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Abstract 

Rainfall is a climatic factor that strongly influences human activities and plays a crucial role in decision 

making related to water resources, mobility, and disaster preparedness. High rainfall intensity may 

escalate into hydrometeorological hazards, underscoring the importance of accurate rainfall forecasting 

to support early warning and mitigation efforts. This study aims to compare the forecasting accuracy 

of monthly rainfall predictions between the Gregorian and lunar calendars using the Bidirectional Long 

Short-Term Memory (Bi-LSTM) model optimized through a grid search approach. The method is 

designed to capture temporal patterns arising from the distinct structures of two asynchronous 

calendars. Daily rainfall data from Bandung City, Indonesia, covering the period from 2000 to 2025, 

were converted into monthly series in both calendar systems. The results reveal that the Gregorian 

calendar provides significantly better forecasting performance, achieving the lowest MAPE value of 

11.60 percent at the three-month horizon. In contrast, the lunar calendar shows higher variability and 

reaches its best MAPE of 31.43 percent at the same horizon. These findings indicate that the Gregorian 

calendar offers a more stable temporal representation for rainfall forecasting in Bandung and supports 

improved predictive modeling for climate-related decision making. 
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1. INTRODUCTION 
Rainfall constitutes a fundamental component of hydrological, agricultural, and urban 

environmental systems, particularly in tropical regions such as Indonesia. The capacity to 

generate accurate rainfall forecasts is essential to support water resource management, disaster 

risk reduction, and climate-sensitive urban planning [1]. Bandung City, situated in the highland 

area of West Java, exhibits complex spatiotemporal rainfall dynamics due to its basin morphology 

and surrounding orographic structures. These characteristics generate high variability in 

precipitation, thereby reducing the effectiveness of traditional statistical forecasting approaches. 

The intensification of climate variability further underscores the need for more adaptive and data-

driven forecasting techniques in regional climatology [2]. 

Rainfall forecasting has conventionally relied on the Gregorian calendar as the primary 

temporal reference. However, several atmospheric studies have reported that lunar phases and 

gravitational atmospheric tides influence cloud formation and precipitation, indicating that the 

lunar calendar may reveal cyclic rainfall variations that are not captured by the Gregorian system 

[3]. Incorporating lunar time structures has been shown to enhance the identification of periodic 

climatic signals, resulting in improved forecast accuracy in several recent studies [4]. 

Consequently, analytical approaches that integrate both Gregorian and lunar calendars have 

emerged as a promising direction in contemporary climate modeling research [5]. 

Advancements in artificial intelligence have further strengthened rainfall forecasting 

methodologies. Deep learning models, particularly Long Short-Term Memory (LSTM) and 

Bidirectional LSTM (Bi LSTM), demonstrate superior capability in capturing nonlinear temporal 

dependencies and long-range interactions within precipitation time series [6]. Despite these 

advantages, the predictive effectiveness of such models is greatly influenced by the selection of 

hyperparameters. Systematic optimization methods such as grid search are therefore required to 

ensure robust model performance and to minimize structural bias in the learning process [7]. 

Although Bi LSTM combined with hyperparameter optimization has been employed in various 

meteorological studies, the application of an integrated Gregorian and lunar calendar framework 

remains limited, particularly in West Java. A recent investigation conducted in Bogor City 

revealed that rainfall modeling based on the lunar calendar achieved higher accuracy than that 

based solely on the Gregorian calendar, thereby highlighting the potential benefits of dual 

temporal structures [8]. Bandung City, despite possessing distinct climatological and 

topographical characteristics, has not yet been examined using a dual calendar and a deep learning 

optimized forecasting framework. This gap indicates the need for more comprehensive research 

that integrates alternative temporal representations with advanced predictive modeling 

techniques. 

