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Abstract 

The cement industry is an important sector in infrastructure development, where the quality of clinker 

determines the final quality of the product. This study evaluates the application of T² Hotelling's and 

Generalized Variance (GV) multivariate control charts to clinker data based on three main variables: 

FCaO, C₃S, and C₃A at PT XYZ. The results show that C₃S has the highest variance in phase I and II 

(2.61 and 2.53), while FCaO has the lowest variance (0.10 and 0.06). All three variables had mean values 

within the specification limits, although there were still extreme values outside the limits. Assumption 

tests showed that the data was not multivariate normally distributed, but it was still assumed to be normal 

for control analysis purposes. In the wet season, the standard deviation decreased from 1.552 to 1.252, and 

in the dry season from 1.170 to 1.029, indicating a decrease in variability although the process is not yet 

fully under statistical control. Capability analysis shows that the dry season process is more stable, with 

most parameters having multivariate values that exceed the threshold. Compared to the wet season, the 

dry season process showed more consistent performance and was able to meet production quality 

standards. 
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1. INTRODUCTION 

The cement industry is one of the key sectors that supports a country's infrastructure 

development [1]. One of the main factors that determine the quality of cement is the 

quality of clinker, a semi-finished material that is the result of burning a mixture of 

limestone, clay, and iron sand in a rotary kiln [2]. The clinker production process is 

complex and involves many interrelated variables, such as the chemical composition of 

the raw materials, combustion temperature, and residence time in the kiln. Therefore, the 

composition and characteristics of clinker must be carefully analyzed and controlled to 

optimize process efficiency and ensure consistent product quality [3]. 

Conventional quality monitoring methods such as the Shewhart chart in Statistical 

Process Control (SPC) are often insufficient for complex industrial processes because they 

only monitor one variable at a time [4]. Clinker production is a multivariate process that 

involves several interrelated variables which must be controlled simultaneously [5]. 

Multivariate control charts offer a more effective approach as they can detect changes in 

both the process mean and variability [6]. Methods like Hotelling’s T² chart and the 

Generalized Variance (GV) control are more suitable for maintaining the stability and 

quality of the clinker production process [7]. 

The application of multivariate control charts has been widely adopted across 

various industrial processes. For example, the T² Hotelling chart has been employed to 

monitor the quality control of polyester fabric products [8], while the effectiveness of the 

Hotelling’s T² and Generalized Variance charts has been compared in monitoring 

production processes in the fertilizer industry [9]. 

The objective of this study is to evaluate the application of T² Hotelling and 

Generalized Variance (GV) control charts on clinker data. Specifically, this study aims to 

obtain the results of quality control of clinker products through FCaO, C₃S, and C₃A 

variables at PT XYZ. In addition, this research seeks to measure the performance of the 

clinker production process through process capability analysis and to examine the impact 

of seasonal variation on clinker production outcomes. 

 
 

2. RESEARCH METHODOLOGY 

2.1. Literature Review 

2.1.1  Clinker 

According to the Ministry of Trade of the Republic of Indonesia, clinker is a semi-

finished product made by burning raw materials in a rotary kiln at 1,400–1,500°C, 

consisting of calcium silica, aluminium oxide, and other oxides used for cement 

production [10]. Clinker production involves calcination, where limestone decomposes 

into calcium oxide and CO₂, followed by the kiln process where clinker is formed. The 

main components of clinker are FCaO, C3S, and C3A. The C3S content is calculated from 

oxide composition and, if within the required range, can be used as an independent 

variable in analysis [11]. C3A releases significant heat, accelerates setting time, and 

increases early strength but reduces sulphate resistance [3]. And the three main 

compositions have predetermined specification limits as tabulated in Table 1.  
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Table 1. Specification limits of three main compositions of clinker 

Composition Lower Bound (%) Upper Bound (%)  

FCaO 0.5 2 

C3S 60 66 

C3A 8 10 

 

2.1.2  Indepedency Test 

If controlling for multiple variables, it must be ensured that there is a relationship 

between the variables. Therefore, to consider the size of the dependency, we consider an 

independence test, with the null hypothesis (H0) states that X and Y are stochastically 

independent, meaning there is no statistical relationship between them. And the 

alternative hypothesis (H1) states that X and Y are not independent [12]. This 

independence can be tested using Barlett's test with the following test statistics and critical 

regions. 

