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Abstract 

Indicator Kriging (IK) is a spatial interpolation method used to estimate the probability that a variable 

exceeds a specified threshold. This study applies IK to assess the probability of mercury (Hg) 

concentrations exceeding environmental thresholds in river systems across DKI Jakarta. Given the 

skewed and non-normally distributed nature of mercury data, IK was selected due to its robustness in 

handling non-parametric data and its sensitivity to extreme values. Mercury concentration 

measurements were first transformed into binary indicator data based on a predefined threshold. An 

experimental semivariogram was then computed to analyze the spatial dependence of the indicator 

values, followed by the fitting of theoretical semivariogram models (Gaussian, Spherical, and 

Exponential). The best-fitting model was selected using the Leave-One-Out Cross-Validation 

(LOOCV) approach, with the Spherical model yielding the lowest root mean square error (RMSE). The 

final probability map generated through IK reveals five unsampled locations with a probability greater 

than 0.5 of mercury concentration exceeding the threshold: two located along the Ciliwung River and 

three along the Sunter River. These findings highlight critical zones requiring monitoring and support 

the use of IK as an effective geostatistical tool for environmental risk assessment of heavy metal 

contamination in urban river systems. 
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1. INTRODUCTION 

Geostatistics is a statistical discipline that explicitly accounts for the spatial 

dependence and structure inherent in georeferenced data [1]. Geostatistics encompasses 

several methods, one of which is spatial interpolation. Spatial interpolation is a 

technique used to estimate the values of unmeasured locations for a field variable within 

the spatial extent of the sampled area [2]. Kriging and Inverse Distance Weighted (IDW) 

are two of the most commonly used spatial interpolation methods [3]. Each of these 

methods has its own advantages. Inverse Distance Weighted (IDW) can estimate values 

more quickly due to its simpler conceptual framework, whereas the Kriging method 

provides an estimation of error variance, allowing researchers to assess the accuracy of 

the predicted values. 

The Kriging and IDW methods are frequently compared in various studies for 

value estimation due to their similar underlying concepts. Several studies have 

compared these two methods, including research conducted by Sanusi, which 

demonstrated that the Kriging method produced better results than the IDW method in 

estimating rainfall data in South Sulawesi [4]. The Kriging method with a Gaussian 

semivariogram produced a lower RMSE compared to the IDW method. A similar study 

conducted by Luo supports this finding, showing that the Kriging method produced 

more accurate estimations than the IDW method [5]. This study also demonstrated that 

the Kriging method resulted in a lower RMSE compared to the IDW method. Based on 

several studies comparing Kriging and IDW, it can be concluded that the Kriging 

method tends to provide more accurate estimation results than the IDW method. 

Kriging interpolation includes several advanced methods such as Universal 

Kriging, Co-Kriging, Indicator Kriging, and others. Indicator Kriging is one of the 

extensions of Ordinary Kriging, designed for non-stationary data and variables with 

binary or categorical scales. Unlike Ordinary Kriging, Indicator Kriging offers greater 

flexibility, as it can estimate the probability of exceeding a specified threshold for data 

that are non-stationary, non-normally distributed, and contain extreme values. 

Moreover, Indicator Kriging reduces sensitivity to outliers since it utilizes binary-

transformed data [6]. The concept of Indicator Kriging is to estimate the probability of 

exceeding a certain threshold, rather than directly predicting exact values as in Ordinary 

Kriging. Therefore, the estimation results from Indicator Kriging and Ordinary Kriging 

cannot be directly compared. However, considering the flexibility in handling various 

types of data, Indicator Kriging is a suitable solution for estimating exceedance 

probabilities in datasets that are not appropriate for use with the Ordinary Kriging 

method [7].     