To address this research gap, the present study proposes an enhanced rainfall forecasting 

framework for Bandung City by integrating Gregorian and lunar calendar time series into a Bi 

LSTM model optimized through grid search. The scientific contribution of this work lies in the 

formulation of a dual calendar based temporal transformation combined with systematic 

hyperparameter optimization, which collectively aims to improve forecasting accuracy beyond 

that achieved by conventional single calendar deep learning models. The outcomes of this 

research are expected to advance regional climate forecasting methodologies and provide robust 

analytical support for climate resilient urban planning in Bandung City [9]. 

2. METHOD 
2.1. Data Acquisition 

Daily rainfall data for Bandung City were obtained from the official portal of the Indonesian 

Meteorology, Climatology, and Geophysics Agency (BMKG). The daily rainfall series is 

represented as 𝐷 = {𝑟𝑡    ∣   𝑡 = 1,2, … , 𝑇}, where 𝑟𝑡denotes the rainfall on day 𝑡. Long-term 

datasets are essential because extended temporal records allow richer exploration of seasonal and 

periodic features, which is critical for time-series modeling using deep learning methods such as 

Long Short-Term Memory (LSTM). Similar approaches have been adopted in studies of rainfall 

prediction in tropical regions, including work in Jambi City, Indonesia, using daily rainfall data 

from 2016–2024 [10]. 

Before analysis, all records were validated and preprocessed to handle missing values, 

ensure continuity and consistency, and normalize the data. This process ensures that the rainfall 
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series meets quality standards necessary for predictive modeling, reducing biases caused by 

incomplete or erroneous observations [11]. Thus, the daily series 𝐷can be considered a reliable 

representation of historical rainfall complete, continuous, and of sufficient quality suitable as 

univariate input for LSTM-based predictive modeling. 

2.2. Data Preprocessing 

 Preprocessing included missing value handling, normalization, and temporal aggregation. 

2.2.1. Misssing Value Treatment 

Missing values were imputed using mean imputation: 

𝑟𝑡
∗ = {

𝑟𝑡 , 𝑖𝑓 𝑟𝑡 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑟̅, 𝑖𝑓 𝑟𝑡  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

 

Where 𝑟̅ is the mean of available observations. This method is widely used in 

hydrometeorological data processing and preserves statistical characteristics of the dataset [12]. 

2.2.2. Normalization 

Min Max Scaling was applied to stabilize model convergence: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                                          (1) 

Denormalization after prediction used: 

𝑥𝑑𝑒𝑛𝑜𝑟𝑚 = 𝑥𝑛𝑜𝑟𝑚(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑥𝑚𝑖𝑛                                     (2) 

Normalization is essential in deep learning to ensure numerical stability during 

optimization [11]. 

2.3. Gregorian to Lunar Calendar Transformation 

Transformation into the lunar calendar followed a structured temporal segmentation 

approach that reconstructs monthly rainfall totals according to lunar month boundaries. 

Monthly rainfall in calendar system 𝐶 is defined as: 

𝑅𝑚
𝐶 = ∑ 𝑟𝑡

𝑡∈𝑀𝐶(𝑚)

                                                                    (3) 

Where: 

1. 𝑅𝑚
𝐶 : rainfall in month 𝑚for calendar 𝐶 

2. 𝑀𝐶(𝑚): set of days in month 𝑚for Gregorian or lunar system 

The dual calendar representation is: 

𝑅𝑑𝑢𝑎𝑙(𝑚) = {𝑅𝑔𝑟𝑒𝑔(𝑚), 𝑅𝑙𝑢𝑛𝑎𝑟(𝑚)}                                           (4) 

The rationale for adopting this dual-calendar approach is supported by empirical studies that 

found statistically significant correlations between lunar phases (or lunar cycles) and rainfall 

variability. For instance, a recent study covering 42 years of rainfall data for a major city in 

Pakistan reported that incorporating lunar-phase information alongside meteorological factors 

improved the performance of rainfall/extreme-rainfall prediction models [13]. Another study 

across a very large network of weather stations in Mexico showed that historical cumulative 

rainfall exhibited systematic variation with lunar phases: rainfall was most frequently highest 

during the New Moon phase and lowest during Waning-Crescent (and related) phases [14].  