𝝌𝟐 = (𝑙𝑛10){𝐵 − ∑(𝑛 − 1)𝑙𝑜𝑔 𝑠𝑖
2}                                          (1) 

Critical region,  

If  χ² ≥ 𝝌𝟐 (1−𝛼)(𝑘−1) then reject H0 

If χ² < 𝝌𝟐 (1−𝛼)(𝑘−1) then fail to rejcet H0 / accept H1 

Where 𝝌𝟐 (1−𝛼)(𝑘−1)  is obtained from the chi-squared distribution table with confidence 

level (1-α) and and degrees of freedom df=(k-1). 
 

 

2.1.3 Normality Test 

This distribution is used on a group of data that has a correlation. If X∼Np(μ,Σ) is a 

multivariate p-variate normal with mean μ and variance-covariance matrix Σ, shown in 

the following equations. 

𝑥 = [

𝑋1

𝑋2

⋮
𝑋𝑝

],   𝜇 = [

𝜇1
𝜇2

⋮
𝜇𝑝

] , ∑ = [

𝜎11 𝜎12

𝜎21 𝜎22

… 𝜎1𝑝

… 𝜎2𝑝

⋮ ⋮
𝜎𝑝1 𝜎𝑝2

⋱ ⋮
… 𝜎𝑝𝑝

]                                (2) 

Comparison of four statistical tests to test the null hypothesis (H₀) that the data 

follow a multivariate normal distribution, based on measures of skewness, kurtosis, and 

the Henze-Zirkler test. The Henze-Zirkler test was the most stable and accurate in 

maintaining the set significance level [13].  

 

2.1.4 T2 Hotelling 

The Hotelling T² control chart is the most used procedure for multivariate process 

monitoring and control, specifically for tracking the mean vector of a process. In certain 

industries, such as the chemical and process industries, the subgroup size is naturally n=1, 

which means only one observation is collected per sample. In such cases, m samples of 

size n = 1 are typically available, with p quality characteristics measured in each sample 

[14]. The calculation of the covariance matrix with successive differences is shown in the 

following equation. 

𝑺 =
1

2

𝑽′𝑽

(𝑚−1)
                                                               (3) 

with:  

𝑽 = 

[
 
 
 

𝑽𝟏
′

𝑽𝟐
′

⋮
𝑽𝒎−𝟏

′ ]
 
 
 
= [

(𝒙2 − 𝒙1)′

(𝒙3 − 𝒙2)′
⋮

(𝒙𝑖+1 − 𝒙𝑖)′

] , 𝑖 = 1,2,… ,𝑚 − 1                          (4) 
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Which means: 

𝒙𝑖𝑗 : observation vector for the i-th sample of the j-th quality variable. 

𝒙𝑗  : average observation vector of the j-th quality variable. 
 

Equation (5) below shows the calculation of the test statistic used in the Hotelling T² 

control chart: 

𝑇𝑖
2 = (𝒙𝑖𝑗 − 𝒙𝑗)

′
𝑺−1(𝒙𝑖𝑗 − 𝒙𝑗)                                            (5) 

With: 

𝑺−1: Inverse of the covariance matrix 

The control limits for the Hotelling T² control chart for individual observations are given 

as follows 

UCL =
(𝑚−1)2

𝑚
𝛽𝛼,

𝑝

2
,(𝑚−𝑝−1)/2                                              (6) 

𝐿𝐶𝐿 = 0                                                            (7) 

When the sample size is large (m>100), the control limit can be calculated using the 

following equation: 

𝑈𝐶𝐿 =
𝑝(𝑚−1)

 𝑚−𝑝
𝐹𝛼,𝑝,𝑚−𝑝                                                   (8) 

𝐿𝐶𝐿 = 0                                                               (9) 

Which means: 

- UCL : Upper Control Limit  

- LCL: Lower Control Limit  

- p: Number of quality characteristics (j = 1, 2, ..., p) 

- m: Number of observations (i = 1, 2, ..., m) 

A process is said to be in control if the T² value falls within the control limits.  