In the Indicator Kriging method, the semivariogram is used to determine the 

spatial structure and to calculate the appropriate estimation weights prior to performing 

the analysis [8]. Based on their formation, semivariograms are classified into two types: 

experimental semivariograms and theoretical semivariograms [9]. The experimental 

semivariogram is constructed from observed data and visualized in a graph, while the 

theoretical semivariogram serves as a reference model to fit the experimental 

semivariogram. Several theoretical semivariogram models can be used, with the most 

commonly applied being the Gaussian, Spherical, and Exponential models [10]. These 

theoretical semivariogram models have distinct characteristics, making them suitable for 

different types of data and spatial situations. The selection of an appropriate theoretical 

semivariogram model is crucial, as it can significantly affect the accuracy of the spatial 

analysis results. 
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Water is one of the most essential natural resources for human life and all other 

living organisms [11]. Rivers are one of the surface water resources on Earth. Humans 

typically utilize rivers for various purposes such as water storage, transportation, 

irrigation, fish farming, and recreation. In some regions of Indonesia, rivers are even 

used for daily activities such as bathing and washing [12]. Jakarta is a city where a 

portion of the population still relies on rivers for daily activities such as bathing and 

washing. According to data from Badan Pusat Statistik DKI Jakarta in 2022, 

approximately 25% of residents living along riverbanks continue to use river water for 

their daily needs. This issue warrants serious attention, as a 2023 report by Dinas 

Lingkungan Hidup DKI Jakarta indicated that around 78% of rivers in Jakarta are 

classified as heavily polluted. One of the primary reasons river water is deemed 

unsuitable for bathing and washing is the high concentration of mercury (Hg) found in 

many of these water bodies [13]. The use of water containing high concentrations of 

mercury (Hg) can lead to numerous health problems in humans, including infertility, 

impaired motor function, reduced muscle strength, various skin disorders, and other 

serious conditions [14]. 

This spatial interpolation method was chosen because mercury (Hg) concentration 

data in Jakarta’s rivers are spatial in nature, taking into account the geographic location 

of each observation point. The probability of mercury presence in Jakarta’s rivers can be 

effectively assessed using one of the spatial interpolation techniques, namely Indicator 

Kriging. This method was selected because estimating the probability of mercury 

presence is essential for supporting the Jakarta city government's policymaking, 

particularly in regulating the use of river water for activities such as bathing and 

washing, as well as for guiding further research on mercury contamination in Jakarta’s 

river water. 

 

2. RESEARCH METHOD 

2.1. Method 

In this study, the method to be used is the Kriging spatial interpolation method. 

Kriging is a method developed by D.G. Krige for estimating the values of mineral 

deposits. It shares a similar conceptual framework with the IDW method, as both 

estimate values within a sample area using a linear combination of weights. The key 

assumption of the Kriging method is the presence of spatial correlation among the 

sample data [15].  Ordinary Kriging is the simplest form of Kriging in geostatistics. This 

method assumes stationarity in the spatial data, with an unknown but constant mean 

across the study area [16]. Indicator Kriging serves as a solution to the limitations of 

Ordinary Kriging, which assumes data normality and is not capable of providing 

probability estimates for the presence of a variable at a specific location [17]. In practice, 

Indicator Kriging transforms continuous data into discrete binary values of 0 and 1. 

Although it is often described as a non-linear method, Indicator Kriging is, in fact, a 

linear Kriging technique applied to non-linear, transformed data [17]. 

Before applying Indicator Kriging, the continuous variable data 𝑧(𝑠) is 

transformed into discrete indicator data 𝜔(𝑠) using following formula: 
 

𝜔(𝑠) = {
1, 𝐼𝑓 𝑧(𝑠) ≥ 𝑧𝑐

0                     𝑂𝑡ℎ𝑒𝑟𝑠
 (1) 
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After the data is transformed into a binary (discrete) form, the analysis using the 

Indicator Kriging method can begin. The transformed data can then be estimated using 

the following Indicator Kriging equation 2: 

Ω̂(𝑠0) = ∑ 𝜆𝑖𝜔(𝑠𝑖)

𝑁

𝑖=1

 (2) 

with: 

Ω̂(𝑥0)  =   Estimated indicator value at the target location, representing the probability of  

                 exceeding the specified threshold. 

