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Abstract

The cement industry is an important sector in infrastructure development, where the quality of clinker
determines the final quality of the product. This study evaluates the application of T? Hotelling’s and
Generalized Variance (GV) multivariate control charts to clinker data based on three main variables:
FCaO, CsS, and C3A at PT XYZ. The results show that C3S has the highest variance in phase I and II
(2.61 and 2.53), while FCaO has the lowest variance (0.10 and 0.06). All three variables had mean values
within the specification limits, although there were still extreme values outside the limits. Assumption
tests showed that the data was not multivariate normally distributed, but it was still assumed to be normal
for control analysis purposes. In the wet season, the standard deviation decreased from 1.552 to 1.252, and
in the dry season from 1.170 to 1.029, indicating a decrease in variability although the process is not yet
fully under statistical control. Capability analysis shows that the dry season process is more stable, with
most parameters having multivariate values that exceed the threshold. Compared to the wet season, the
dry season process showed more consistent performance and was able to meet production quality
standards.
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1. INTRODUCTION

The cement industry is one of the key sectors that supports a country's infrastructure
development [1]. One of the main factors that determine the quality of cement is the
quality of clinker, a semi-finished material that is the result of burning a mixture of
limestone, clay, and iron sand in a rotary kiln [2]. The clinker production process is
complex and involves many interrelated variables, such as the chemical composition of
the raw materials, combustion temperature, and residence time in the kiln. Therefore, the
composition and characteristics of clinker must be carefully analyzed and controlled to
optimize process efficiency and ensure consistent product quality [3].

Conventional quality monitoring methods such as the Shewhart chart in Statistical
Process Control (SPC) are often insufficient for complex industrial processes because they
only monitor one variable at a time [4]. Clinker production is a multivariate process that
involves several interrelated variables which must be controlled simultaneously [5].
Multivariate control charts offer a more effective approach as they can detect changes in
both the process mean and variability [6]. Methods like Hotelling’s T? chart and the
Generalized Variance (GV) control are more suitable for maintaining the stability and
quality of the clinker production process [7].

The application of multivariate control charts has been widely adopted across
various industrial processes. For example, the T? Hotelling chart has been employed to
monitor the quality control of polyester fabric products [8], while the effectiveness of the
Hotelling’s T2 and Generalized Variance charts has been compared in monitoring
production processes in the fertilizer industry [9].

The objective of this study is to evaluate the application of T? Hotelling and
Generalized Variance (GV) control charts on clinker data. Specifically, this study aims to
obtain the results of quality control of clinker products through FCaO, CsS, and GA
variables at PT XYZ. In addition, this research seeks to measure the performance of the
clinker production process through process capability analysis and to examine the impact
of seasonal variation on clinker production outcomes.

2. RESEARCH METHODOLOGY

2.1. Literature Review
2.1.1 Clinker

According to the Ministry of Trade of the Republic of Indonesia, clinker is a semi-
finished product made by burning raw materials in a rotary kiln at 1,400-1,500°C,
consisting of calcium silica, aluminium oxide, and other oxides used for cement
production [10]. Clinker production involves calcination, where limestone decomposes
into calcium oxide and CO,, followed by the kiln process where clinker is formed. The
main components of clinker are FCaO, C3S, and C3A. The C3S content is calculated from
oxide composition and, if within the required range, can be used as an independent
variable in analysis [11]. C3A releases significant heat, accelerates setting time, and
increases early strength but reduces sulphate resistance [3]. And the three main
compositions have predetermined specification limits as tabulated in Table 1.
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Table 1. Specification limits of three main compositions of clinker

Composition Lower Bound (%) Upper Bound (%)
FCaO 0.5 2

C3s 60 66

C3A 8 10

2.1.2 Indepedency Test

If controlling for multiple variables, it must be ensured that there is a relationship
between the variables. Therefore, to consider the size of the dependency, we consider an
independence test, with the null hypothesis (HO) states that X and Y are stochastically
independent, meaning there is no statistical relationship between them. And the
alternative hypothesis (H1) states that X and Y are not independent [12]. This
independence can be tested using Barlett's test with the following test statistics and critical
regions.

x% = (n10){B — X (n — 1)log s?} (1)

Critical region,
If x22x? (1-a)(k—1) then reject Ho
If x2< x? (1-a)(k—1) then fail to rejcet Ho / accept Hi
Where x? (1-a)(k—1) is obtained from the chi-squared distribution table with confidence
level (1-a) and and degrees of freedom df=(k-1).