 

2.1.5 Generalized Variance 

Generalized Variance control diagram is a multivariate control diagram used to 

monitor variance of a process. The process variant is described from the covariance matrix 

a measuring p x p where the main diagonal element is the variant and the other element 

is the covariance [14]. 

 

2.1.6 Capability Process 

Process capability analysis is a statistical method used in quality control to evaluate 

whether a process can consistently produce outputs that meet specification limits. 

According to the 3-sigma standard, a process is considered capable if it has a capability 

index greater than 1.33. The process capability index, denoted as Cp, measures the ability 

of a process to produce within specified tolerance limits. The following formula is used: 

 

𝐶𝑝 =
𝑈𝐶𝐿−𝐿𝐶𝐿

6σ
                                                         (10) 

 

Here, σ represents the sample standard deviation, while UCL and LCL denote the 

upper and lower specification limits, respectively. The Cpk index is an extension of the 

Cp index that accounts for the location of the process mean, thus capturing both the 

precision and accuracy of the process. For one-sided specifications, the capability indices 

are calculated as Cpu and Cpl, using the respective formulas. Furthermore, the process 

capability indices Cp and Cpk for multivariate data can be computed using the following 

equations:  
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𝑀𝐶𝑝 = ∑ 𝑊𝑖𝐶𝑝𝑖
𝑝
𝑖=1                                                    (11) 

𝑀𝐶𝑝𝑘 = ∑ 𝑊𝑖𝐶𝑝𝑘𝑖
𝑝
𝑖=1                                                  (12) 

 

Where MCp and MCpk are the multivariate forms of Cp and Cpk. Wᵢ is the 

weighting factor based on importance and satisfies the condition ∑ 𝑊𝑖
𝑝
𝑖=1 = 1. The weights 

Wᵢ are assigned according to the importance of each quality characteristic set by the 

company. If no weighting is specified, equal weights are assumed [15]. 

 

2.1.7 Ishikawa Diagram 

Ishikawa diagram, also known as the cause-and-effect diagram, is one of the tools 

commonly used to improve quality. This diagram serves to systematically identify, 

organize, and analyze potential causes of a particular problem. Visually, the diagram 

resembles a fishbone structure, where the head of the fish represents the main problem 

(effect) being analyzed, and the bones extending from the spine illustrate the categories of 

contributing factors. Typically, these categories are grouped into six main factors, known 

as the 5M+1E framework: material, man, method, machine, measurement, and 

environment [14]. 

  

2.2. Data Structure 

The dataset consists of three main parameters that become Critical Operating 

Parameters. The clinker quality variables taken are the levels of FCaO (%), C3S (%), and 

C3A (%) for the period October 2023 to September 2024. the data structure can be seen as 

follows. 

Table 2. Data structure of clinker main parameters 

No. FCaO C3S C3A 

1 𝑥11 𝑥21 𝑥31 

2 𝑥12 𝑥22 𝑥32 

 ⋮  ⋮   ⋮   ⋮  

313 𝑥1 313 𝑥2 313 𝑥3 313 
 

Based on Table 2, there are 313 observations where the observations will be divided into 

two phases. Phase 1 from October 2023 to March 2024 because the rainy season is 181 

observations. then for phase 2 from May through September 2024 as many as 132 

observations which is the dry season. differentiated by season because the treatment given 

is different so that the analysis should be different. 

2.3. Analysis Step 

The analytical procedure employed in this study is outlined as follows. 