 

2.4. Bidirectional Long Short-Term Memory (Bi-LSTM) 

Long Short-Term Memory (LSTM) networks were originally introduced to overcome the 

vanishing gradient limitation commonly encountered in standard recurrent neural networks, 

particularly when modeling long temporal sequences. Each LSTM cell is equipped with three 

gating mechanisms—namely the forget gate, input gate, and output gate—which regulate how 

information is retained, updated, or discarded throughout the learning process. Owing to this 

structure, LSTM has been successfully applied in various domains including sentiment 

classification [15], analysis of public responses to COVID-19 vaccination [16], and human 

activity recognition using smartphone sensor data [17]. Despite these advantages, LSTM 

architectures often involve high computational costs due to their extensive internal operations, 

motivating the exploration of more efficient variants with comparable predictive power. One such 

extension is the Bidirectional LSTM (Bi-LSTM). 

Bi-LSTM was introduced by Graves and Schmidhuber as an enhancement to both traditional 

recurrent neural networks and the unidirectional LSTM architecture, which propagate information 

solely forward in time. In such models, the hidden representation at time step t depends only on 
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prior temporal information. In contrast, Bi-LSTM incorporates two separate LSTM layers: one 

processing the input sequence in the forward direction and another processing it in reverse. This 

bidirectional structure enables the model to extract contextual information from both past and 

future observations within a given sequence, thereby providing a richer temporal representation 

[18]. The additional feature extraction performed by these dual layers has been shown to 

substantially improve model performance across a variety of prediction tasks [19]. 

By learning temporal dependencies in two directions simultaneously, Bi-LSTM is able to 

preserve information from long-range sequences more effectively than its unidirectional 

counterpart. Its architectural design prevents the model from prematurely forgetting earlier or 

later observations during training, thus offering improved stability in long sequence modeling 

[20]. As a result, Bi-LSTM often demonstrates superior predictive accuracy compared to 

conventional LSTM networks [28]. The general architecture of the Bi-LSTM model is illustrated 

in Figure 1 [21]. 

In this architecture, the forward LSTM layer operates in the same order as a standard LSTM, 

producing hidden states at t‒1, t, and t+1. Meanwhile, the backward layer processes the same 

sequence in reverse order, generating hidden states from t+1 backward to t‒1. These two hidden 

states, denoted by the forward component ℎ𝑡
→and the backward component ℎ𝑡

←, are jointly utilized 

to form a more comprehensive output representation. According to [22], the hidden state updates 

for the two directions can be expressed as: 

ℎ𝑡
→ = LSTM(𝑥𝑡 , ℎ𝑡−1

→ ),                         ℎ𝑡
← = LSTM(𝑥𝑡 , ℎ𝑡+1

← )                                 (5) 

 

The final output at time t is then computed by combining the contributions of both directional 

hidden states as formulated in [23]: 

𝑦𝑡 = 𝑈𝑦ℎ𝑡
→ + 𝑊𝑦ℎ𝑡

← + 𝑏𝑦                                                (6) 

 

where 𝑈𝑦and 𝑊𝑦represent the weight matrices associated with the forward and backward outputs, 

respectively, and 𝑏𝑦denotes the output bias. 

The application of Bi-LSTM has been widely documented in multiple fields. Prior studies 

have utilized this architecture for forecasting wastewater flow rates [6], predicting the 

development of tropical cyclones [24], estimating soil and groundwater moisture content [25], 

and modeling streamflow variations in major river basins [26]. These studies collectively 

demonstrate the capability of Bi-LSTM to deliver enhanced accuracy in time series prediction 

tasks that exhibit complex temporal dependencies. 