2.1.3 Normality Test

This distribution is used on a group of data that has a correlation. If X~Np(u,Z) is a
multivariate p-variate normal with mean p and variance-covariance matrix X, shown in
the following equations.

X1 251 011 012 - O1p
X, Mz 021 02 = Ozp

- -

x=0"L A= 2= 0 L ()
Xp Hp Op1 Op2 - Opp

Comparison of four statistical tests to test the null hypothesis (Hy) that the data
follow a multivariate normal distribution, based on measures of skewness, kurtosis, and
the Henze-Zirkler test. The Henze-Zirkler test was the most stable and accurate in
maintaining the set significance level [13].

2.1.4 T> Hotelling

The Hotelling T? control chart is the most used procedure for multivariate process
monitoring and control, specifically for tracking the mean vector of a process. In certain
industries, such as the chemical and process industries, the subgroup size is naturally n=1,
which means only one observation is collected per sample. In such cases, m samples of
size n =1 are typically available, with p quality characteristics measured in each sample
[14]. The calculation of the covariance matrix with successive differences is shown in the
following equation.

1 vw
- E(m—l) (3)
with:
[Vi] [(2—x)
! !
v=| V2 |= (s~ X2) | i=12,.,m—1 @)
lV;n—lj (xip1 — %)
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Which means:
x;; : observation vector for the i-th sample of the j-th quality variable.
X; : average observation vector of the j-th quality variable.
Equation (5) below shows the calculation of the test statistic used in the Hotelling T2
control chart:

17 = (i~ %) $ 7 (xij — %) )
With:
$71: Inverse of the covariance matrix
The control limits for the Hotelling T? control chart for individual observations are given

as follows
_ (m-1)2
UCL = =602 mp-12 (©)
LCL =0 7)

When the sample size is large (m>100), the control limit can be calculated using the
following equation:

-1
UCL =22 Fy 8)
LCL =0 9)

Which means:

- UCL : Upper Control Limit

- LCL: Lower Control Limit

- p: Number of quality characteristics (j=1, 2, ..., p)

- m: Number of observations (i=1, 2, ..., m)

A process is said to be in control if the T2 value falls within the control limits.

2.1.5 Generalized Variance

Generalized Variance control diagram is a multivariate control diagram used to
monitor variance of a process. The process variant is described from the covariance matrix
a measuring p x p where the main diagonal element is the variant and the other element
is the covariance [14].

2.1.6 Capability Process

Process capability analysis is a statistical method used in quality control to evaluate
whether a process can consistently produce outputs that meet specification limits.
According to the 3-sigma standard, a process is considered capable if it has a capability
index greater than 1.33. The process capability index, denoted as Cp, measures the ability
of a process to produce within specified tolerance limits. The following formula is used:

_ UCL-LCL

Cp 60

(10)

Here, o represents the sample standard deviation, while UCL and LCL denote the
upper and lower specification limits, respectively. The Cpk index is an extension of the
Cp index that accounts for the location of the process mean, thus capturing both the
precision and accuracy of the process. For one-sided specifications, the capability indices
are calculated as Cpu and Cpl, using the respective formulas. Furthermore, the process
capability indices Cp and Cpk for multivariate data can be computed using the following
equations:
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MCp =X, WiCy (11)
MCpk = XF_ W;Cpyi (12)

Where MCp and MCpk are the multivariate forms of Cp and Cpk. W; is the
weighting factor based on importance and satisfies the condition Y\_, W; = 1. The weights
W; are assigned according to the importance of each quality characteristic set by the
company. If no weighting is specified, equal weights are assumed [15].

2.1.7 Ishikawa Diagram

Ishikawa diagram, also known as the cause-and-effect diagram, is one of the tools
commonly used to improve quality. This diagram serves to systematically identify,
organize, and analyze potential causes of a particular problem. Visually, the diagram
resembles a fishbone structure, where the head of the fish represents the main problem
(effect) being analyzed, and the bones extending from the spine illustrate the categories of
contributing factors. Typically, these categories are grouped into six main factors, known
as the 5M+1E framework: material, man, method, machine, measurement, and
environment [14].