𝜔(𝑥𝑖) = Indicator value at the i-th sample location, derived from the mercury 

concentration data based on Equation (1). 

𝜆𝑖         =   Kriging weight assigned to the i-th sample, obtained from the indicator  

                 semivariogram model. 

𝑠0         =  Target location to be estimated 

𝑠𝑖          =  Location of the i-th sample point 

N          =  Number of sample points used in the estimation 
 

Since Indicator Kriging is the simplest extension of Ordinary Kriging, the 

weighting process is carried out in the same manner as in Ordinary Kriging. Indicator 

Kriging produces an estimator that is linear, unbiased, and has minimum variance. With 

these three properties, Indicator Kriging is referred to as a Best Linear Unbiased 

Estimator (BLUE) [18]. 

Kriging interpolation is performed only after the experimental semivariogram has 

been properly fitted to a theoretical semivariogram model. The goodness of fit between 

the experimental and theoretical semivariograms can be assessed using cross-validation 

methods [19]. Cross-validation is used to evaluate the assumptions of the experimental 

semivariogram and assess how well it fits the chosen theoretical semivariogram model 

along with its parameters [20]. Rather than simply testing for error, cross-validation 

serves as a more comprehensive evaluation method. Although cross-validation cannot 

confirm the absolute correctness of the chosen theoretical semivariogram model, it can 

indicate which theoretical model best approximates the experimental semivariogram 

that has been constructed [21]. One of the cross-validation methods that can be used to 

assess the fit of a semivariogram model is Leave-One-Out Cross-Validation (LOOCV). 

In this method, out of a total of 𝑛 data points, one data point is removed and used as the 

test data, while the remaining 𝑛 – 1 points are used as training data. This process is 

repeated for each data point. The Root Mean Square Error (RMSE) is then used to 

compare the accuracy of different models. The RMSE is calculated using the following 

formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
{𝑍(𝑠𝑖) − 𝑍̂−𝑖(𝑠𝑖)}

2
 (3) 

When the RMSE score of a model is lower, the model is considered more accurate. 

Conversely, a higher RMSE score indicates lower accuracy of the model. 

 

2.2. Data 

The data used in this study is secondary data on river water quality in DKI Jakarta 

for the year 2022. The dataset includes information collected from 23 rivers, which are, 

Angke, Blencong, Buaran, Cakung, Cengkareng, Cideng, Ciliwung, Cipinang, Grogol, 
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Jati Kramat, Kalibaru Barat, Kalibaru Timur, Krukut, Kamal, Kanal Timur, Mampang, 

Mookervart, Pesanggrahan, Petukangan, Sekertaris, Sepak, Sunter, Tarum Barat.  

A study conducted by Pandiangan stated that the observation points for mercury 

concentration across all rivers in Jakarta need to be increased [13]. Observation points in 

rivers across Jakarta need to be increased because many residents rely on these rivers as 

a source of water for their daily needs. The addition of observation points aims to ensure 

that the water used by nearby communities is safe and does not pose any health risks. 

The spatial distribution of both sampled and unsampled locations is illustrated in the 

following Figure 1. The figure illustrates the spatial distribution of water-quality 

sampling locations across the river network, where blue points represent sampled sites 

and red points denote unsampled locations used for spatial evaluation. Although many 

sampled points are positioned along major and minor waterways, the distribution is not 

uniform, with several river segments lacking direct observations. This uneven spatial 

coverage highlights critical data gaps and reinforces the importance of applying 

geostatistical interpolation techniques such as Indicator Kriging to estimate mercury 

concentrations at unobserved sites. The underlying administrative boundaries and river 

system, depicted with light blue flow lines, provide geomorphological and hydrological 

context for interpreting spatial patterns. Overall, the visualization forms a crucial 

foundation for generating continuous prediction surfaces and assessing potential 

mercury contamination risks across the study domain. All calculations and map 

visualizations in this study were performed using R software. 

