMM), as well as to perform data 

preprocessing and cluster evaluation [28]. The flexibility of R in handling various data 

types and applying robust algorithms makes it particularly suitable for time series 
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clustering in complex agricultural datasets. In addition, the visualization process was 

supported by packages such as ggplot2 and factoextra, which facilitated the 

interpretation and presentation of clustering results in an intuitive manner [29]. 

The analysis procedures were carried out in the following steps: 

1. Data Exploration 

The analysis begins with an initial exploration of the rice productivity data to 

identify general characteristics, detect outliers, and understand the data 

distribution for each region using boxplots. Boxplots are standard visualization 

tools used to depict five-number summary statistics and outliers  [30], [31]. 

2. Determining the Optimal Number of Clusters 

The optimal number of clusters is determined using the Silhouette Score, a 

measure that evaluates how well an object fits within its assigned cluster 

compared to its distance from other clusters. Higher values reflect stronger 

internal cohesion and greater separation between clusters [26]. The Silhouette 

Score is defined by the following formula: 

 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
 (1) 

with: 

• 𝒂(𝒊) represents the mean distance between point i and all other points within the same 

cluster. 

• 𝒃(𝒊) denotes the smallest average distance from point i to all points in the 

nearest neighboring cluster. 

A value of 𝒔(𝒊) close to 1 indicates a well-clustered point. 

3. Determining the Optimal Trimming Proportion 

The selection of the data proportion to be trimmed is based on the average 

Silhouette Score computed for the optimal number of clusters. This approach 

ensures that the chosen trimming proportion enhances clustering quality by 

maximizing both cluster cohesion and separation. 

4. Construction of the Trimming Gaussian Mixture Model 

The Trimming Gaussian Mixture Model (TGMM) constitutes a robust refinement 

of the traditional Gaussian Mixture Model (GMM), designed to mitigate the 

influence of outliers by excluding a subset of data points during parameter 

estimation via the Expectation-Maximization (EM) algorithm. This enhancement 

results in more stable and representative model estimations [7], [8]. Formally, the 

GMM posits that the observed data 𝒙 are generated from a finite mixture of 𝑲 

multivariate Gaussian distributions, expressed as. 
 

𝑝(𝑥𝑘|Θ) = ∑ 𝜋𝑘 𝒩(𝑥|𝜇𝑘 , Σ𝑘) 

𝐾

𝑘=1

 
(2) 

with:  

• 𝜋𝑘 indicates the mixing weight (prior probability) associated with the 𝑘-th 

component, subject to the constraints ∑ 𝜋𝑘
𝐾
𝑘=1 = 1 dan 𝜋𝑘 ≥ 0, 

• 𝒩(𝑥|𝜇𝑘, Σ𝑘) 𝑑escribes the multivariate Gaussian distribution characterized by 

the mean vector 𝜇𝑖 and and the covariance matrix Σ𝑖: 
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The objective of TGMM is to maximize the trimmed log-likelihood function on a 

subset of data that excludes the 𝛼proportion of observations with the lowest 

likelihoods. The objective function is defined as: 

ℒtrim(Θ) = ∑ log

𝑖∈𝐻𝛼

(∑ 𝜋𝑘  𝒩( 𝑥𝑖 ∣∣ 𝜇𝑘 , 𝛴𝑘 )

𝐾

𝑘=1

) 

(3) 

with 𝐻𝛼 is the subset of indices containing the ⌈𝑛(1 − 𝛼)⌉ observations with the 

highest likelihood values. The model parameters Θ = {𝜋𝑘, 𝜇𝑘, Σ𝑘}𝑘=1
𝐾  are obtained 

by maximizing the likelihood function, a process carried out using the 

Expectation-Maximization (EM) algorithm as described below. 

