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Abstract 

This study investigates the operational impact of four key infrastructure systems (HVAC, lighting, 

electrical equipment, and internal transport) on staff performance at Terminal 3 of Soekarno-Hatta 

International Airport. Despite consuming 86.59% of the terminal’s energy, HVAC systems show no 

statistically significant contribution to staff performance. In contrast, lighting, electrical equipment, 

and internal transport significantly improve staff productivity, with internal transport having the 

highest influence. A structural equation modeling approach using PLS-SEM and Importance-

Performance Map Analysis (IPMA) was employed to analyze data from 400 respondents. The model 

yielded strong explanatory (R² = 0.613) and predictive relevance (Q² = 0.505), validating its 

robustness. Findings show that although HVAC systems consume the most energy, this does not 

correlate with their impact on staff performance. Instead, internal transport, electrical equipment, and 

lighting are considered important factors influencing staff performance.  
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1. INTRODUCTION 

Airports are among the most complex public infrastructures in terms of both spatial 

design and energy consumption. As global air traffic intensifies, airport terminals—

especially those handling international passengers—are under increasing pressure to 

deliver high-quality services while managing their operational efficiency. One major 

operational cost component in airport terminals is energy, with HVAC (Heating, 

Ventilation, and Air Conditioning) systems typically being the largest energy consumers. 

Studies such as [1], [2] reported that HVAC systems in airport terminals contribute to 

more than 70% of total annual energy use. In Terminal 3 of Soekarno-Hatta International 

Airport, HVAC accounts for 86.59% of energy consumption, far exceeding that of lighting 

(9.33%), electrical equipment (2.41%), and internal transport (1.76%). 

Despite the sheer magnitude of HVAC-related energy usage, whether this 

consumption translates into operational effectiveness remains unclear. The effectiveness 

of such energy expenditure should ideally be reflected in improved staff performance, 

user satisfaction, or reduced service disruptions. However, preliminary observations and 

complaint reports suggest a misalignment: high HVAC energy use does not always 

coincide with enhanced human productivity or positive user experience. [3] notes 

consistent user dissatisfaction regarding thermal conditions in Terminal 3, raising doubts 

about the efficiency-performance correlation. 

The traditional approach to facility planning in airports has heavily emphasized 

energy-intensive solutions under the assumption that physical comfort leads directly to 

operational effectiveness. Yet, recent literature suggests this relationship may be more 

nuanced. [4], [5] show that air quality and thermal comfort do affect staff behavior, but 

only under specific operational contexts. Similarly, [6], [7] emphasize lighting and 

ergonomic design as more proximate influences of both staff and passenger experience. 

This raises a critical management question: are resources (especially energy) being 

allocated optimally in terminals? If HVAC systems consume the largest share of energy 

but do not significantly influence key performance outcomes such as staff efficiency or 

passenger satisfaction, then facility managers need to rethink infrastructure prioritization. 

Transport systems like escalators and elevators, or digital tools such as check-in kiosks 

and electronic signage, may deliver more value per unit of energy consumed. A 

comprehensive study comparing the impact of all key operational systems on staff 

performance is therefore essential to refine future infrastructure strategies. 

HVAC systems are critical infrastructure elements in airport terminals, designed to 

maintain thermal comfort, regulate humidity, and ensure acceptable indoor air quality 

across vast interior spaces. Given the scale and continuous operation of international 

airport terminals, these systems must cater to thousands of passengers and staff across 

waiting areas, boarding gates, retail zones, and administrative offices. HVAC 

configurations in airports typically consist of large chillers, air handling units, duct 

systems, and energy management controls, often operating 24/7. Due to the volume of 

conditioned air required and the complexity of zoning, HVAC systems are among the 

highest contributors to both energy consumption and carbon footprint. Despite their 

operational prominence, the actual impact of HVAC on user satisfaction and staff 

performance is highly context-dependent, as factors like uneven temperature distribution, 

overcooling, or air stagnation may counteract the intended benefits. 

Lighting plays a fundamental role in airport terminal operations, extending beyond 

mere visibility to influence safety, aesthetics, energy efficiency, and user well-being. 

Modern airport terminals are designed with a combination of natural daylighting and 

artificial illumination, using technologies such as LED lighting systems, motion-sensor 
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controls, and zoned lighting schemes. Properly designed lighting enhances navigational 

clarity for passengers, reduces errors among operational staff, and supports circadian 

alignment, particularly in facilities that operate round the clock. Studies have shown that 

poor lighting design can lead to increased fatigue, eye strain, and reduced alertness 

among workers, especially those stationed in check-in counters, security checkpoints, or 

baggage handling zones. Therefore, lighting is not only a utility feature but also a 

determinant of occupational health and productivity. 