2.2. Data Structure
The dataset consists of three main parameters that become Critical Operating
Parameters. The clinker quality variables taken are the levels of FCaO (%), C3S (%), and
C3A (%) for the period October 2023 to September 2024. the data structure can be seen as
follows.
Table 2. Data structure of clinker main parameters

No. FCaO C3S C3A
1 X11 X21 X31
X12 X22 X32

313 X1313 X2 313 X3313

Based on Table 2, there are 313 observations where the observations will be divided into
two phases. Phase 1 from October 2023 to March 2024 because the rainy season is 181
observations. then for phase 2 from May through September 2024 as many as 132
observations which is the dry season. differentiated by season because the treatment given
is different so that the analysis should be different.

2.3. Analysis Step

The analytical procedure employed in this study is outlined as follows.

1. Obtain clinker quality data from October 2023 until September 2024

2. Pre-processing data by detecting outliers.

3. Calculating the daily average for each variable.

4. Conducting independence tests to determine whether the variables FCaO, C5S, and
CsA are correlated.

5. Checking the multivariate normality assumption to verify whether the variables
FCaO, G;S, and C;A satisfy multivariate normal distribution assumptions.

6. Monitoring clinker production variability using Generalized Variance control chart
based on Rainy Season Phase I data (October 2023 to January 2024)
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7. Applying T? Hotelling control chart if the Generalized Variance chart is statistically
in control; if the process is out of control, identifying causes of points outside control
limits and making corrections using the T? Hotelling control chart

8. Monitoring clinker production using Generalized Variance and T? Hotelling control
charts based on Rainy Season Phase II data (February to March 2024).

9. Repeating the monitoring procedures for data from May until August 2024 (Dry
Season Phase I) and September 2024 (Dry Season Phase II).

10. Analyzing process capability of clinker production during rainy (Phases I and II) and
dry seasons (Phases I and II).

11. Constructing an Ishikawa diagram to identify the root causes of variables that exceed
control limits.

12. Interpreting the data analysis results.

13. Drawing conclusions and providing recommendations

3. RESULTS AND DISCUSSION

3.1. Descriptive Statistics of Clinker Quality Characteristics

Descriptive analysis is used to give initial information about the data before further
analysis. The following are the results of descriptive statistics of the quality characteristics
variables used.

Table 3. Descriptive Statistics of Clinker Quality Characteristics
Fase Variable Specification (%) N Mean (%) Variance Min (%) Max (%)

FCaO 0.5-2 181 1.38 0.10 0.78 2.52

I GsS 60-66 181 61.80 2.61 57.20 65.50
CA 8-10 181 8.86 0.14 8.03 9.93

FCaO 0.5-2 132 1.31 0.06 0.92 2.28

II GsS 60-66 132 62.18 2.53 55.33 67.74
GA 8-10 132 9.52 0.12 8.84 10.78

Based on Table 3, it can be seen the average, variance, minimum and maximum of each
main composition of clinker. C3S is the variable with the largest variance in both phase I
and phase II, which is 2.61 and 2.53. This variant shows how far the data is spread from
its average value. Then, FCaO is the variable with the smallest variant value of 0.10 for
phase I and 0.06 for phase II. The three quality characteristics have average values that are
still within the specification limits, although there are still minimum and maximum.

3.2. Assumption Testing

Before analyzing the multivariate control map, there are several assumptions that
must be met. The main assumptions tested include independence between FCaO, C3S,
and C3A variables, and the fulfilment of multivariate normal distribution. These
assumptions were tested on the clinker production process data, with the following
results.

3.21 Independency Test

The first assumption test carried out is testing the independence of variables with
the Bartlett method. This test is conducted to determine whether the three are
interconnected or not. The hypothesis and test results are as follows.
H, = FCaO, C3S, and C3A are not correlated

Parameter: Jurnal Matematika, Statistika dan Terapannya | December 2025 | Vol. 04, No..03 | Page 471-484 476



H,; = FCaO, C35, and C3A are correlated
Using SPSS software, the test results are obtained in the following table.