• E-Step (Expectation): Calculate the posterior probability (soft assignment) that 

data point 𝑥𝑖 belongs to cluster 𝑘:  

𝛾𝑖𝑘
(𝑡)

=
𝜋𝑘

(𝑡−1)
𝒩 (𝑥𝑖|𝜇𝑘

(𝑡−1)
, Σ𝑘

(𝑡−1)
)

∑ 𝜋𝑗
(𝑡−1)𝐾

𝑗=1 𝒩 (𝑥𝑖|𝜇𝑗
(𝑡−1)

, Σ𝑗
(𝑡−1)

)
 

(4) 

Compute the individual likelihood of each data point: 

𝐿𝑘
(𝑡)

= ∑ 𝜋𝑘
(𝑡−1)

 𝒩(𝑥|𝜇𝑘
(𝑡−1)

, Σ𝑘
(𝑡−1)

) 

𝐾

𝑘=1

 
(5) 

• Trimming step: 

Order the data instances from lowest to highest according to their 

corresponding likelihood values 𝐿𝑖
(𝑡)

. Select a subset 𝑋𝑠𝑢𝑏𝑠𝑒𝑡 consisting of the 

top 𝑛(1 − 𝛼) data points with the highest likelihoods, where 𝛼 is the trimming 

proportion. 

• M-Step (Maximization) : Update the parameters using only the trimmed 

subset 𝑋𝑠𝑢𝑏𝑠𝑒𝑡
(𝑡)

 : 

𝜋𝑘
(𝑡)

=
1

|𝑋𝑠𝑢𝑏𝑠𝑒𝑡
(𝑡)

|
∑ 𝛾𝑖𝑘

(𝑡)

𝑖∈𝑋𝑠𝑢𝑏𝑠𝑒𝑡
(𝑡)

 
(6) 

𝜇𝑘
(𝑡)

=

∑ 𝛾𝑖𝑘
(𝑡)

𝑖∈𝑋𝑠𝑢𝑏𝑠𝑒𝑡
(𝑡) 𝑥𝑖

∑ 𝛾𝑖𝑘
(𝑡)

𝑖∈𝑋𝑠𝑢𝑏𝑠𝑒𝑡
(𝑡)

 

(7) 

Σ𝑘
(𝑡+1)

=
∑ 𝛾𝑖𝑘

(𝑡)

𝑖∈𝑋𝑠𝑢𝑏𝑠𝑒𝑡
(𝑡) (𝑥𝑖 − 𝜇𝑘

(𝑡)
) (𝑥𝑖 − 𝜇𝑘

(𝑡+1)
)

𝑇

∑ 𝛾𝑖𝑘
(𝑡)

𝑖∈𝑋𝑠𝑢𝑏𝑠𝑒𝑡
(𝑡)

 

(8) 

Repeat the E-step, trimming, and M-step iteratively until convergence, indicated 

by changes in the parameters Θ or the trimmed log-likelihood falling below a 

predefined threshold. 

5. Cluster Visualization 

After completing the clustering process using the Trimming Gaussian Mixture 

Model (TGMM), scatter plots are employed to visualize the cluster distribution in 

a low-dimensional space. Since the rice productivity time series data are high-

dimensional, dimensionality reduction techniques such as Principal Component 

Analysis (PCA) [25] are first applied. The resulting reduced data are then 

visualized in a two-dimensional scatter plot, where each point represents a single 



Parameter: Jurnal Matematika, Statistika dan Terapannya | December 2025 | Vol 04, No.3 | Page 381-394 

  
386 

regency or city unit, and its color indicates the cluster assignment determined by 

TGMM. 

6. Exploration of Each Cluster 

Descriptive statistics and boxplots are utilized to compare characteristics across 

clusters, such as average productivity or variability among regions, thereby 

enriching the interpretation of clustering results. 