Electrical equipment encompasses a broad array of devices that support 

administrative, operational, and passenger service functions within an airport terminal. 

This includes computers, monitors, scanning devices, power outlets, communication 

equipment, HVAC controllers, and public announcement systems. Many of these devices 

are mission-critical and must operate with high reliability and minimal downtime. 

Although individually these systems may not consume as much energy as HVAC, their 

cumulative use contributes significantly to the terminal’s operational efficiency. 

Moreover, electrical infrastructure must support uninterrupted power supply systems 

(UPS), fire alarms, and emergency lighting, which are essential for safety and regulatory 

compliance. The smooth operation of these components indirectly enhances staff 

performance by reducing disruptions and enabling a seamless working environment. 

Internal transportation within airport terminals refers to the mechanisms that 

facilitate the movement of passengers and staff across large terminal spaces. This includes 

escalators, elevators, walkalators (moving walkways), shuttle vehicles, and baggage 

handling systems. Efficient internal transport is crucial in reducing physical strain on both 

travelers and personnel, minimizing delays, and improving crowd flow during peak 

hours. For staff, particularly those involved in security, maintenance, or boarding 

operations, quick and reliable mobility translates to faster task execution and reduced 

fatigue. In some modern terminals, automation and real-time monitoring are integrated 

into transport systems to further optimize energy use and operational responsiveness. The 

performance of these systems, though relatively modest in energy consumption, may 

have an outsized impact on operational efficiency and user satisfaction. 

Staff performance within an airport terminal reflects the efficiency, accuracy, and 

responsiveness of employees engaged in various operational roles, such as security 

screening, customer service, facility maintenance, and baggage handling. Performance is 

influenced by both individual competencies and environmental factors, including thermal 

comfort, lighting, noise levels, accessibility, and the functionality of supporting systems. 

High-performing staff contribute to reduced passenger wait times, improved compliance 

with safety protocols, and enhanced overall service quality. In contrast, environmental 

stressors (such as poor air circulation, inconsistent lighting, or inefficient mobility 

infrastructure) an lead to fatigue, cognitive overload, and increased error rates. 

Understanding the environmental determinants of staff performance is therefore essential 

for designing terminal systems that support both productivity and well-being. 

Furthermore, few studies have employed a robust quantitative modeling approach 

to assess this relationship. Structural Equation Modeling using Partial Least Squares 

allows for the simultaneous analysis of multiple latent constructs and their interactions. 

This technique is particularly suitable for analyzing complex environments like airport 

terminals, where multiple systems operate concurrently and influence human behavior in 

interconnected ways. The inclusion of Importance Performance Map Analysis (IPMA) 

further enriches the evaluation by highlighting which system components, despite being 

important, underperform in practice. 



488 

 

In response to these gaps, this study investigates the relative influence of HVAC, 

lighting, electrical equipment, and internal transportation systems on staff performance 

in Terminal 3 of Soekarno-Hatta Airport. Specifically, it aims to test whether HVAC, 

despite its massive energy footprint, plays a significant role in improving staff 

productivity compared to other less energy-intensive systems. The findings contribute to 

both academic knowledge on infrastructure-performance alignment and provide practical 

insights for airport facility management in optimizing energy use and resource allocation. 

 

2. METHOD 

The study employed quantitative design [8], [9], [10], [11], [12], [13], [14], [15] with 

a causal-explanatory approach using Partial Least Squares Structural Equation Modeling 

(PLS-SEM) [16], [17], [18], [19], [20], [21], [22], [23], [24]. Data was collected through a 

structured questionnaire distributed to 400 respondents who were users and staff of 

Terminal 3, Soekarno-Hatta International Airport.  

𝑛 =
𝑁

1 + 𝑁(𝑒)2
=

147000

1 + 147000(0.05)2
≈ 400 (1) 

The survey instrument included reflective indicators for four independent 

constructs: HVAC (X1), Lighting (X2), Electrical Equipment (X3), and Internal Transport 

(X4); and one dependent construct: Staff Performance (Y1). Structural Equation Modeling 

using Partial Least Squares (SEM-PLS) is a multivariate statistical technique designed to 

examine complex causal relationships between latent variables (unobservable constructs) 

and their corresponding indicators (observable variables). Unlike covariance-based SEM, 

PLS-SEM is prediction-oriented and works well with small sample sizes or non-normally 

distributed data. The primary goal of PLS-SEM is to maximize the explained variance in 

the endogenous (dependent) constructs. The approach is structured around two 

interconnected models: the measurement model (outer model), which relates indicators 

to their latent variables, and the structural model (inner model), which describes 

relationships between the latent constructs[25]. 