        
 

Figure 1. Spatial Visualization of Sampled and Unsampled Points 

 

2.3. Research Procedures 

 The research procedures in this study are as follows: 

1. Preparing mercury concentration data in river water within the Special Capital 

Region of Jakarta (DKI Jakarta). 

2. Defining the threshold value to distinguish specific conditions. 

3. Calculating descriptive statistics. 

4. Transforming the original continuous data into indicator data. 

5. Visualizing the spatial distribution of the indicator data on a map. 
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6. Constructing a semivariogram map to examine directional influence. 

7. Determining the type of semivariogram based on directionality. 

8. Calculating the experimental semivariogram for the indicator data. 

9. Visualizing the experimental semivariogram to identify the maximum range and 

semivariogram shape. 

10. Modeling the theoretical semivariogram based on the processed experimental 

semivariogram. 

11. Validating the semivariogram model using the Leave-One-Out Cross-Validation 

(LOOCV) method. 

12. Calculating the Root Mean Square Error (RMSE) to evaluate model performance. 

13. Estimating indicator values at unsampled locations using the best-fitted 

theoretical semivariogram model. 

14. Calculating the probability that the estimated values at certain locations meet 

specific criteria based on the indicator values. 

15. Creating a spatial probability map that illustrates the likelihood of each location 

meeting the defined criteria. 

 

The research flowchart is presented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Research Flowchart 

 

3. RESULTS AND DISCUSSION 

3.1. Descriptive Statistics 

The descriptive statistics of mercury concentration data from 120 sampled points 

are presented in Table 1 below: 

Table 1. Descriptive Statistics of Mercury Concentration at Sampled Locations 

Mean Variance Std. Deviation Min Max 

0.001898 0.000002 0.001431 0.0004900 0.007000 
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From Table 1, it can be seen that the average mercury concentration at the sampled 

locations is 0.001898. This average indicates that the mercury concentration in Jakarta’s 

rivers exceeds the safety threshold of 0.001. This means that, on average, the mercury 

content at the sampled river points in DKI Jakarta is not suitable for consumption or 

daily use, as it surpasses the permissible limit for mercury in water. Furthermore, the 

variance of the mercury concentration data is 0.000002, with a standard deviation of 

0.001431. This suggests that the mercury concentration data at the sampled river points 

in DKI Jakarta is relatively homogeneous, as indicated by the low variance. In other 

words, the mercury concentrations across these locations show minimal variation and 

tend to be uniform. The highest recorded mercury concentration at the sampled points 

is 0.007 (or 0.7%), found in the Ciliwung River. This can be attributed to the high 

population density along the river and the lack of control over both domestic and 

industrial waste disposal in the surrounding area. Elevated mercury levels in the 

Ciliwung River can have severe health impacts on nearby communities that still rely on 

river water as their primary source for daily needs. On the other hand, the lowest 

mercury concentration, 0.00049 (or 0.049%), was found at several locations: two points 

in the Sekertaris River, one in the Sunter River, two in the Sepak River, two in the Krukut 

River, one in the Angke River, and seven points in the Mookervart River. The lower 

mercury levels in these rivers are likely due to the limited presence of industrial zones 

nearby, making it easier to control both industrial and domestic waste. 

 
(a) 

 
(b) 

Figure 3. Plot of Mercury Concentration (a) Histogram and (b) Boxplot 
 

From Figure 3(a), the histogram exhibits a left-skewed (negatively skewed) 

distribution, indicating that most observations are concentrated at lower mercury 

concentrations while only a small number of samples extend toward higher values. This 

pattern suggests the potential presence of relatively high concentration observations that 

may act as outliers. The boxplot in Figure 3(b) supports this indication, showing several 

upper outliers above the whiskers, which likely reflect localized contamination hotspots. 

The combination of skewness and the presence of outliers demonstrates that the data 

deviate from normality. Consequently, Indicator Kriging represents an appropriate 

geostatistical approach for this dataset, as it is capable of accommodating skewed 

distributions, mitigating bias caused by extreme values, and providing a probability-

based assessment of threshold exceedance. 