7. Cluster Stability Evaluation 

To ensure that the clustering results are stable and not overly sensitive to data 

variation, cluster stability is assessed using the Adjusted Rand Index (ARI). ARI 

quantifies the similarity between two clustering outcomes—specifically, the 

original clustering and a replicated clustering derived from modified versions of 

the dataset. ARI serves as a measure of agreement between two partitions, 

correcting for chance. Given a set of 𝒏 elements and two partitions 𝑼 = {𝒖𝟏, … , 𝒖𝑹} 

and 𝑽 = {𝒗𝟏, … , 𝒗𝑪}, the ARI is computed as follows: 

ARI =

∑ (
𝒏𝒊𝒋

𝟐
)

𝒊𝒋
− [∑ (𝒂𝒊

𝟐
)

𝒊
∑ (

𝒃𝒋

𝟐
)

𝒋
] /(𝒏

𝟐
)

𝟏
𝟐

[∑ (𝒂𝒊
𝟐

)
𝒊

+ ∑ (
𝒃𝒋

𝟐
)

𝒋
] − [∑ (𝒂𝒊

𝟐
)

𝒊
∑ (

𝒃𝒋

𝟐
)

𝒋
] /(𝒏

𝟐
)

 

 
 

(9) 

where 𝒏𝒊𝒋represents the number of objects common to clusters 𝒖𝒊and 𝒗𝒋, while 

𝒂𝒊and 𝒃𝒋denote the number of objects in clusters 𝒖𝒊and 𝒗𝒋, respectively. An ARI 

value close to 1 implies high stability, whereas a value near 0 indicates random 

labeling. Two approaches are employed: bootstrap sampling, which involves 

generating multiple resampled datasets with replacement from the original data 

[7], and subsampling, where a portion of the data is selected without replacement 

[24]. This process provides insight into how consistent the resulting clusters are 

under data variation. A high ARI value indicates that the clustering is stable and 

reliable, and not significantly affected by data fluctuations. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Data Exploration 

Based on Figure 1, the boxplot of rice productivity by regency/city in West Java 

Province from January 2018 to December 2023 provides a comprehensive overview of the 

distribution and variability patterns across regions. Each boxplot represents the monthly 

productivity distribution for a given regency/city, with the central line indicating the 

median. The box illustrates the interquartile range (IQR), while the points outside the 

whiskers indicate the presence of outliers. It is evident that Depok City exhibits the widest 

spread, with extreme value ranges and a relatively high number of outliers, indicating 

significant fluctuations in rice productivity. Bekasi City and Bogor City also display similar 

characteristics, though to a lesser extent than Depok. In contrast, areas such as Bandung 

City, Karawang Regency, Kuningan Regency, and Indramayu Regency show narrower 

spreads with higher medians, indicating more stable and consistently strong productivity 

performance over time. 

These differences in distribution patterns reflect the heterogeneity of regional 

characteristics in terms of cultivation techniques, agroclimatic conditions, and socio-

economic factors influencing agricultural output. Regions with numerous outliers and wide 

spreads are likely to face extreme seasonal disruptions, climate dependency, or even 
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structural issues within their production systems. Meanwhile, regions with more stable 

distributions tend to have well-established agricultural systems that are more resilient to 

seasonal variability. 

 

 

Figure 1. Boxplot of Rice Productivity by Administrative Region 

3.2. Trimming Gaussian Mixture Model 

Selecting the optimal cluster count is a fundamental aspect of the clustering 

procedure, especially when applying the Trimming Gaussian Mixture Model (TGMM). 

Figure 2 displays the average Silhouette Scores for different numbers of clusters (k), 

evaluated over a range from 2 to 10. The Silhouette Score serves as an indicator of clustering 

quality, where higher values reflect clearer separation between clusters and stronger 

internal cohesion. Based on Figure 2, the highest Silhouette Score is achieved at two clusters 

(𝒌 =  𝟐), approximately 0.42. The score then declines significantly from 𝒌 =  𝟑 to 𝒌 =  𝟏𝟎, 

indicating that increasing the number of clusters does not necessarily improve data 

segmentation quality. 

 

Figure 2. Optimal Clustering Based on Silhouette Score 
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These findings suggest that the natural structure of the monthly rice productivity data 

in West Java tends to form two statistically distinct groups. In the context of TGMM, 

selecting 𝒌 =  𝟐 as the optimal number of clusters implies that the trimming process 

effectively excludes outliers and yields two dominant clusters that best represent the 

general productivity patterns. 