1. Obtain clinker quality data from October 2023 until September 2024 

2. Pre-processing data by detecting outliers.  

3. Calculating the daily average for each variable. 

4. Conducting independence tests to determine whether the variables FCaO, C₃S, and 

C₃A are correlated. 

5. Checking the multivariate normality assumption to verify whether the variables 

FCaO, C₃S, and C₃A satisfy multivariate normal distribution assumptions. 

6. Monitoring clinker production variability using Generalized Variance control chart 

based on Rainy Season Phase I data (October 2023 to January 2024) 
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7. Applying T² Hotelling control chart if the Generalized Variance chart is statistically 

in control; if the process is out of control, identifying causes of points outside control 

limits and making corrections using the T² Hotelling control chart 

8. Monitoring clinker production using Generalized Variance and T² Hotelling control 

charts based on Rainy Season Phase II data (February to March 2024). 

9. Repeating the monitoring procedures for data from May until August 2024 (Dry 

Season Phase I) and September 2024 (Dry Season Phase II). 

10. Analyzing process capability of clinker production during rainy (Phases I and II) and 

dry seasons (Phases I and II). 

11. Constructing an Ishikawa diagram to identify the root causes of variables that exceed 

control limits. 

12. Interpreting the data analysis results. 

13. Drawing conclusions and providing recommendations 

  

 

3. RESULTS AND DISCUSSION 

3.1. Descriptive Statistics of Clinker Quality Characteristics 

Descriptive analysis is used to give initial information about the data before further 

analysis. The following are the results of descriptive statistics of the quality characteristics 

variables used. 

 
Table 3. Descriptive Statistics of Clinker Quality Characteristics 

Fase Variable Specification (%) N Mean (%) Variance Min (%) Max (%) 

I 

FCaO 0.5-2 181 1.38 0.10 0.78 2.52 

C3S 60-66 181 61.80 2.61 57.20 65.50 

C3A 8-10 181 8.86 0.14 8.03 9.93 

II 

FCaO 0.5-2 132 1.31 0.06 0.92 2.28 

C3S 60-66 132 62.18 2.53 55.33 67.74 

C3A 8-10 132 9.52 0.12 8.84 10.78 
 

Based on Table 3, it can be seen the average, variance, minimum and maximum of each 

main composition of clinker. C3S is the variable with the largest variance in both phase I 

and phase II, which is 2.61 and 2.53. This variant shows how far the data is spread from 

its average value. Then, FCaO is the variable with the smallest variant value of 0.10 for 

phase I and 0.06 for phase II. The three quality characteristics have average values that are 

still within the specification limits, although there are still minimum and maximum. 

3.2. Assumption Testing 

Before analyzing the multivariate control map, there are several assumptions that 

must be met. The main assumptions tested include independence between FCaO, C3S, 

and C3A variables, and the fulfilment of multivariate normal distribution. These 

assumptions were tested on the clinker production process data, with the following 

results. 

3.2.1 Independency Test 

The first assumption test carried out is testing the independence of variables with 

the Bartlett method. This test is conducted to determine whether the three are 

interconnected or not. The hypothesis and test results are as follows. 

𝐻0 = FCaO, C3S, and C3A are not correlated 
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𝐻1 = FCaO, C3S, and C3A are correlated 

 

Using SPSS software, the test results are obtained in the following table. 

 

Table 4. Testing Variable Independence 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .496 

Bartlett’s Test of 

Sphericity 

Approx. Chi-Square 1384.440 

Df 3 

Sig. .000 

 

Based on Table 4, it is known that the p-value (Sig.) is 0.00 and if a significance level (α) 

of 0.05 is used, the decision is to reject H_0 because p-value < α. It can be concluded that 

the FCaO, C3S, and C3A variables are correlated and the analysis can be continued. 

 

3.2.2 Normality Test 

The second test is to determine if the FCaO, C3S, and C3A variables follow a 

multivariate normal distribution pattern or not. The hypotheses and test results are as 

follows. 

𝐻0 = The three variables are multivariate normally distributed 

𝐻1 = The three variables are not multivariate normally distributed. 