 

3.2. Experimental Semivariogram 

The experimental semivariogram is constructed as an initial step in semivariogram 

modeling. The distance used in semivariogram calculations can be weighted by direction 

(anisotropy) or not (isotropy). The following is a directional semivariogram map, which 

is used to determine whether direction has an influence on the semivariance values.  
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Figure 4. Semivariogram Map 

Based on the directional semivariogram plots in Figure 4, there is no evidence of 

directional dependence in the spatial continuity of the data. The semivariance values 

across the examined directions exhibit similar patterns, with no direction consistently 

showing higher or lower semivariance than the others. This uniformity indicates the 

absence of spatial anisotropy. Given that the spatial dependence appears consistent in 

all directions, an isotropic semivariogram model is appropriate for this study. 

Employing an isotropic model ensures that spatial continuity is represented uniformly 

across the study area and aligns with the observed characteristics of the mercury 

concentration data. The results of the semivariogram calculation using the binning 

process, assisted by R-Studio software, are presented in Figure 5.  
 

 
Figure 5. Experimental Semivariogram Plot Results 

 

From the experimental semivariogram plot above, it can be observed that the sill 

is around 0.5, as there is no further increase in the semivariance values beyond this point. 

The range of the experimental semivariogram is approximately 30,000, as this is the 

distance at which the sill is reached. Additionally, the nugget effect begins at around 

0.15. 

 

3.3. Theoretical Semivariogram 

Theoretical semivariograms are fitted to the experimental semivariogram to 

determine which model best represents the observed spatial structure. The models 

considered in this study are the Spherical, Exponential, and Gaussian models. The 
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following presents the fitting of the theoretical semivariogram models to the 

experimental semivariogram. 

 
Figure 6. Fitting of Spherical. Exponential. and Gaussian Theoretical Semivariogram Models 

 

From Figure 6 above, the nugget effect, sill, and range values for each model can be 

obtained as follows. 

Table 2. Theoretical Semivariogram Results 

Models Nugget Effect (𝐂𝟎) 𝐒𝐢𝐥𝐥(𝐂𝟎 + 𝐂) 𝐑𝐚𝐧𝐠𝐞 (𝐀) 

Spherical 0.1 0.28 15000 

Exponential 0.1 0.31 35000 

Gaussian 0.18 0.28 16000 

 

Thus, the resulting models are as follows. 

- Spherical theoretical semivariogram model 

𝛾(ℎ) = {
0.28 [

3ℎ

15000
−

ℎ3

2 × 150003] .  𝑖𝑓 ℎ ≤ 15000

0.28                                             .         𝑖𝑓 ℎ > 15000

 

 

- Exponential theoritical semivariogram model 

𝛾(ℎ) = 0.31 [1 − 𝑒𝑥𝑝 (−
ℎ

35000
)] 

- Gaussian theoritical semivariogram model 

𝛾(ℎ) = 0.28 [1 − 𝑒𝑥𝑝 (−
ℎ2

160002
)] 

Next, to select the best theoretical semivariogram model for estimating the 

probability of mercury concentration exceeding the threshold, cross-validation testing is 

conducted using the Leave-One-Out Cross-Validation (LOOCV) method. 

 

3.4. Cross Validation 

Cross validation using the Leave-One-Out Cross-Validation (LOOCV) method is 

conducted to select the best theoretical semivariogram model. The evaluation metric 

used is the Root Mean Square Error (RMSE). Each model yields its own RMSE value 

represent the difference between the experimental semivariogram and the modeled 
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semivariogram, and the best model is determined by comparing these values—

specifically, the model with the lowest RMSE is selected because a lower RMSE means 

that the chosen model more accurately captures the spatial continuity and variability 

structure of the mercury indicator data. The Table 3 below presents the RMSE values 

obtained from each model. 

