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Abstract

Indicator Kriging (1K) is a spatial interpolation method used to estimate the probability that a variable
exceeds a specified threshold. This study applies IK to assess the probability of mercury (Hg)
concentrations exceeding environmental thresholds in river systems across DKI Jakarta. Given the
skewed and non-normally distributed nature of mercury data, IK was selected due to its robustness in
handling non-parametric data and its sensitivity to extreme values. Mercury concentration
measurements were first transformed into binary indicator data based on a predefined threshold. An
experimental semivariogram was then computed to analyze the spatial dependence of the indicator
values, followed by the fitting of theoretical semivariogram models (Gaussian, Spherical, and
Exponential). The best-fitting model was selected using the Leave-One-Out Cross-Validation
(LOOCYV) approach, with the Spherical model yielding the lowest root mean square error (RMSE). The
final probability map generated through IK reveals five unsampled locations with a probability greater
than 0.5 of mercury concentration exceeding the threshold: two located along the Ciliwung River and
three along the Sunter River. These findings highlight critical zones requiring monitoring and support
the use of IK as an effective geostatistical tool for environmental risk assessment of heavy metal
contamination in urban river systems.
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1. INTRODUCTION

Geostatistics is a statistical discipline that explicitly accounts for the spatial
dependence and structure inherent in georeferenced data [1]. Geostatistics encompasses
several methods, one of which is spatial interpolation. Spatial interpolation is a
technique used to estimate the values of unmeasured locations for a field variable within
the spatial extent of the sampled area [2]. Kriging and Inverse Distance Weighted (IDW)
are two of the most commonly used spatial interpolation methods [3]. Each of these
methods has its own advantages. Inverse Distance Weighted (IDW) can estimate values
more quickly due to its simpler conceptual framework, whereas the Kriging method
provides an estimation of error variance, allowing researchers to assess the accuracy of
the predicted values.

The Kriging and IDW methods are frequently compared in various studies for
value estimation due to their similar underlying concepts. Several studies have
compared these two methods, including research conducted by Sanusi, which
demonstrated that the Kriging method produced better results than the IDW method in
estimating rainfall data in South Sulawesi [4]. The Kriging method with a Gaussian
semivariogram produced a lower RMSE compared to the IDW method. A similar study
conducted by Luo supports this finding, showing that the Kriging method produced
more accurate estimations than the IDW method [5]. This study also demonstrated that
the Kriging method resulted in a lower RMSE compared to the IDW method. Based on
several studies comparing Kriging and IDW, it can be concluded that the Kriging
method tends to provide more accurate estimation results than the IDW method.

Kriging interpolation includes several advanced methods such as Universal
Kriging, Co-Kriging, Indicator Kriging, and others. Indicator Kriging is one of the
extensions of Ordinary Kriging, designed for non-stationary data and variables with
binary or categorical scales. Unlike Ordinary Kriging, Indicator Kriging offers greater
tlexibility, as it can estimate the probability of exceeding a specified threshold for data
that are non-stationary, non-normally distributed, and contain extreme values.
Moreover, Indicator Kriging reduces sensitivity to outliers since it utilizes binary-
transformed data [6]. The concept of Indicator Kriging is to estimate the probability of
exceeding a certain threshold, rather than directly predicting exact values as in Ordinary
Kriging. Therefore, the estimation results from Indicator Kriging and Ordinary Kriging
cannot be directly compared. However, considering the flexibility in handling various
types of data, Indicator Kriging is a suitable solution for estimating exceedance
probabilities in datasets that are not appropriate for use with the Ordinary Kriging
method [7].