Table 4. Testing Variable Independence

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 496
Bartlett’s Test of Approx. Chi-Square 1384.440
Sphericity Df 3

Sig. .000

Based on Table 4, it is known that the p-value (Sig.) is 0.00 and if a significance level ()
of 0.05 is used, the decision is to reject H_0 because p-value < a. It can be concluded that
the FCaO, C3S, and C3A variables are correlated and the analysis can be continued.

3.2.2 Normality Test
The second test is to determine if the FCaO, C3S, and C3A variables follow a

multivariate normal distribution pattern or not. The hypotheses and test results are as
follows.
Hy = The three variables are multivariate normally distributed
H; = The three variables are not multivariate normally distributed.

Then the test is made with Python software by looking at the p-value of the output.
A p-value of 3.16E”(-5) is obtained with a significance level () of 0.05, so the decision is
to reject HO because the p-value < a. It can be concluded that the FCaO, C3S, and C3A
variables are not multivariate normally distributed. When the sample size is large and the
techniques used depend on the properties of X, the assumption of normality is not very
important. Also, in real data, clinker data is often not normal because it is affected by
fluctuations in temperature, pressure, and inconsistent variations in raw materials. So the
three variables were assumed to be multivariate normally distributed to continue the
process control analysis. And distribution identification was carried out using EasyFit
software. The results show that FCaO follows the Pearson Type V distribution, C3S
follows the Log-Pearson Type III distribution, and C3A follows the Weibull distribution.

3.3. Rainy Season Control Chart

To get more accurate results from the control chart, the data should be separated
based on specific conditions, such as rainy and dry phases. This separation is important
because the different characteristics of each phase can affect process variations, making
the analysis more precise and representative. In the rainy phase, the data used is data from
October to March with 181 observations as phase 1. Phase I to establish control limits
based on historical data that is in control uses data from October to January. while phase
II monitors new data to detect deviations using data from February to March with the
mean and covariance of phase 1. If the rainy season data is considered a single phase, large
internal variations can cause the control chart signal to be biased. So, dividing the rainy
phase data into two subphases can be more effective than simply distinguishing between
rainy and dry phases. This is because conditions within a rainy season are often not
homogeneous. The following is the T2 hotelling and Generalized Variance control chart
of the rainy season clinker product phase 1.
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T?-Generalized Variance Chart of FCaO; ...; C3A
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Figure 1. Diagram of Phase I Rainy Season

Based on Figure 1, the quality control of clinker production in phase I hasn’t been
statistically controlled both from the process average and the process variability. This is
indicated by the presence of observation points that are above the USL. There are 11
samples that are out of the upper control limit, namely samples in the 34th, 35th, 36th,
37th, 38th, 53rd, 61st, 67th, 68th, 70th, and 119th observations. After analysing by looking
at the p-value of the variable that causes out of control, it is obtained that the variable that
causes the most out of control process is the C3A variable. When the variables that cause
the observation points to be out of control are known, then proceed to make the T2-
Hotelling and Generalized Variance control charts of phase I improvement by eliminating
the observations that are furthest from the upper control limit point. If after removal there
are still points that are out of control, then the process of removing out of control data is
repeated for several iterations until all points are within all control limits. The following
is a T2-Hotelling and Generalized Variance control diagram of phase I of the improvement

results.

T?-Generalized Variance Chart of FCa0; .
UCL=13.86

Lo
5 MMM W’V\AMK Median=3,63

31 3 4 51 51 71 a1 101

Sample

4 UCL=3937

151=1533

Generalized Variance
o

LCL=0

Sample

Figure 2. Diagram of Phase I of the Rainy Season In Control
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Figure 2 shows that the quality control of the clinker production process in the
rainy season phase I of the improvement results is statistically controlled. This is indicated
by there are no observation points that come out of the Upper Control Limit (UCL) of
19.86 and the Lower Control Limit (LCL) of 0. Then the control limits will be used to
control the average and variability of the clinker production process in phase II. Then,
quality control in phase II uses the mean and covariance matrix from phase I that is
already in control. The mean parameter used to monitor quality in Phase II consists of the
values 1.2723, 62.3173, and 9.8539. The vector above is the mean value of each variable,
namely the FCaO, C3S, and C3A in phase 1 that are in control. Then the data used in phase
2 analysis are 58 observations. Using Minitab, the T2 Hotelling and Generalized Variance
phase II control charts are obtained as shown in the following figure.