Then the test is made with Python software by looking at the p-value of the output.  

A p-value of 3.16E^(-5) is obtained with a significance level (α) of 0.05, so the decision is 

to reject H0 because the p-value < α. It can be concluded that the FCaO, C3S, and C3A 

variables are not multivariate normally distributed. When the sample size is large and the 

techniques used depend on the properties of 𝑋̅, the assumption of normality is not very 

important. Also, in real data, clinker data is often not normal because it is affected by 

fluctuations in temperature, pressure, and inconsistent variations in raw materials. So the 

three variables were assumed to be multivariate normally distributed to continue the 

process control analysis. And distribution identification was carried out using EasyFit 

software. The results show that FCaO follows the Pearson Type V distribution, C3S 

follows the Log-Pearson Type III distribution, and C3A follows the Weibull distribution. 

3.3. Rainy Season Control Chart 

To get more accurate results from the control chart, the data should be separated 

based on specific conditions, such as rainy and dry phases. This separation is important 

because the different characteristics of each phase can affect process variations, making 

the analysis more precise and representative. In the rainy phase, the data used is data from 

October to March with 181 observations as phase 1. Phase I to establish control limits 

based on historical data that is in control uses data from October to January. while phase 

II monitors new data to detect deviations using data from February to March with the 

mean and covariance of phase 1. If the rainy season data is considered a single phase, large 

internal variations can cause the control chart signal to be biased. So, dividing the rainy 

phase data into two subphases can be more effective than simply distinguishing between 

rainy and dry phases. This is because conditions within a rainy season are often not 

homogeneous. The following is the T2 hotelling and Generalized Variance control chart 

of the rainy season clinker product phase 1.  
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Figure 1. Diagram of Phase I Rainy Season 

Based on Figure 1, the quality control of clinker production in phase I hasn’t been 

statistically controlled both from the process average and the process variability. This is 

indicated by the presence of observation points that are above the USL.  There are 11 

samples that are out of the upper control limit, namely samples in the 34th, 35th, 36th, 

37th, 38th, 53rd, 61st, 67th, 68th, 70th, and 119th observations. After analysing by looking 

at the p-value of the variable that causes out of control, it is obtained that the variable that 

causes the most out of control process is the C3A variable. When the variables that cause 

the observation points to be out of control are known, then proceed to make the T2-

Hotelling and Generalized Variance control charts of phase I improvement by eliminating 

the observations that are furthest from the upper control limit point. If after removal there 

are still points that are out of control, then the process of removing out of control data is 

repeated for several iterations until all points are within all control limits. The following 

is a T2-Hotelling and Generalized Variance control diagram of phase I of the improvement 

results.  

 
 

Figure 2. Diagram of Phase I of the Rainy Season In Control 
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Figure 2 shows that the quality control of the clinker production process in the 

rainy season phase I of the improvement results is statistically controlled. This is indicated 

by there are no observation points that come out of the Upper Control Limit (UCL) of 

19.86 and the Lower Control Limit (LCL) of 0. Then the control limits will be used to 

control the average and variability of the clinker production process in phase II. Then, 

quality control in phase II uses the mean and covariance matrix from phase I that is 

already in control. The mean parameter used to monitor quality in Phase II consists of the 

values 1.2723, 62.3173, and 9.8539. The vector above is the mean value of each variable, 

namely the FCaO, C3S, and C3A in phase 1 that are in control. Then the data used in phase 

2 analysis are 58 observations. Using Minitab, the T2 Hotelling and Generalized Variance 

phase II control charts are obtained as shown in the following figure. 

 
Figure 3. Diagram of Phase II Rainy Season 

Figure 3 shows that the quality control of the clinker production process in the rainy 

season phase II is still not statistically controlled. There are still points that are above the 

USL. However, the number of points that are outside the isolated limits is reduced. The 

standard deviation value in phase I of 1,552 is smaller than phase II of 1,252. This shows 

that the variability is decreasing, which means that the process is more in control. 