Table 3. RMSE Calculation Results for Each Model 

Model RMSE 

Spherical 0.4363955 

Eksponensial 0.4377296 

Gaussian 0.440193 

Based on Table 3, the RMSE calculation results for each theoretical semivariogram 

model can be observed. The lowest RMSE value is found in the Spherical model, which 

is 0.4363955. Therefore, the Spherical theoretical semivariogram model is selected for 

estimating the probability of mercury concentrations exceeding the threshold in rivers 

across DKI Jakarta. 
 

3.5. Interpolation of Unsampled Points 

After the best-fitting theoretical semivariogram model is determined, the 

estimation of the probability that mercury concentrations exceed the threshold at 

unsampled locations is carried out using the Indicator Kriging method with the 

Spherical semivariogram model. From the estimated probabilities, we can further 

analyze which locations are likely to have mercury concentrations above the threshold. 

A location is considered potentially exceeding the threshold if the probability is greater 

than or equal to 0.5. The results of the probability estimation for unsampled locations, 

based on the original dataset and computed using R-Studio software, are presented in 

Table 4 below. 

Table 4. Estimated Probability of Mercury Exceeding the Threshold at Unsampled Locations 

River Latitude Longitude Probability Assumption 

Ciliwung -6.1982 106.81 0.340001 Not exceeding 

Ciliwung -6.1977 106.81 0.341632 Not exceeding 

Ciliwung -6.1927 106.8069 0.335245 Not exceeding 

Ciliwung -6.1735 106.8049 0.384503 Not exceeding 

Ciliwung -6.1407 106.8161 0.690999 Exceeding 

Ciliwung -6.1489 106.8318 0.648132 Exceeding 

Angke -6.2654 106.7712 0.265441 Not exceeding 

Sunter -6.2881 106.8706 0.936789 Exceeding 

Sunter -6.1909 106.9043 0.425379 Not exceeding 

Sunter -6.1631 106.8771 0.537241 Exceeding 

Sunter -6.1629 106.8787 0.539342 Exceeding 

Cakung -6.1629 106.7989 0.383186 Not exceeding 
 

The following is a spatial distribution map of the estimated probability of mercury 

exceeding the threshold at unsampled locations. 
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Figure 7. Estimated Probability of Mercury Exceeding the Threshold at Unsampled Locations 

 

The estimation results at unsampled points using the Indicator Kriging method 

show that there are five unsampled locations with a high probability of having mercury 

concentrations exceeding the threshold—two points along the Ciliwung River and three 

along the Sunter River. This finding should be of particular concern to relevant 

authorities to minimize the negative impacts of river water containing mercury above 

safe levels. In Figure 7, sampled data points are represented by circles while interpolated 

points are represented by triangles. The spatial distribution of unsampled points 

visualized in Figure 7 also shows that the estimation aligns with the conditions of nearby 

sampled points. This indicates that the selected theoretical semivariogram model 

accurately represents the spatial trend of the data. making the estimations at unsampled 

locations considered reliable. Furthermore, Figure 7 reveals spatial continuity in the 

mercury indicator along the river flow. This suggests that the spread of mercury may be 

influenced by the flow of the river. Therefore, relevant institutions are encouraged to 

consider further analysis on the dynamics and sources of mercury pollution to develop 

more effective mitigation strategies. 
 

 

4. CONCLUSION 

The analysis concludes that the Spherical semivariogram model provides the best 

fit for estimating the probability of mercury concentrations exceeding the environmental 

threshold in DKI Jakarta rivers, yielding the lowest RMSE value (0.4364) among the 

models tested. Indicator Kriging successfully identified five unsampled locations, two 

along the Ciliwung River and three along the Sunter River, indicating areas of potential 

environmental concern. Statistically, the findings underscore the importance of selecting 

an appropriate semivariogram model and increasing the density of sampling points to 

reduce interpolation uncertainty. It is recommended that future studies explore a wider 

range of semivariogram models, including more flexible structures, to enhance model 

robustness. Moreover, increasing the number and spatial coverage of observation points, 

particularly in under-sampled areas, is essential for improving estimation accuracy. 