 

Figure 1. Architecture of Bidirectonal LSTM (Bi-LSTM) 

 

2.5. Hyperparameter Optimization Using Grid Search 

In constructing machine learning models such as Bi-LSTM, selecting an appropriate set of 

hyperparameters is essential because these parameters directly influence model performance, 

stability, and learning efficiency. Hyperparameter tuning enables the model to operate under its 

optimal configuration by systematically evaluating predefined parameter combinations [7]. In this 
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study, the Bi-LSTM architecture is enhanced through an integrated grid search procedure, as 

illustrated in Figure 3, to ensure that the resulting forecasting model achieves the highest possible 

accuracy. 

The Bi-LSTM–grid search architecture consists of several key components: an input layer, 

a Bi-LSTM processing layer, a dropout layer, a dense layer, an output layer, and a hyperparameter 

search module. The input layer receives the sequential rainfall data, while the Bi-LSTM layer 

performs dual-direction temporal feature extraction. To mitigate overfitting, dropout 

regularization is inserted between layers, reducing the co-adaptation of neurons during training 

[5]. The dense layer acts as the final transformation layer that maps the extracted features into 

numerical predictions, and the output layer generates the final rainfall forecast. 

The grid search procedure systematically explores the predefined hyperparameter space: 

number of hidden neurons (hidden units), batch size, number of epochs, dropout rate; and where 

applicable learning rate and optimizer type. For each candidate combination, the model is trained 

and evaluated using k-fold cross-validation. In this study, a 5-fold cross-validation scheme is 

adopted to balance computational cost and validation robustness. The configuration that achieves 

the lowest average validation error is selected as the optimal hyperparameter set. 

The use of cross-validation in hyperparameter search ensures robust evaluation: the dataset 

is partitioned into k subsets (folds); in each iteration, the model is trained on k − 1 subsets and 

validated on the remaining subset. This process repeats k times, each fold serving once as 

validation, and the performance is averaged across folds thus reducing variance in performance 

estimates and mitigating overfitting risks. 

The effectiveness of hyperparameter tuning via grid search (or similar systematic search) for 

(Bi-)LSTM-based time-series forecasting has been demonstrated in recent literature. For instance, 

in the context of photovoltaic power forecasting, Sutarna et al. (2024) showed that Bi-LSTM with 

optimized hyperparameters (optimizer, learning rate, activation function) significantly improved 

forecasting accuracy [27]. In renewable-energy time series forecasting (wind power), a hybrid 

RNN-LSTM optimized with Grid Search + cross-validation also achieved high accuracy[28]. In 

a broader review of rainfall forecasting using AI techniques, hyperparameter tuning was reported 

to play an important role in minimizing forecasting errors in a substantial fraction of studies [29].  

Therefore, employing Grid Search combined with cross-validation in this study provides a 

methodologically sound and empirically justified approach to finding optimal hyperparameter 

configurations for the Bi-LSTM rainfall forecasting model, improving both accuracy and 

generalization capability. 

Table 1. Parameter Description 

Parameter Value 

Neuron Hidden 5, 10, 15, 20 

Batch 4, 8,16, 32 

Epoch 50, 100, 150. 200 

Dropout 0.1, 0.2 
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Figure 2. Proposed model Bi-LSTM-Grid Search 

2.6. Model Evaluation 

Two primary evaluation metrics were used: Mean Absolute Percentage Error (MAPE) and 

Root Mean Square Error (RMSE). 

MAPE 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|                                                     (10) 

𝑛

𝑖=1

 

 

RMSE 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                                                        (11) 

Where 𝑦𝑖 denotes the observed rainfall and 𝑦̂𝑖 denotes the model’s forecast at time 𝑖. 
MAPE gives the average percentage error relative to the observed values, making it easy to 

interpret how large the error is in relative (percentage) terms, which is often meaningful in rainfall 

forecasting. RMSE gives a measure of the magnitude of the forecast error in the same units as the 

target variable (e.g. mm of rainfall), and penalizes larger errors more heavily, which is useful for 

capturing large deviations. 

Several recent studies on rainfall forecasting use these metrics for model evaluation. For 

example, in a monthly rainfall forecasting study in Chuping, the authors used MAE, RMSE and 

MAPE to evaluate model performance in both temperature and rainfall forecasting [30].  