3.4. Dry Season Control Chart 

This section analyzes 132 observations collected from May to September 2024. The 

data for the dry season are divided into two phases. Phase I is used to establish control 

limits based on a subset of stable historical data, where Phase II is employed to monitor 

subsequent observations to detect any potential process deviations or irregularities. In dry 

season phase I, the analysis is conducted using 102 observations. Utilizing Minitab 

software, the T² Hotelling control chart and the Generalized Variance control chart can be 

directly generated, as shown in Figure 4. 
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Figure 4. Diagram of Phase I Dry Season 

Based on Figure 4, the clinker production quality control in phase I has not been 

statistically controlled. There were that 15 samples exceeded the upper control limit, 

specifically at observations 9th, 10th, 11th, 12th, 37th, 38th, 39th, 40th, 41st, 42nd, 73rd, 

91st, 92nd, 97th, and 99th. Upon further analysis using the p-values of each variable 

contributing to the out-of-control condition, it was found that the variable C3A most 

frequently contributed to the process instability during phase I. 

Once the contributing variable for the out-of-control points was identified, then 

proceed to make a T2 Hotelling control diagram and Generalized Variance phase I 

improvement by eliminating the observation that is furthest from the upper control 

boundary point.  If after being eliminated there are still points that are out of control, then 

the process of deleting data that is out of control is repeated until several iterations until 

all points are within the control limit. The following is a control diagram of T2 Hotelling 

and Generalized Variance phase I of the improved results. 

 

 
Figure 5. Diagram of Phase I of the Dry Season In Control 

Figure 5 shows that the quality control of the clinker production process in phase I 

of the improvement results has been statistically controlled. This is shown by the absence 

of observation points that come out of the Upper Control Limit (UCL) of 19.40 and the 

Lower Control Limit (LCL) of 0. The control limit will be used to control the average and 

variability of the clinker production process in phase II. Then, quality control in phase II 

uses the T2 Hotelling and Generalized Variance control diagrams with mean and 

covariance matrix from phase I that have been controlled. The mean vector used to 
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monitor process quality in Phase II is 1.22925, 62.4970, 9.53066. This vector represents the 

mean values of the FCaO, C3S, and C3A variables, respectively. The data analyzed in 

phase II consists of 30 observations. Using Minitab software, a control diagram of T2 

Hotelling and Generalized Variance phase II was obtained as shown in Figure 6. 

 
Figure 6. Diagram of Phase II Dry Season 

Figure 6. shows that the quality control of the clinker production process in phase II 

is still statistically uncontrollable, as some data points still fall above the upper control 

limit (UCL). However, the number of out-of-control points has decreased compared to 

phase I. The standard deviation in phase II is lower than in phase I. The standard deviation 

value in phase I is 1.170 while in phase II is 1.029. This shows that the variability 

decreases, this reduction in variability suggests an improvement in process stability, even 

though fluctuations are still present.  

3.5. Capability Process 

The determination of process capability indices can be conducted either manually 

or with statistical software. In this study, process capability analysis is performed both 

univariately and multivariate to provide a comprehensive overview of the process’s 

ability to meet quality specifications. Table 5 presents the results of process capability 

calculations for phase I and phase II during the rainy season. 

 
Table 5.  Comparison Table of Process Capabilities in Rainy Season 

Phase Index 
Quality Characteristic 

FCaO C3S C3A Multivariate 

I 

Cp 1,32 1,11 1,82 1,42 

Cpk 1,24 0,79 1,63 1,22 

Cpl 1,41 0,79 1,63 1,26 

Cpu 1,24 1,43 2,01 1,56 

II 

Cp 1,17 1,11 1,48 1,25 

Cpk 0,69 0,40 1,18 0,76 

Cpl 1,66 1,82 1,18 1,55 

Cpu 0,69 0,40 1,77 0,95 

Given the absence of a special weight determination from the company for the three 

observed quality characteristics, it is assumed that each variable has an equal level of 

importance. Therefore, equal weights of 0.333 are assigned to each variable: FCaO, C3S, 

and C3A. As an example, the following presents a manual calculation of the multivariate 
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capability index MCp. Similar calculations are also conducted for the indices MCpk, 