 

Figure 3. Silhouette Score as a Function of Trimming Proportion in 2-Cluster Analysis 

In the parameter optimization stage for the Gaussian Mixture Model (GMM), a 

trimming analysis was conducted to identify the most appropriate trimming proportion, 

particularly when the number of clusters (𝒌) was fixed at 2. Figure 3 presents a plot of the 

average Silhouette Score against varying values of the trimming parameter 𝜶 (Alpha). 

Higher Silhouette Scores indicate better clustering quality. From the graph, it can be 

observed that the Silhouette Score fluctuates significantly as α increases. The highest peak 

in the Silhouette Score occurs around 𝜶 =  𝟎. 𝟏𝟓, reaching an average value above 0.45. 

Although there are other peaks at higher α values, 𝜶 =  𝟎. 𝟏𝟓 was selected as the optimal 

trimming proportion. This choice is based on the consideration that excessively high 

trimming values may remove a large portion of relevant data, whereas 0.15 successfully 

maintains good clustering quality (indicated by the high Silhouette Score) without 

sacrificing too many observations. Thus, trimming at 0.15 is considered most effective in 

enhancing the robustness of the GMM against outliers while preserving a clear cluster 

structure for 𝒌 =  𝟐. 

After determining the optimal trimming parameter (𝜶 = 𝟎. 𝟏𝟓), TGMM was applied 

to cluster the rice productivity data. Figure 4 shows the clustering results with two clusters 

k = 2 in the PC1 and PC2 space obtained through PCA. PCA reduces the data’s 

dimensionality while preserving the largest variance. PC1 and PC2 capture the first and 

second highest variances, respectively, and are orthogonal. Each region’s position in the 

plot reflects its rice productivity characteristics, making cluster patterns easier to interpret. 

The objective of this clustering is to categorize regions based on their rice productivity 

characteristics, while simultaneously excluding outlier observations identified through the 

trimming process. As illustrated in Figure 4, the data are partitioned into two primary 

clusters—depicted in green and blue—whereas several observations, identified as outliers 

and shown in red, are excluded from the main clusters due to their deviation from the 

overall data distribution. 
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Figure 4. Trimming GMM Clustering of Rice Productivity 

Cluster 0 (represented in red) comprises observations that were trimmed or identified 

as outliers, including regions such as Depok City, Cimahi City, Bekasi City, and Bogor City. 

Their considerable distance from the centers of the other clusters indicates that these 

regions exhibit markedly different or atypical rice productivity characteristics compared to 

the majority of other areas. This likely reflects specific conditions such as high levels of 

urbanization, extremely limited agricultural land, or an economic focus not centered on rice 

cultivation, resulting in rice productivity levels that fall outside the general pattern. These 

observations are effectively isolated through the trimming process to prevent bias in the 

formation of the main clusters. 

Cluster 2 (depicted in blue), which comprises regions such as Kuningan Regency, 

Majalengka Regency, Indramayu Regency, Subang Regency, and Bandung Regency, 

exhibits a concentration that is somewhat distinct from Cluster 1. The regions in this cluster 

are likely characterized by high or optimal rice productivity. These areas may serve as key 

rice-producing centers, benefiting from favorable conditions such as fertile soil, suitable 

climate, and effective agricultural practices. Their relatively close proximity within the 

cluster indicates similar productivity patterns, suggesting a high degree of efficiency and 

strong production potential. 

Based on Figure 5, clear differences in characteristics are observed among the clusters. 