In the Indicator Kriging method, the semivariogram is used to determine the
spatial structure and to calculate the appropriate estimation weights prior to performing
the analysis [8]. Based on their formation, semivariograms are classified into two types:
experimental semivariograms and theoretical semivariograms [9]. The experimental
semivariogram is constructed from observed data and visualized in a graph, while the
theoretical semivariogram serves as a reference model to fit the experimental
semivariogram. Several theoretical semivariogram models can be used, with the most
commonly applied being the Gaussian, Spherical, and Exponential models [10]. These
theoretical semivariogram models have distinct characteristics, making them suitable for
different types of data and spatial situations. The selection of an appropriate theoretical
semivariogram model is crucial, as it can significantly affect the accuracy of the spatial
analysis results.
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Water is one of the most essential natural resources for human life and all other
living organisms [11]. Rivers are one of the surface water resources on Earth. Humans
typically utilize rivers for various purposes such as water storage, transportation,
irrigation, fish farming, and recreation. In some regions of Indonesia, rivers are even
used for daily activities such as bathing and washing [12]. Jakarta is a city where a
portion of the population still relies on rivers for daily activities such as bathing and
washing. According to data from Badan Pusat Statistik DKI Jakarta in 2022,
approximately 25% of residents living along riverbanks continue to use river water for
their daily needs. This issue warrants serious attention, as a 2023 report by Dinas
Lingkungan Hidup DKI Jakarta indicated that around 78% of rivers in Jakarta are
classified as heavily polluted. One of the primary reasons river water is deemed
unsuitable for bathing and washing is the high concentration of mercury (Hg) found in
many of these water bodies [13]. The use of water containing high concentrations of
mercury (Hg) can lead to numerous health problems in humans, including infertility,
impaired motor function, reduced muscle strength, various skin disorders, and other
serious conditions [14].

This spatial interpolation method was chosen because mercury (Hg) concentration
data in Jakarta’s rivers are spatial in nature, taking into account the geographic location
of each observation point. The probability of mercury presence in Jakarta’s rivers can be
effectively assessed using one of the spatial interpolation techniques, namely Indicator
Kriging. This method was selected because estimating the probability of mercury
presence is essential for supporting the Jakarta city government's policymaking,
particularly in regulating the use of river water for activities such as bathing and
washing, as well as for guiding further research on mercury contamination in Jakarta’s
river water.

2. RESEARCH METHOD
2.1. Method

In this study, the method to be used is the Kriging spatial interpolation method.
Kriging is a method developed by D.G. Krige for estimating the values of mineral
deposits. It shares a similar conceptual framework with the IDW method, as both
estimate values within a sample area using a linear combination of weights. The key
assumption of the Kriging method is the presence of spatial correlation among the
sample data [15]. Ordinary Kriging is the simplest form of Kriging in geostatistics. This
method assumes stationarity in the spatial data, with an unknown but constant mean
across the study area [16]. Indicator Kriging serves as a solution to the limitations of
Ordinary Kriging, which assumes data normality and is not capable of providing
probability estimates for the presence of a variable at a specific location [17]. In practice,
Indicator Kriging transforms continuous data into discrete binary values of 0 and 1.
Although it is often described as a non-linear method, Indicator Kriging is, in fact, a
linear Kriging technique applied to non-linear, transformed data [17].

Before applying Indicator Kriging, the continuous variable data z(s) is
transformed into discrete indicator data w(s) using following formula:

1, If z(s) = z,

w(s) = {0 Others

)
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After the data is transformed into a binary (discrete) form, the analysis using the
Indicator Kriging method can begin. The transformed data can then be estimated using
the following Indicator Kriging equation 2:

N
0s0) = ) Aio(sy) @
i=1

with:

Q(xy) = Estimated indicator value at the target location, representing the probability of
exceeding the specified threshold.

w(x;) = Indicator value at the i-th sample location, derived from the mercury
concentration data based on Equation (1).

Ai = Kriging weight assigned to the i-th sample, obtained from the indicator
semivariogram model.

So = Target location to be estimated
S = Location of the i-th sample point
N = Number of sample points used in the estimation

Since Indicator Kriging is the simplest extension of Ordinary Kriging, the
weighting process is carried out in the same manner as in Ordinary Kriging. Indicator
Kriging produces an estimator that is linear, unbiased, and has minimum variance. With
these three properties, Indicator Kriging is referred to as a Best Linear Unbiased
Estimator (BLUE) [18].

Kriging interpolation is performed only after the experimental semivariogram has
been properly fitted to a theoretical semivariogram model. The goodness of fit between
the experimental and theoretical semivariograms can be assessed using cross-validation
methods [19]. Cross-validation is used to evaluate the assumptions of the experimental
semivariogram and assess how well it fits the chosen theoretical semivariogram model
along with its parameters [20]. Rather than simply testing for error, cross-validation
serves as a more comprehensive evaluation method. Although cross-validation cannot
confirm the absolute correctness of the chosen theoretical semivariogram model, it can
indicate which theoretical model best approximates the experimental semivariogram
that has been constructed [21]. One of the cross-validation methods that can be used to
assess the fit of a semivariogram model is Leave-One-Out Cross-Validation (LOOCV).
In this method, out of a total of n data points, one data point is removed and used as the
test data, while the remaining n — 1 points are used as training data. This process is
repeated for each data point. The Root Mean Square Error (RMSE) is then used to
compare the accuracy of different models. The RMSE is calculated using the following
formula:

RMSE = \/%{Z(si) —Z2.(sD) @3)

When the RMSE score of a model is lower, the model is considered more accurate.
Conversely, a higher RMSE score indicates lower accuracy of the model.