MCpl, and MCpu. 
𝑀𝐶𝑝 = (0.333 × 1.27) + (0.333 × 1.11) + (0.333 × 1.70) = 1.36 

 

In the first phase of the rainy season, the production process showed quite good 

capabilities. The C3A parameter has the highest capability, indicating a stable process that 

conformed to specifications, while C3S shows the lowest capability. However, in phase II 

there was a general decline in capability. The multivariate Cpk value decreased to 0.76, 

indicating the process no longer meets the capability standard. C3S remains the worst 

performing parameter, while C3A is still relatively stable despite the decline. This 

condition indicates the need for process evaluation during the rainy season to ensure 

consistency and compliance with product specifications. 

Process capability analysis was also conducted for production during the dry 

season. The results of the capability analysis for both Phase I and Phase II are presented 

in the Table 6, which includes univariate indices (Cp, Cpk, CPL, and CPU) for each quality 

parameter, as well as multivariate indices representing the overall performance of the 

process. 

 
Table 6.  Comparison Table of Process Capabilities in Dry Season 

Phase Index 
Quality Characteristic 

FCaO C3S C3A Multivariate 

I 

Cp 1,64 1,13 2,18 1,65 

Cpk 1,60 0,94 1,63 1,19 

Cpl 1,60 0,94 2,83 1,79 

Cpu 1,69 1,32 1,02 1,34 

II 

Cp 1,62 0,88 1,72 1,41 

Cpk 1,24 0,46 1,13 0,94 

Cpl 1,99 0,46 2,30 1,58 

Cpu 1,24 1,29 1,13 1,22 

 

Based on the calculation results, the process capability in the dry season showed 

relatively good performance, most of which exceeded the threshold that indicates that the 

process is classified as capable. The multivariate index also indicates that the overall 

process is within an acceptable range, especially in phase I. Compared to the rainy season, 

the process capability in the dry season is generally better and more stable. This is 

evidenced by the increase in Cpk values for most parameters and higher multivariate Cp 

values, indicating that the production process during the dry season exhibits lower 

variability and a greater ability to meet the specified quality standards. 

 

3.6. Ishikawa Diagram 

Based on the quality control of the clinker production process, especially in phase 

II, it is known that the process has not been statistically controlled. Therefore, the 

identification of factors that have the possibility of causing out of control will be carried 

out using the Ishikawa diagram as shown in Figure 7. 
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Figure 7. Ishikawa diagram of clinker quality control 

 

 

4. CONCLUSION 

Based on the results and discussion that has been carried out, the following 

conclusions are obtained. 

1. Quality control of the variability and average of the clinker production process in the 

rainy season and dry season phase I has not been statistically controlled. After 

removing the out-of-control observation points, the Generalized Variance and T2 

Hotelling control diagrams of phase I were obtained. Using the mean and covariance 

of phase 1 that is in control, phase II monitoring is carried out in both seasons. Quality 

control of the clinker production process in phase II in the variability and average 

process is also not statistically controlled. This is evidenced by the presence of several 

observation points that are out of control on the control diagram. The most influential 

variable that causes out of control in clinker quality control is C3A due to fluctuations 

in kiln temperature. 

2. Overall, the clinker production process has improved after quality control, especially 

in stabilizing variations in the wet season. The process capability in the dry season 

shows relatively good performance because it has exceeded the threshold compared to 

the rainy season capability, 

3. Process capability analysis shows that the dry season provides better and more stable 

production performance than the wet season. In the wet season, especially phase II, 

there is a decrease in capability with multivariate process capability index values that 

do not meet the standard, especially in the C3S parameter. In contrast, during the dry 

season, most parameters showed high capability with lower variation, indicating a 

more consistent and compliant process. Process evaluation and improvement are 

required during the rainy season to maintain production quality. 
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