T?-Generalized Variance Chart of FCAQ; ...; c3a
40

30

A i A s

Sampla

45

UCL=3.218

“\/ W \./V\r‘»/ L

Sampla

[

ra

Generalized Variance

LCL=0

=

At least one estimated historical parameter is used in the calculations,

Figure 3. Diagram of Phase II Rainy Season

Figure 3 shows that the quality control of the clinker production process in the rainy
season phase II is still not statistically controlled. There are still points that are above the
USL. However, the number of points that are outside the isolated limits is reduced. The
standard deviation value in phase I of 1,552 is smaller than phase II of 1,252. This shows
that the variability is decreasing, which means that the process is more in control.

3.4. Dry Season Control Chart

This section analyzes 132 observations collected from May to September 2024. The
data for the dry season are divided into two phases. Phase I is used to establish control
limits based on a subset of stable historical data, where Phase II is employed to monitor
subsequent observations to detect any potential process deviations or irregularities. In dry
season phase I, the analysis is conducted using 102 observations. Utilizing Minitab
software, the T2 Hotelling control chart and the Generalized Variance control chart can be
directly generated, as shown in Figure 4.
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T2-Generalized Variance Chart of FCAQ; ...; C3A
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Figure 4. Diagram of Phase I Dry Season

Based on Figure 4, the clinker production quality control in phase I has not been
statistically controlled. There were that 15 samples exceeded the upper control limit,
specifically at observations 9th, 10th, 11th, 12th, 37th, 38th, 39th, 40th, 41st, 42nd, 731d,
91st, 92nd, 97th, and 99th. Upon further analysis using the p-values of each variable
contributing to the out-of-control condition, it was found that the variable C3A most
frequently contributed to the process instability during phase L

Once the contributing variable for the out-of-control points was identified, then
proceed to make a T? Hotelling control diagram and Generalized Variance phase I
improvement by eliminating the observation that is furthest from the upper control
boundary point. If after being eliminated there are still points that are out of control, then
the process of deleting data that is out of control is repeated until several iterations until
all points are within the control limit. The following is a control diagram of T? Hotelling
and Generalized Variance phase I of the improved results.

T*-Generalized Variance Chart of FCAQ; ...; C3A
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Figure 5. Diagram of Phase I of the Dry Season In Control

Figure 5 shows that the quality control of the clinker production process in phase I
of the improvement results has been statistically controlled. This is shown by the absence
of observation points that come out of the Upper Control Limit (UCL) of 19.40 and the
Lower Control Limit (LCL) of 0. The control limit will be used to control the average and
variability of the clinker production process in phase II. Then, quality control in phase II
uses the T? Hotelling and Generalized Variance control diagrams with mean and
covariance matrix from phase I that have been controlled. The mean vector used to
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monitor process quality in Phase II is 1.22925, 62.4970, 9.53066. This vector represents the
mean values of the FCaO, C3S, and C3A variables, respectively. The data analyzed in
phase II consists of 30 observations. Using Minitab software, a control diagram of T2
Hotelling and Generalized Variance phase II was obtained as shown in Figure 6.

T2-Generalized Variance Chart of FCAO 2; ...; C3A 2
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30

= 20
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25 28
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L —

1 u \\-\// D
0 LaL=o

1 4 7 10 13 19 22 25 28
Samp\e

Generalized Variance
~

At least one estimated historical parameter is used in the calculations.

Figure 6. Diagram of Phase II Dry Season

Figure 6. shows that the quality control of the clinker production process in phase II
is still statistically uncontrollable, as some data points still fall above the upper control
limit (UCL). However, the number of out-of-control points has decreased compared to
phase I. The standard deviation in phase Il is lower than in phase I. The standard deviation
value in phase I is 1.170 while in phase II is 1.029. This shows that the variability
decreases, this reduction in variability suggests an improvement in process stability, even
though fluctuations are still present.