2.2. Data

The data used in this study is secondary data on river water quality in DKI Jakarta
for the year 2022. The dataset includes information collected from 23 rivers, which are,
Angke, Blencong, Buaran, Cakung, Cengkareng, Cideng, Ciliwung, Cipinang, Grogol,
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Jati Kramat, Kalibaru Barat, Kalibaru Timur, Krukut, Kamal, Kanal Timur, Mampang,
Mookervart, Pesanggrahan, Petukangan, Sekertaris, Sepak, Sunter, Tarum Barat.

A study conducted by Pandiangan stated that the observation points for mercury
concentration across all rivers in Jakarta need to be increased [13]. Observation points in
rivers across Jakarta need to be increased because many residents rely on these rivers as
a source of water for their daily needs. The addition of observation points aims to ensure
that the water used by nearby communities is safe and does not pose any health risks.
The spatial distribution of both sampled and unsampled locations is illustrated in the
following Figure 1. The figure illustrates the spatial distribution of water-quality
sampling locations across the river network, where blue points represent sampled sites
and red points denote unsampled locations used for spatial evaluation. Although many
sampled points are positioned along major and minor waterways, the distribution is not
uniform, with several river segments lacking direct observations. This uneven spatial
coverage highlights critical data gaps and reinforces the importance of applying
geostatistical interpolation techniques such as Indicator Kriging to estimate mercury
concentrations at unobserved sites. The underlying administrative boundaries and river
system, depicted with light blue flow lines, provide geomorphological and hydrological
context for interpreting spatial patterns. Overall, the visualization forms a crucial
foundation for generating continuous prediction surfaces and assessing potential
mercury contamination risks across the study domain. All calculations and map
visualizations in this study were performed using R software.
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6.25°S ¢ Unsampled

6.30°S

6.35°S
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Figure 1. Spatial Visualization of Sampled and Unsampled Points

2.3.  Research Procedures

The research procedures in this study are as follows:

1. Preparing mercury concentration data in river water within the Special Capital

Region of Jakarta (DKI Jakarta).
Defining the threshold value to distinguish specific conditions.
Calculating descriptive statistics.
Transforming the original continuous data into indicator data.
Visualizing the spatial distribution of the indicator data on a map.

U RN
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Constructing a semivariogram map to examine directional influence.
Determining the type of semivariogram based on directionality.

Calculating the experimental semivariogram for the indicator data.

Visualizing the experimental semivariogram to identify the maximum range and
semivariogram shape.

10. Modeling the theoretical semivariogram based on the processed experimental

L X N

semivariogram.

11. Validating the semivariogram model using the Leave-One-Out Cross-Validation
(LOOCV) method.

12. Calculating the Root Mean Square Error (RMSE) to evaluate model performance.

13. Estimating indicator values at unsampled locations using the best-fitted
theoretical semivariogram model.

14. Calculating the probability that the estimated values at certain locations meet
specific criteria based on the indicator values.

15. Creating a spatial probability map that illustrates the likelihood of each location
meeting the defined criteria.

The research flowchart is presented in Figure 2.

. . — Data
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Companing the Universal Kriging
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Figure 2. Research Flowchart

3. RESULTS AND DISCUSSION
3.1.  Descriptive Statistics

The descriptive statistics of mercury concentration data from 120 sampled points
are presented in Table 1 below:

Table 1. Descriptive Statistics of Mercury Concentration at Sampled Locations

Mean  Variance Std. Deviation Min Max

0.001898  0.000002 0.001431 0.0004900 0.007000
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From Table 1, it can be seen that the average mercury concentration at the sampled
locations is 0.001898. This average indicates that the mercury concentration in Jakarta’s
rivers exceeds the safety threshold of 0.001. This means that, on average, the mercury
content at the sampled river points in DKI Jakarta is not suitable for consumption or
daily use, as it surpasses the permissible limit for mercury in water. Furthermore, the
variance of the mercury concentration data is 0.000002, with a standard deviation of
0.001431. This suggests that the mercury concentration data at the sampled river points
in DKI Jakarta is relatively homogeneous, as indicated by the low variance. In other
words, the mercury concentrations across these locations show minimal variation and
tend to be uniform. The highest recorded mercury concentration at the sampled points
is 0.007 (or 0.7%), found in the Ciliwung River. This can be attributed to the high
population density along the river and the lack of control over both domestic and
industrial waste disposal in the surrounding area. Elevated mercury levels in the
Ciliwung River can have severe health impacts on nearby communities that still rely on
river water as their primary source for daily needs. On the other hand, the lowest
mercury concentration, 0.00049 (or 0.049%), was found at several locations: two points
in the Sekertaris River, one in the Sunter River, two in the Sepak River, two in the Krukut
River, one in the Angke River, and seven points in the Mookervart River. The lower
mercury levels in these rivers are likely due to the limited presence of industrial zones
nearby, making it easier to control both industrial and domestic waste.
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Figure 3. Plot of Mercury Concentration (a) Histogram and (b) Boxplot
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From Figure 3(a), the histogram exhibits a left-skewed (negatively skewed)
distribution, indicating that most observations are concentrated at lower mercury
concentrations while only a small number of samples extend toward higher values. This
pattern suggests the potential presence of relatively high concentration observations that
may act as outliers. The boxplot in Figure 3(b) supports this indication, showing several
upper outliers above the whiskers, which likely reflect localized contamination hotspots.
The combination of skewness and the presence of outliers demonstrates that the data
deviate from normality. Consequently, Indicator Kriging represents an appropriate
geostatistical approach for this dataset, as it is capable of accommodating skewed
distributions, mitigating bias caused by extreme values, and providing a probability-
based assessment of threshold exceedance.

3.2. Experimental Semivariogram

The experimental semivariogram is constructed as an initial step in semivariogram
modeling. The distance used in semivariogram calculations can be weighted by direction
(anisotropy) or not (isotropy). The following is a directional semivariogram map, which
is used to determine whether direction has an influence on the semivariance values.
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Figure 4. Semivariogram Map

Based on the directional semivariogram plots in Figure 4, there is no evidence of
directional dependence in the spatial continuity of the data. The semivariance values
across the examined directions exhibit similar patterns, with no direction consistently
showing higher or lower semivariance than the others. This uniformity indicates the
absence of spatial anisotropy. Given that the spatial dependence appears consistent in
all directions, an isotropic semivariogram model is appropriate for this study.
Employing an isotropic model ensures that spatial continuity is represented uniformly
across the study area and aligns with the observed characteristics of the mercury
concentration data. The results of the semivariogram calculation using the binning
process, assisted by R-Studio software, are presented in Figure 5.
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Figure 5. Experimental Semivariogram Plot Results

From the experimental semivariogram plot above, it can be observed that the sill
is around 0.5, as there is no further increase in the semivariance values beyond this point.
The range of the experimental semivariogram is approximately 30,000, as this is the
distance at which the sill is reached. Additionally, the nugget effect begins at around
0.15.

3.3. Theoretical Semivariogram

Theoretical semivariograms are fitted to the experimental semivariogram to
determine which model best represents the observed spatial structure. The models
considered in this study are the Spherical, Exponential, and Gaussian models. The
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following presents the fitting of the theoretical semivariogram models to the
experimental semivariogram.
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Figure 6. Fitting of Spherical. Exponential. and Gaussian Theoretical Semivariogram Models

From Figure 6 above, the nugget effect, sill, and range values for each model can be
obtained as follows.

Table 2. Theoretical Semivariogram Results

Models Nugget Effect (Cy) Sill(Co + C) Range (A)

Spherical 0.1 0.28 15000
Exponential 0.1 0.31 35000
Gaussian 0.18 0.28 16000

Thus, the resulting models are as follows.
- Spherical theoretical semivariogram model
3h h3
15000 2 X 150003
0.28 . if h > 15000

]. if h < 15000

- Exponential theoritical semivariogram model

y(h) = 0.31 [1 —exp (— %)}

- Gaussian theoritical semivariogram model
h2
=0.28(1— -
y(h)=0 8[ exp( 160002>]
Next, to select the best theoretical semivariogram model for estimating the
probability of mercury concentration exceeding the threshold, cross-validation testing is
conducted using the Leave-One-Out Cross-Validation (LOOCV) method.