Environmental authorities are also encouraged to conduct regular monitoring and 

implement early warning systems in high-risk areas. Lastly, incorporating temporal 
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analysis in future research could provide valuable insights into seasonal patterns and 

long-term trends of mercury pollution. 

 
Acknowledgments  

None  

 

Funding Information  

This work was supported by the Statistics Study Program, Universitas Islam Bandung, which 

provided funding for the publication of this research. 

 

Author Contributions Statement  

Mufdhil Afta Zhahirulhaq: Conceptualization, Software Implementation, Formal Analysis, 

Investigation, Data Curation, Original Draft Preparation, And Visualization. Dwi Agustin 

Nuriani Sirodj: Conceptualization, Methodology Design, Validation, Supervision, Review and 

Editing of The Manuscript, and Funding Acquisition. 

 

Conflict of Interest Statement  

The authors declare no conflict of interest. 

 

Informed Consent  

None 

 

Ethical Approval  

None 

 

Data Availability  

The data that support the findings of this study are secondary data on river water quality in the 

Special Capital Region of Jakarta (DKI Jakarta), obtained from the Satu Data Jakarta portal for 

the year 2022. The dataset is openly available at the following link: 

https://satudata.jakarta.go.id/open-data/detail?kategori=dataset&page_url=data-kualitas-air-

sungai&data_no=1. 

 
 

REFERENCES 

 
[1] M. S. Rodrigues. A. Castrignanò. A. Belmonte. K. A. da Silva. and B. F. da Trindade Lessa. 

“Geostatistics and its potential in Agriculture 4.0.” Revista Ciencia Agronomica. vol. 51. no. 

5. 2020. doi: 10.5935/1806-6690.20200095. 

[2] W. M. Niklah. I. A. G. B. Madrini. and I. M. A. S. Wijaya. “Keragaman Unsur Hara 

Nitrogen pada Lahan Sawah di Desa Maduran. Kecamatan Maduran. Kabupaten 

Lamongan Jawa Timur.” Jurnal Ilmiah Teknologi Pertanian Agrotechno. vol. 4. no. 1. 2019. 

doi: 10.24843/jitpa.2019.v04.i01.p03. 

[3] A. S. Msengwa. “Geostatistics for Environmental Scientists.” Journal of The Geographical 

Association of Tanzania. vol. 41. no. 1. 2021. doi: 10.56279/jgat.v41i1.13. 

[4] W. Sanusi. S. Sidjara. S. Patahuddin. and M. Danial. “A Comparison of Spatial 

Interpolation Methods for Regionalizing Maximum Daily Rainfall Data in South Sulawesi. 

Indonesia.” ITM Web of Conferences. vol. 58. 2024. doi: 10.1051/itmconf/20245804003. 

[5] X. Luo. Y. Xu. and Y. Shi. “Comparison of interpolation methods for spatial precipitation 

under diverse orographic effects.” in Proceedings - 2011 19th International Conference on 

Geoinformatics. Geoinformatics 2011. 2011. doi: 10.1109/GeoInformatics.2011.5980666. 

[6] N. W. Park. P. C. Kyriakidis. and S. Y. Hong. “Spatial estimation of classification accuracy 

using indicator kriging with an image-derived ambiguity index.” Remote Sens (Basel). vol. 

8. no. 4. 2016. doi: 10.3390/rs8040320. 

https://satudata.jakarta.go.id/open-data/detail?kategori=dataset&page_url=data-kualitas-air-sungai&data_no=1
https://satudata.jakarta.go.id/open-data/detail?kategori=dataset&page_url=data-kualitas-air-sungai&data_no=1


Zhahirulhaq, et al. | Spatial Interpolation of the Probability … 

  

 

407 

[7] A. G. Journel. “Nonparametric estimation of spatial distributions.” Journal of the 

International Association for Mathematical Geology. vol. 15. no. 3. 1983. doi: 

10.1007/BF01031292. 