3.5. Capability Process

The determination of process capability indices can be conducted either manually
or with statistical software. In this study, process capability analysis is performed both
univariately and multivariate to provide a comprehensive overview of the process’s
ability to meet quality specifications. Table 5 presents the results of process capability
calculations for phase I and phase II during the rainy season.

Table 5. Comparison Table of Process Capabilities in Rainy Season

lity Ch teristi
Phase Index Quality Characteristic

FCaO C3S C3A Multivariate
Cp 1,32 1,11 1,82 1,42
Cpk 1,24 0,79 1,63 1,22
I Cpl 1,41 0,79 1,63 1,26
Cpu 1,24 1,43 2,01 1,56
Cp 1,17 1,11 1,48 1,25
Cpk 0,69 0,40 1,18 0,76
I Cpl 1,66 1,82 1,18 1,55
Cpu 0,69 0,40 1,77 0,95

Given the absence of a special weight determination from the company for the three
observed quality characteristics, it is assumed that each variable has an equal level of
importance. Therefore, equal weights of 0.333 are assigned to each variable: FCaO, C3S,
and C3A. As an example, the following presents a manual calculation of the multivariate
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capability index MCp. Similar calculations are also conducted for the indices MCpk,
MCpl, and MCpu.
MCp = (0.333 x 1.27) + (0.333 x 1.11) + (0.333 x 1.70) = 1.36

In the first phase of the rainy season, the production process showed quite good
capabilities. The C3A parameter has the highest capability, indicating a stable process that
conformed to specifications, while C3S shows the lowest capability. However, in phase II
there was a general decline in capability. The multivariate Cpk value decreased to 0.76,
indicating the process no longer meets the capability standard. C3S remains the worst
performing parameter, while C3A is still relatively stable despite the decline. This
condition indicates the need for process evaluation during the rainy season to ensure
consistency and compliance with product specifications.

Process capability analysis was also conducted for production during the dry
season. The results of the capability analysis for both Phase I and Phase II are presented
in the Table 6, which includes univariate indices (Cp, Cpk, CPL, and CPU) for each quality
parameter, as well as multivariate indices representing the overall performance of the
process.

Table 6. Comparison Table of Process Capabilities in Dry Season

Quality Characteristic

Phase Index

FCaO C3S C3A Multivariate
Cp 1,64 1,13 2,18 1,65
Cpk 1,60 0,94 1,63 1,19
I Cpl 1,60 0,94 2,83 1,79
Cpu 1,69 1,32 1,02 1,34
Cp 1,62 0,88 1,72 1,41
Cpk 1,24 0,46 1,13 0,94
II Cpl 1,99 0,46 2,30 1,58
Cpu 1,24 1,29 1,13 1,22

Based on the calculation results, the process capability in the dry season showed
relatively good performance, most of which exceeded the threshold that indicates that the
process is classified as capable. The multivariate index also indicates that the overall
process is within an acceptable range, especially in phase I. Compared to the rainy season,
the process capability in the dry season is generally better and more stable. This is
evidenced by the increase in Cpk values for most parameters and higher multivariate Cp
values, indicating that the production process during the dry season exhibits lower
variability and a greater ability to meet the specified quality standards.

3.6. Ishikawa Diagram

Based on the quality control of the clinker production process, especially in phase
II, it is known that the process has not been statistically controlled. Therefore, the
identification of factors that have the possibility of causing out of control will be carried
out using the Ishikawa diagram as shown in Figure 7.
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Figure 7. Ishikawa diagram of clinker quality control

4. CONCLUSION
Based on the results and discussion that has been carried out, the following
conclusions are obtained.

1. Quality control of the variability and average of the clinker production process in the
rainy season and dry season phase I has not been statistically controlled. After
removing the out-of-control observation points, the Generalized Variance and T2
Hotelling control diagrams of phase I were obtained. Using the mean and covariance
of phase 1 that is in control, phase II monitoring is carried out in both seasons. Quality
control of the clinker production process in phase II in the variability and average
process is also not statistically controlled. This is evidenced by the presence of several
observation points that are out of control on the control diagram. The most influential
variable that causes out of control in clinker quality control is C3A due to fluctuations
in kiln temperature.