The measurement model defines how observed indicators reflect their 

corresponding latent constructs. In the case of reflective constructs, the model can be 

expressed as [26]: 

𝑥𝑖𝑗 = λ𝑗ξ𝑗 + ε𝑖𝑗 (2) 

Where 𝑥𝑖𝑗 is the observed score of the ii-th indicator for latent variable 𝜉𝑗, λ𝑗 is the outer 

loading, and 𝜀𝑖𝑗 is the measurement error. Indicators are considered reliable if their 

loadings exceed 0.70. To further assess reliability and internal consistency, researchers 

calculate Composite Reliability (CR) and Average Variance Extracted (AVE). AVE must 

be ≥ 0.50, indicating that the construct explains at least half of the variance of its indicators. 

The structural model explains the relationships among latent constructs. It is often 

written as: 

η =  𝐵η +  Γξ +  ζ (3) 

 

where η is a vector of endogenous latent variables, ξ represents exogenous latent 

variables, B is a matrix of relationships among endogenous variables, Γ is a matrix of 

effects from exogenous to endogenous constructs, and ζ denotes structural error. Path 

coefficients in the structural model are estimated iteratively through PLS algorithms until 

convergence. These coefficients are tested for significance using bootstrapping, which 

provides standard errors, t-statistics, and p-values for hypothesis testing. 
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After estimating the model, its explanatory and predictive capabilities are 

evaluated. The R-squared (𝑅2) value measures how much variance in the endogenous 

construct is explained by the model: 

𝑅2 = 1 −
∑(𝑌𝑖 − 𝑌𝑖̂)

2

∑(𝑌𝑖 − 𝑌̅)2
 (4) 

To assess predictive relevance, Q-squared (Q2) values are derived using blindfolding 

procedures. Values above zero indicate acceptable predictive power. In addition, direct, 

indirect (mediation), and total effects are analyzed. For example, a mediation effect is 

computed as: 

Indirect Effect  =  βX → M  ×  βM → Y  (5) 

𝑤ℎ𝑒𝑟𝑒 X is the predictor, M the mediator, and Y the outcome variable. A significant 

indirect effect implies that M mediates the relationship between X and Y. 

Importance-Performance Map Analysis (IPMA) is an advanced extension of PLS-

SEM that enhances interpretability by combining importance (total effect size) with 

performance (mean scores) for each construct. IPMA is useful for identifying 

improvement priorities. For example, a construct that has high importance but low 

performance becomes a strategic focus for managerial intervention. The results are 

usually visualized in a two-dimensional map, dividing constructs into quadrants 

(high/low importance vs. high/low performance). In applied settings, IPMA bridges 

statistical results with actionable insights, helping practitioners target areas with the 

greatest impact potential. This makes SEM-PLS not only a powerful analytical tool but 

also a practical decision-making framework [27]. 

All items were measured using a 5-point Likert scale. Based on [27], Likert scales 

can be treated as interval-level data under certain conditions, particularly in the context 

of multivariate analysis such as PLS-SEM. Technically, Likert scales are ordinal because 

they represent ranked categories without assuming equal distances between each level. 

However, Hair emphasizes that when the scale is symmetric and contains a sufficient 

number of response categories (typically 5 or 7), it can approximate interval properties, 

making it appropriate for use in parametric statistical analyses. For instance, in a 7-point 

Likert scale ranging from (1) “strongly disagree” to (7) “strongly agree,” it is commonly 

assumed that the perceived distance between adjacent categories is equal. Still, 

researchers must pay attention to the clarity and linguistic structure of the scale points. If 

the midpoint, such as “neither agree nor disagree,” is vague or not conceptually 

equidistant, it can compromise the interval assumption. Hair suggests using Likert scales 

with clearly defined, symmetric, and linguistically distinct categories, as this enhances 

interpretability and measurement precision. When these conditions are met, the scale 

becomes a reasonable approximation of an interval scale, especially in PLS-SEM, which is 

robust against violations of distributional assumptions. In practice, this means that well-

designed Likert scales can be coded numerically and analyzed as if the underlying 

variables are continuous, allowing researchers to apply sophisticated modeling 

techniques like SEM-PLS with greater confidence in the validity of their inferences. 