[8] T. B. WKM. D. Chaerani. and B. N. Ruchjana. “Eksplorasi Software R Untuk Fitting 

Semivariogram Spherical Menggunakan Pemrograman Linear dan Uji Analisis 

Sensitivitas.” Jurnal Matematika Integratif. vol. 12. no. 2. 2017. doi: 

10.24198/jmi.v12.n2.11918.75-82. 

[9] A. Hilal et al.. “Geostatistical modeling—a tool for predictive soil mapping.” in Remote 

Sensing in Precision Agriculture: Transforming Scientific Advancement into Innovation. 

Elsevier. 2023. pp. 389–418. doi: 10.1016/B978-0-323-91068-2.00011-4. 

[10]  a D. Hartkamp. K. De Beurs. A. Stein. and J. W. White. “Interpolation Techniques for 

Climate Variables Interpolation.” Soil Sci. 1999. 

[11] D. Hendrawan. “Kualitas Air Sungai dan Situ di DKI Jakarta.” MAKARA of Technology 

Series. vol. 9. no. 1. 2010. doi: 10.7454/mst.v9i1.315. 

[12] S. Sukmawati. M. Anwar. and P. Paharuddin. “Perilaku Masyarakat dalam 

Memanfaatkan Air Sungai Sebagai Air MCK.” Jurnal Keperawatan Profesional (KEPO). vol. 

3. no. 1. 2022. doi: 10.36590/kepo.v3i1.299. 

[13] Y. S. Pandiangan. S. Zulaikha. W. Warto. and S. Yudo. “Status Kualitas Air Sungai 

Ciliwung Berbasis Pemantauan Online di Wilayah DKI Jakarta Ditinjau dari Parameter 

Suhu. pH. TDS. DO. DHL. dan Kekeruhan.” Jurnal Teknologi Lingkungan. vol. 24. no. 2. 

2023. doi: 10.55981/jtl.2023.1003. 

[14] F. Zahir. S. J. Rizwi. S. K. Haq. and R. H. Khan. “Low dose mercury toxicity and human 

health.” Environ Toxicol Pharmacol. vol. 20. no. 2. 2005. doi: 10.1016/j.etap.2005.03.007. 

[15] B. S. Hadi. “Metode Interpolasi Spasial Dalam Studi Geografi (Ulasan Singkat dan Contoh 

Aplikasinya).” Geomedia: Majalah Ilmiah dan Informasi Kegeografian. vol. 11. no. 2. 2015. doi: 

10.21831/gm.v11i2.3454. 

[16] T. G. Pham. M. Kappas. C. Van Huynh. and L. H. K. Nguyen. “Application of ordinary 

kriging and regression kriging method for soil properties mapping in hilly region of 

central Vietnam.” ISPRS Int J Geoinf. vol. 8. no. 3. 2019. doi: 10.3390/ijgi8030147. 

[17] R. Webster and M. A. Oliver. Geostatistics for Environmental Scientists: Second Edition. 2008. 

doi: 10.1002/9780470517277. 

[18] J. A. Pinto et al.. “Kriging method application and traffic behavior profiles from local radar 

network database: A proposal to support traffic solutions and air pollution control 

strategies.” Sustain Cities Soc. vol. 56. 2020. doi: 10.1016/j.scs.2020.102062. 

[19] R. Rosilawati. “Perbandingan Analisis Metode Interpolasi Spasial Ordinary Kriging dan 

Inverse Distance Weighted (IDW) Pada Penentuan Bahan Organik Tanah di Kabupaten 

Sampang.” 2011. 

[20] H. Wackernagel. “Multivariate geostatistics: an introduction with applications.” 

Multivariate geostatistics: an introduction with applications. 1995. doi: 10.2307/2291758. 

[21] N. Cressie. “The origins of kriging.” Math Geol. vol. 22. no. 3. 1990. doi: 

10.1007/BF00889887. 

  

 

 

 

 

 

 



Zhahirulhaq, et al. | Spatial Interpolation of the Probability … 

  

 

408 

 