Cluster 0 (red), previously identified as trimmed observations or outliers, exhibits a very 

wide and generally low range of rice productivity. Although the median productivity is 

50.0 quintals per hectare, the mean is only 37.6 quintals per hectare, indicating the presence 

of several extremely low values that pull the average downward. The notably high standard 

deviation (24.3) further confirms the extreme variability within this cluster, with many data 

points falling below the first quartile and several extreme values even below zero. This 

supports the interpretation that Cluster 0 comprises regions with anomalous or inconsistent 

rice productivity, often substantially lower than those in the other clusters, which explains 

why these observations were trimmed by the GMM model. 
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Cluster 1 (green) exhibits a more consistent distribution of rice productivity 

compared to Cluster 0. With a mean of 52.6 quintals per hectare and a median of 53.9 

quintals per hectare, this cluster represents regions with moderate to relatively high levels 

of rice productivity. The lower standard deviation (10.1) indicates more controlled 

variability within the data, suggesting that regions in this cluster tend to have similar 

productivity patterns that exceed the overall average but do not reach the highest 

productivity levels. 

 

 

Figure 5. Boxplot Distribution of Rice Productivity by Cluster 

 Cluster 2 (blue) stands out with the highest and most consistent rice productivity 

levels among the three groups. With a mean of 59.2 quintals per hectare and a median of 

58.9 quintals per hectare, this cluster represents regions characterized by optimal and stable 

rice productivity. The narrowest boxplot range and the lowest standard deviation (6.39) 

confirm that the regions within this cluster exhibit highly uniform and elevated 

productivity levels. This finding reinforces the assumption that Cluster 2 comprises key 

rice-producing areas that are highly efficient and contribute the most to overall rice 

productivity. 

Overall, this distribution analysis confirms that the trimming Gaussian Mixture 

Model (TGMM) successfully clustered regions based on both the level and consistency of 

their rice productivity, effectively separating outliers (Cluster 0) from the moderate 

productivity group (Cluster 1) and the high productivity group (Cluster 2). This 

classification provides a deeper understanding of the characteristics of each cluster and 

their implications for rice productivity management. 
 

3.3. Cluster Stability 

Following clustering using the Gaussian Mixture Model (GMM) with trimming, 

evaluating cluster stability is essential to ensure consistent results. Stability was assessed 

using the Adjusted Rand Index (ARI) through two internal approaches: bootstrap and 

subsampling. The ARI varies between -1 and 1, with values approaching 1 signifying 

greater clustering stability. The bootstrap test yielded an average ARI of 0.41, indicating 

moderate stability and some variability in cluster assignments due to resampling with 

replacement. In contrast, the subsampling test produced a higher average ARI of 0.545, 

reflecting greater stability and consistency despite sampling without replacement. 
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Overall, the ARI results from both methods suggest that the obtained cluster 

partitions are reasonably stable and reliable for data interpretation, although there remains 

room for improvement, particularly in the bootstrap approach. These findings align with 

Hennig [24], which emphasized that trimming in GMM improves robustness by excluding 

extreme observations, thus enhancing stability under noisy conditions. Furthermore, 

Mouret et al. [32] demonstrated that robust GMM techniques could effectively reconstruct 

satellite-derived time series and detect agricultural anomalies even in contaminated 

datasets, reinforcing the suitability of trimming-based clustering for spatio-temporal 

agricultural analysis. In this study, the application of TGMM to rice productivity data 

confirms its potential to produce stable clusters that remain interpretable and resilient to 

variability, supporting informed decision-making in agricultural policy. 

 
 

4. CONCLUSION 

This study successfully applied the Trimming Gaussian Mixture Model (TGMM) to 

cluster monthly rice productivity time series data in West Java (2018–2023), identifying an 

optimal structure with two main clusters and a trimming proportion of 0.15. The results 

effectively distinguished significant productivity patterns, comprising a high-productivity 

group characterized by low variability, a moderate-stable group, and a distinct outlier 

group marked by low productivity and high fluctuations. The stability of these clusters was 

confirmed through the Adjusted Rand Index (ARI), yielding values of 0.41 (bootstrap) and 

0.545 (subsampling), which demonstrates the consistency and reliability of TGMM as a 

robust method for agricultural time series analysis. While this study was limited to the 

geographic scope of West Java and a specific number of clusters, future research is 

recommended to extend this approach to other regions or commodities, explore a more 

diverse range of cluster numbers, and integrate TGMM with predictive models to provide 

a comprehensive tool for agricultural planning and policy formulation. 
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