The SEM-PLS analysis for reflective measurement model followed the guidelines of 

[27], including reliability checks via outer loadings (> 0.70), internal consistency through 

Composite Reliability (CR > 0.70), and convergent validity via AVE (> 0.50). Discriminant 

validity was assessed using HTMT (< 0.90). Bootstrapping with 5000 resamples was 

conducted to test the significance of path coefficients. Importance-Performance Map 
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Analysis (IPMA) was then used to evaluate each construct's relative importance and 

actual performance in affecting staff performance. 

 

3. RESULTS AND DISCUSSION 

Prior to analyzing the structural model, it is essential to confirm the reliability and 

validity of the measurement model. Given that the constructs in this study are reflective 

in nature, the evaluation includes checking outer loadings, composite reliability (CR), 

average variance extracted (AVE), and discriminant validity using HTMT. Ensuring the 

validity and reliability of the constructs strengthens the credibility of the structural 

relationships tested in the next stage. 

 
Table 1. AVE, CR and Outer Loadings 

Construct AVE CR Indicator Codes Outer Loadings 

HVAC 0.872 0.953 X1.1, X1.2, X1.3 0.939, 0.940, 0.923 

Lighting 0.828 0.935 X2.1, X2.2, X2.3 0.902, 0.922, 0.905 

Electrical Equipment 0.787 0.917 X3.1, X3.2, X3.3 0.858, 0.898, 0.905 

Internal Transport 0.840 0.940 X4.1, X4.2, X4.3 0.923, 0.914, 0.912 

Staff Performance 0.848 0.944 Y1.1, Y1.2, Y1.3 0.914, 0.920, 0.928 

 

All the outer loadings on Table 1 exceeded 0.85, which indicates excellent reliability 

of the indicators. Meanwhile, the AVE value is above 0.5 for all. Also, CR has a value 

above 0.7 for all constructs. 

 
Table 2. Heterotrait-Monotrait Ratio 

Construct → Contruct Heterotrait-monotrait ratio (HTMT) 

Lighting → HVAC 0.830 

Electrical Equaipment → HVAC 0.817 

Electrical Equaipment → Lighting 0.831 

Internal Transport → HVAC 0.851 

Internal Transport → Lighting 0.839 

Internal Transport → Electrical Equaipment 0.836 

Staff Performance → HVAC 0.738 

Staff Performance → Lighting 0.767 

Staff Performance → Electrical Equaipment 0.795 

Staff Performance → Internal Transport 0.803 

 

Meanwhile, the total HTMT value in Table 2 is below the threshold (0.9), so it can 

be said that validity and reliability have been met. The Variance Inflation Factor (VIF) test 

is used to detect the presence of multicollinearity between constructs in structural models. 

High multicollinearity can lead to parameter estimation instability and weaken the 

interpretation of model results. In general, a VIF value below 5 is considered to indicate 

that there is no serious multicollinearity problem. Table 3 presents the VIF values of the 

relationships between constructs in this model. 
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Table 3. Inner Model Multicollinearity Test Results 

Laten Variable → Laten Variable VIF 

X1 → Y1 3.253 

X1 → Y2 3.277 

X2 → Y1 3.043 

X2 → Y2 3.136 

X3 → Y1 2.787 

X3 → Y2 2.963 

X4 → Y1 3.315 

X4 → Y2 3.573 

Y1 → Y2 2.581 

 

The test results showed that all VIF values in this model were below the 5 threshold, 

with the highest value of 3.573 in the relationship of the Internal Transport (X4) variable 

to User Satisfaction (Y2), which is still acceptable in the context of social and behavioral 

research. This shows that there are no serious multicollinearity problems that can interfere 

with the interpretation of the relationship between latent variables. Thus, the contribution 

of each construct to the dependent variable remains statistically and theoretically 

accountable in the constructed model. 

To evaluate the structural relationships between latent variables, the structural 

model (inner model) was analyzed following the confirmation of measurement reliability 

and validity. This phase involved assessing the magnitude and significance of the path 

coefficients, as well as the model's predictive accuracy. Additionally, the Importance-

Performance Map Analysis (IPMA) was applied to visualize which constructs have the 

greatest influence on staff performance while identifying areas where performance may 

still be improved. 