2. Overall, the clinker production process has improved after quality control, especially
in stabilizing variations in the wet season. The process capability in the dry season
shows relatively good performance because it has exceeded the threshold compared to
the rainy season capability,

3. Process capability analysis shows that the dry season provides better and more stable
production performance than the wet season. In the wet season, especially phase II,
there is a decrease in capability with multivariate process capability index values that
do not meet the standard, especially in the C3S parameter. In contrast, during the dry
season, most parameters showed high capability with lower variation, indicating a
more consistent and compliant process. Process evaluation and improvement are
required during the rainy season to maintain production quality.

483

Aisha et, al. | Monitoring and Evaluation of Clinker Quality...



REFERENCES

[1] J. M. Uratani and S. Griffiths, "A Forward Looking Perspective on the Cement and Concrete
Industry: Implications of Growth and Development in the Global South," Energy Research &
Social Science, vol. 97, 2023.

[2] Permutrade, "Why Clinker Matters: A Look at Its Properties and Applications," Permutrade, 16
November 2023. [Online]. Available: https://www.permutrade.com/why-clinker-matters-a-look-at-its-
properties-and-applications. [Accessed 24 Juli 2025].

[3] S.Nuhu, S. Ladan and A. Umar Muhammad, "Effects and Control of Chemical Composition of Clinker
for Cement Production," International Journal of Control Science and Engineering, vol. 1, no. 10, pp.
16-21, 2020.

[4] R. Sanchez-Marquez and J. M. J. Vivas, "Multivariate SPC Methods for Controlling Manufacturing
Processes Using Predictive Models — A case study in the automotive sector," Computers in Industry,
vol. 123, p. 103307, 2020.

[5] X. Lyu, D. Chu, X. Lu, J. Mu, Z. Zhang and D. Yun, "Quality Control of Cement Clinker through
Operating Condition," applied sciences, vol. 14, no. 3, p. 1119, 2024.

[6] H. Sabahno and A. Amiri, "Simultaneous monitoring of the mean vector and covariance matrix of
multivariate multiple linear profiles with a new adaptive Shewhart-type control chart," Quality
Engineering, vol. 35, no. 4, p. 600—618, 2023.

[7] N.Hafiza, M. Kashif, M. Imran Khan, L. Ahmad and M. Aslam, "Designof Hotelling T2 Control Chart
using Various Covariance," Communications in Statistics - Theory and Methods, vol. 16, no. 53, 2023.

[8] N. A. Abdiyasti, R. Santoso and T. Widiharih, "Perbandingan Diagram Kontrol Mewma Dan Diagram
Kontrol T2 Hotelling Untuk Pengendalian Kualitas Produk Kain Polyester," Jurnal Gaussian, vol. §,
no. 1, pp. 12-23, 2019.

[91 M. S. Hamed, "Comparison of Hotelling's T2 and Generalized Variance |S| Multivariate Control Chart
Produces with Industrial Application," Advances and Applications in Statistics, vol. 76, pp. 75-104,
2022.

[10] F. William and A. Yang, "Potential of Reducing CO 2 Emissions in Cement Production through
Altering Clinker Compositions," Industrial & Engineering Chemistry Research, vol. 63, pp. 17158-
17617, 2024.

[11] E. S. Yusmartini and K. Aini, "The Effect of Tricalcium Silicate (C3S) Percentage in Clinkerson the
Cement Quality," International Journal of Engineering and Technology, vol. 10, no. 1, pp. 23-27,2021.

[12] T. Djonguet and G. M. Nkiet, "An Independence Test for Functional Variables based on Kernel
Normalized Cross-Covariance Operator," Journal of Multivariate Analysis, vol. 202, 2023.

[13] B. Ebner and N. Henze, "Tests For Multivariate Normality—A Critical Review With Emphasis On
Weighted L2-Statistics," TEST, vol. 29, pp. 845-892, 2020.

[14] D. C. Montgomery, Introduction to Statistical Quality Control 8th Editioin, New York: John Wiley &
Sons, 2020.

[15] S. Raissi, "Multivariate Process Capability Indices On The Presence Of Priority For Quality
Characteristics," Journal of Industrial Engineering International, vol. 5, no. 9, pp. 27-36, 2019.

Parameter: Jurnal Matematika, Statistika dan Terapannya | December 2025 | Vol. 04, No..03 | Page 471-484 484