Another recent research applying a hybrid ANN–Fuzzy model for annual rainfall prediction in 

Indonesia reports RMSE (alongside MAE and R²) as one of primary evaluation metrics [31]. 

Therefore, in this study, using MAPE and RMSE as primary evaluation metrics is aligned 

with common practice in rainfall and hydrometeorological forecasting literature, and provides 

complementary perspectives on forecast accuracy: percentage-based relative error (MAPE) and 

absolute error magnitude (RMSE) 

3. RESULTS AND DISCUSSION  
This section presents the forecasting performance of the Bi-LSTM model developed under 

two calendar systems Gregorian and lunar. The analysis includes hyperparameter optimization, 

model evaluation using mean absolute percentage error (MAPE), and an examination of 

performance variation across forecasting horizons. All tables and figures are inserted following 

standard scientific reporting conventions. 

3.1. Calendar Conversion 

The data used in this study consist of daily rainfall observations recorded from 1 January 2000 

to 31 August 2025 in Bandung City. These observations were obtained from the Meteorological, 

Climatological, and Geophysical Agency. The daily rainfall values in the Gregorian calendar were 

first aggregated into monthly totals to form the Gregorian-based monthly time series. The 
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conversion process produced 273 monthly observations over the twenty-five-year period, as 

presented in Table 2. 

Subsequently, the same daily rainfall dataset was transformed into a lunar-based monthly 

series using the calendar conversion procedure described earlier. Due to differences in month 

length and calendar segmentation between the lunar and Gregorian systems, the lunar-based 

aggregation resulted in a total of 286 months, as shown in Table 3. This increase in the number 

of months reflects the shorter average duration of lunar months and the distinct structural 

properties of the lunar calendar. The conversion outcome confirms that the two temporal 

frameworks produce different time series representations, which are further analyzed in the 

subsequent forecasting evaluation. 

Table 1. Monthly Rainfall Data (mm) Based on The Georgian Calendar 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2000 261.4 140.7 135.7 259 240.1 47.4 80.2 19.8 44.8 152.4 317.1 70.6 