 
Table 3. Path Coefficients & P-Values 

Dirrect Effect Path Coefficients P values 

HVAC → Staff Performance 0.098 0.184 

Lighting → Staff Performance 0.189 0.023 

Electrical Equipment → Staff Performance 0.261 0.000 

Internal Transport → Staff Performance 0.316 0.000 

 

The results of the path coefficient and p-value analysis provide further insight into 

the strength and statistical significance of the relationships between each facility 

component and staff performance. The path from HVAC to staff performance yielded a 

coefficient of 0.098 with a p-value of 0.184, indicating a weak and statistically insignificant 

relationship. This suggests that, despite the large energy investment in HVAC systems, 

there is no compelling evidence that they enhance the productivity of terminal staff. In 

contrast, lighting was found to have a path coefficient of 0.189 with a p-value of 0.023, 

showing a moderate but significant effect on staff performance. This implies that visual 

comfort and appropriate lighting levels play an important role in facilitating effective 

work environments. Electrical equipment demonstrated a stronger effect, with a 

coefficient of 0.261 and a highly significant p-value of 0.000. This highlights the 

importance of reliable and functional operational tools such as computers, check-in 

machines, and security scanners in improving staff efficiency. The most substantial impact 

was observed in the internal transport variable, which had a coefficient of 0.316 and a p-
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value of 0.000. This emphasizes the critical role of vertical and horizontal mobility aids 

(e.g., elevators, escalators, and walkalators) in supporting the physical performance of 

personnel in expansive terminal areas. 

The R-square (R²) and Q-square (Q²) statistics are essential to evaluate the 

explanatory and predictive capability of the structural model. R² reflects the proportion 

of variance in the dependent variable (staff performance) that is explained by the 

independent variables (HVAC, lighting, electrical equipment, and internal transport). A 

higher R² value suggests a better model fit. Meanwhile, Q² measures the model's 

predictive relevance, with values above zero indicating that the model has predictive 

power. 

 
Table 4. R2 & Q2 

R-square 0.613 

Q-square 0.505 

 

The R² value for staff performance is 0.613, which indicates that approximately 

61.3% of the variance in staff performance can be explained by the four independent 

constructs: HVAC, lighting, electrical equipment, and internal transport. This suggests a 

strong explanatory capability of the model, affirming that the chosen variables are 

effective predictors of the outcome. In terms of predictive relevance, the Q² value for staff 

performance is 0.505. Since this value is substantially above zero, it confirms that the 

model possesses strong predictive power, indicating that the constructs not only explain 

past observations but are also useful for forecasting future outcomes. These results 

validate the robustness of the model and its relevance for both theoretical exploration and 

practical application in the context of airport infrastructure performance evaluation. 

The Importance-Performance Map Analysis (IPMA) provides valuable insights into 

which constructs not only have strong effects on staff performance but also how well each 

construct is currently performing. While path coefficients indicate the relative importance 

of each factor, performance scores reflect how respondents perceive the current quality or 

adequacy of those factors within the airport terminal context. This dual perspective is 

critical for guiding managerial decisions that aim to maximize operational impact by 

focusing on high-importance but low-performance areas. 
 

 
Figure 5. Importance Performance Map Analysis 

 

Electrical Equipment showed a high importance score (0.261) but moderate 

performance (80.453), indicating a leverage point for improvement. HVAC had the 
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highest performance score but the lowest effect, suggesting over investment relative to 

impact. This study confirms that HVAC, despite its overwhelming energy consumption, 

has no statistically significant influence on staff performance in the airport terminal 

context. These findings align with observations by [3] and support earlier claims by [28] 

and [6] that thermal comfort is important but not always a strong predictor of 

productivity. 

Conversely, internal transport and electrical systems, despite consuming only 1.76% 

and 2.41% of energy respectively, exhibited higher influence on staff performance. These 

systems directly affect staff mobility, response time, and task efficiency, particularly in 

spatially large facilities like airport terminals. Similar findings were observed by [29], [30], 

who stressed the importance of system responsiveness and accessibility for operational 

performance. The lighting system, with its significant contribution to performance (β = 

0.189), corroborates studies by [7], [31], showing that visual comfort and clarity of 

visibility significantly affect employee concentration and accuracy. These findings suggest 

that energy allocation strategies in airport terminals need to shift from consumption-

based budgeting toward performance-based prioritization. Investing in systems that 

directly enhance operational effectiveness may yield greater returns than reinforcing 

ambient comfort systems like HVAC, which are already performing adequately but offer 

limited marginal benefits. 
 

 

4. CONCLUSION 

Although HVAC systems dominate energy consumption in Terminal 3 of 

Soekarno-Hatta International Airport, they do not significantly influence staff 

performance. Greater operational impact was observed from transport and electrical 

systems that consume much less energy. These findings underscore the need for a 

strategic realignment in facility management, favouring performance (driven 

infrastructure investment over traditional energy) centric approaches. 
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