3.4. Cross Validation

Cross validation using the Leave-One-Out Cross-Validation (LOOCV) method is
conducted to select the best theoretical semivariogram model. The evaluation metric
used is the Root Mean Square Error (RMSE). Each model yields its own RMSE value
represent the difference between the experimental semivariogram and the modeled
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semivariogram, and the best model is determined by comparing these values—
specifically, the model with the lowest RMSE is selected because a lower RMSE means
that the chosen model more accurately captures the spatial continuity and variability
structure of the mercury indicator data. The Table 3 below presents the RMSE values
obtained from each model.

Table 3. RMSE Calculation Results for Each Model

Model RMSE
Spherical 0.4363955
Eksponensial 0.4377296
Gaussian 0.440193

Based on Table 3, the RMSE calculation results for each theoretical semivariogram
model can be observed. The lowest RMSE value is found in the Spherical model, which
is 0.4363955. Therefore, the Spherical theoretical semivariogram model is selected for
estimating the probability of mercury concentrations exceeding the threshold in rivers
across DKI Jakarta.

3.5. Interpolation of Unsampled Points

After the best-fitting theoretical semivariogram model is determined, the
estimation of the probability that mercury concentrations exceed the threshold at
unsampled locations is carried out using the Indicator Kriging method with the
Spherical semivariogram model. From the estimated probabilities, we can further
analyze which locations are likely to have mercury concentrations above the threshold.
A location is considered potentially exceeding the threshold if the probability is greater
than or equal to 0.5. The results of the probability estimation for unsampled locations,
based on the original dataset and computed using R-Studio software, are presented in
Table 4 below.

Table 4. Estimated Probability of Mercury Exceeding the Threshold at Unsampled Locations

River Latitude Longitude Probability Assumption
Ciliwung  -6.1982 106.81 0.340001  Not exceeding
Ciliwung -6.1977 106.81 0.341632  Not exceeding
Ciliwung -6.1927  106.8069 0.335245  Not exceeding
Ciliwung -6.1735 106.8049 0.384503  Not exceeding
Ciliwung -6.1407  106.8161 0.690999 Exceeding
Ciliwung -6.1489  106.8318 0.648132 Exceeding

Angke -6.2654 106.7712 0.265441  Not exceeding

Sunter -6.2881 106.8706 0.936789 Exceeding

Sunter -6.1909 106.9043 0.425379  Not exceeding

Sunter -6.1631 106.8771 0.537241 Exceeding

Sunter -6.1629 106.8787 0.539342 Exceeding

Cakung  -6.1629  106.7989 0.383186  Not exceeding

The following is a spatial distribution map of the estimated probability of mercury
exceeding the threshold at unsampled locations.
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Figure 7. Estimated Probability of Mercury Exceeding the Threshold at Unsampled Locations

The estimation results at unsampled points using the Indicator Kriging method
show that there are five unsampled locations with a high probability of having mercury
concentrations exceeding the threshold —two points along the Ciliwung River and three
along the Sunter River. This finding should be of particular concern to relevant
authorities to minimize the negative impacts of river water containing mercury above
safe levels. In Figure 7, sampled data points are represented by circles while interpolated
points are represented by triangles. The spatial distribution of unsampled points
visualized in Figure 7 also shows that the estimation aligns with the conditions of nearby
sampled points. This indicates that the selected theoretical semivariogram model
accurately represents the spatial trend of the data. making the estimations at unsampled
locations considered reliable. Furthermore, Figure 7 reveals spatial continuity in the
mercury indicator along the river flow. This suggests that the spread of mercury may be
influenced by the flow of the river. Therefore, relevant institutions are encouraged to
consider further analysis on the dynamics and sources of mercury pollution to develop
more effective mitigation strategies.

4. CONCLUSION

The analysis concludes that the Spherical semivariogram model provides the best
fit for estimating the probability of mercury concentrations exceeding the environmental
threshold in DKI Jakarta rivers, yielding the lowest RMSE value (0.4364) among the
models tested. Indicator Kriging successfully identified five unsampled locations, two
along the Ciliwung River and three along the Sunter River, indicating areas of potential
environmental concern. Statistically, the findings underscore the importance of selecting
an appropriate semivariogram model and increasing the density of sampling points to
reduce interpolation uncertainty. It is recommended that future studies explore a wider
range of semivariogram models, including more flexible structures, to enhance model
robustness. Moreover, increasing the number and spatial coverage of observation points,
particularly in under-sampled areas, is essential for improving estimation accuracy.
Environmental authorities are also encouraged to conduct regular monitoring and
implement early warning systems in high-risk areas. Lastly, incorporating temporal
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analysis in future research could provide valuable insights into seasonal patterns and
long-term trends of mercury pollution.
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