2001 219 248.9 208 244.3 82.9 87.5 187.2 52.3 107 409.7 526.4 75.5 

2002 364.8 81.4 344.1 183.5 55 54.1 121.9 37.8 10.3 20.8 195.5 457.2 

2003 69.1 265.6 359 136 111.7 37.4 40.5 74.7 76.3 320.2 185.6 203.2 

2004 195.6 191.2 240.8 301.8 286.5 76.2 34.4 11.4 84.7 83.5 184.4 238.9 

2005 168.2 416.7 307.7 213.5 190.6 201 76.3 64.2 145.3 114.9 225.8 204.7 

2006 299.9 282.3 53.4 232.6 89.7 32.2 45 0 0.3 57.1 109.3 499.8 

2007 127.5 405.7 105.4 472 88.6 164.1 11 0 44.1 98.4 301.7 359.7 

2008 240.9 116.5 242.4 297.1 165.4 65.3 3.6 58.6 41.5 137 277.3 332.8 

2009 208.5 200.5 365.7 165.6 183.8 101 24.2 0.5 24 234.5 318.2 271.1 

2010 353.3 557.1 531 93 345 131.9 220.8 106.1 424.4 292.2 401.4 237.5 

2011 63 76.7 89.4 381.5 193.4 117.6 77.2 3.1 102.8 103.6 321.4 259 

2012 82.9 303.7 155.5 290.8 257.1 60.5 34.2 0 27 125 537 636.9 

2013 216.9 249.6 304.8 285.8 170.9 231.5 159.1 74.3 171.7 35.8 64.1 325.6 

2014 272.7 83.4 260.6 195.1 176.7 173 164.8 119.8 0.6 60.8 246.8 246.8 

2015 167.3 179.7 248 231 208.1 56.4 0.3 50.4 43.2 34.5 419.4 301.8 

2016 391.5 387.5 376.2 523 317.8 139.3 182.3 128.7 286.2 362.3 442.5 62.1 

2017 68.3 196.3 396.5 210.8 222.3 68.4 7.9 45.7 90.8 345.3 442 129.9 

2018 190.8 239.3 292 297.5 123.9 33.4 0.3 38.9 40.8 124.8 483.2 322.9 

2019 231.4 269.3 223.3 298.9 243 36.9 13.4 0.2 55 84.2 270.9 315.5 

2020 207.6 336.6 290.8 271.4 292.3 30.3 63.7 41.6 87.7 327.3 207.3 261.8 

2021 148.6 153.9 309 177.2 238.9 92.4 33.2 91.8 73 218.4 454.3 198.5 

2022 59.5 117.1 238.9 336.2 146.9 150.6 82.2 29.9 182.2 366.7 307.2 277.7 

2023 68.3 111.1 199.8 275.5 268.5 89.8 24 29.7 18.2 71.2 239.3 366.4 

2024 328.5 263 275 213.4 69.8 156.8 17 53.2 135.5 62.8 477.6 89.7 

2025 225.5 131.4 274.1 233.1 319 146.5 112.9 211.9     

 

Table 3. Conversion of Monthly Rainfall (mm) Data Based on The Lunar Calendar. 

Year Muh saf rawal rakhir juwal jukhir rajab syaban ram syawal dzq Dzh 

1420         65.9 265.8 73.9 191.2 

1421 273.8 166.3 52.4 75.2 13.3 51.3 117.5 342.7 58.4 119.5 313.2 170 

1422 323.7 81.7 86.7 179.8 76.7 77 179.6 484.4 335.6 114.2 315.9 204.1 

1423 238.2 173.4 54.1 63.5 83.4 37.8 28.1 9.5 192.2 454.7 91.1 259.5 

1424 342.4 137.4 110.3 37.4 40.5 19.9 131.1 252.4 185.6 258.1 127.1 215.6 

1425 251 247.2 291 167.9 39.4 0.2 62.4 117.2 64.6 155.7 221.9 246.2 

1426 411.2 362.8 142.1 148.9 179.6 117 11.5 160.5 107.1 222 201.1 284.7 



598 

 

1427 297.5 51.2 228.6 68.6 59.5 41.1 3.9 0.3 6.1 279.3 235.6 162.3 

1428 366.9 247.1 241.2 333.3 97.7 83 2.2 3.7 41.7 279.3 235.6 301 

1429 199.9 139.7 258.2 276 151.4 44.9 10.8 51.4 41.5 136.8 266.8 343.5 

1430 177.7 226.5 328.8 164.6 196.5 127 26.6 2.1 10 174.8 147.4 347.9 

1431 410.3 503.4 373.5 399.7 166 266.2 173.6 149.8 185 319 312.9 476.5 

1432 126.9 84.9 56.9 91.9 403.1 210.2 87 63.4 3.1 102.8 71.2 296 

1433 273.5 102.3 234.8 166.1 343.3 265.7 80.2 8.3 26.2 8 96 148 

1434 473.3 255.1 178.1 396.6 191.5 137.5 207.4 385.5 11.5 171.1 171.7 36.8 

1435 64.1 325.6 272.7 84.4 259.6 195.1 176.7 173 164.7 68.1 52.4 4.8 

1436 263.5 246.8 67.5 317.3 97.6 388 215.9 70.5 6 50.7 0 76.8 

1437 147.5 371 358.8 371.3 353.6 400.9 433.1 302.3 156.6 159.2 79 335.7 

1438 329 472.3 65.8 52 52 146.8 638.7 223 101.6 8.4 16.4 32 

1439 222.6 489.8 218.4 234.6 132.1 344.4 173.5 254 79.4 33.4 8.7 50.4 

1440 28.9 198.3 424 314.9 223.3 358 193 273.6 209 31.6 13.4 0.2 

1441 55 14.6 303.4 291.7 192.6 369.5 192.8 381.5 307 39.5 53.3 58 

1442 27.1 98.8 356.9 199.4 257.4 191 172.4 232.8 161.8 218.4 110.5 12.3 

1443 90.3 82.4 352 318.6 192.1 64.5 112.5 252.7 329.7 139.2 150.6 82.2 

1444 28.4 183.7 361.9 193.6 354.2 96.1 86.9 201 174.8 410.1 49.6 56.9 

1445 42.2 0.2 28.1 163.8 281.8 450.4 138.2 299.5 230.9 188.8 149.4 73.1 

1446 58.8 10.3 134 94.3 446.1 89.7 223.4 133.5 274.1 228.6 308.3 148 

1447 120 176.6 41.9          

 

3.2. Hyperparameter Optimization Results 

Hyperparameter tuning was performed using grid search for four forecasting horizons: 3, 6, 

12, and 24 months. The optimal configurations for the Gregorian calendar are presented in Table 

4, while the results for the lunar calendar are given in Table 5. 

Table 4. Results of Bi LSTM Grid Search Tuning Parameters on the Gregorian 

Calendar 

Forecasting length Neuron Batch Epoch Dropout MSE 

3 20 4 200 0.1 0.02889 

6 20 4 200 0.1 0.03849 

12 15 4 200 0.1 0.03054 

18 20 4 200 0.1 0.02378 

24 15 4 200 0.1 0.02343 

The Gregorian-based model shows relatively stable optimal neuron counts between 15 and 

20 across all forecasting horizons. The lowest MSE values are obtained at 18 and 24 months 

(0.02378 and 0.02343, respectively), indicating that the Gregorian calendar provides more reliable 

forecasting performance at longer prediction intervals. In contrast, short-term forecasting 

horizons (3 and 6 months) exhibit slightly higher error levels, suggesting that short-range rainfall 

fluctuations are less effectively captured using Gregorian temporal segmentation alone. 

Table 5. Results of Bi LSTM Grid Search Tuning Parameters on the Lunar Calendar 

Forecasting length Neuron Batch Epoch Dropout MSE 

3 20 4 200 0.1 0.02432 

6 20 4 200 0.1 0.01876 

12 15 4 200 0.1 0.03478 

18 20 4 200 0.2 0.03528 

24 15 4 200 0.1 0.02379 
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The lunar-based model achieves its lowest MSE at 6 months (0.01876), indicating strong 

sensitivity to semi-seasonal rainfall cycles. Short-term forecasting (3–6 months) benefits 

substantially from the lunar temporal structure, while performance decreases at longer horizons 

(12–18 months), where MSE values rise above 0.03. Interestingly, the 24-month forecasting 

horizon again shows improved performance (0.02379), comparable to the Gregorian model, 

suggesting that certain long-term rainfall oscillations are also detectable within lunar-aligned time 

segmentation. 

3.3. Comparative Evaluation of Forecasting Accuracy 

The forecasting accuracy of both models was evaluated using MAPE. The results are shown 

in Table 6. 

Table 6. MAPE Value in the Gregorian and Lunar Calendars 

Forecasting Length MAPE Gregorian (%) MAPE Lunar (%) 

3 11.60 31.43 

6 33.98 58.57 

12 33.40 65.47 

18 77.70 84.24 

24 77.15 54.57 

 

The comparative analysis based on MAPE values demonstrates that the Bi-LSTM model 

employing the Gregorian calendar provides superior forecasting performance when compared 

with the model structured under the lunar calendar. Across almost all forecasting horizons, the 

Gregorian model consistently produces lower error rates. For the short-term horizons of three and 

six months, the Gregorian calendar achieves MAPE values of 11.60 percent and 33.98 percent, 

whereas the lunar calendar shows substantially higher errors of 31.43 percent and 58.57 percent. 

A similar pattern is observed in the twelve-month horizon, with the Gregorian model reaching 

33.40 percent and the lunar calendar exceeding 65 percent. These results indicate that Gregorian-

based temporal segmentation is more effective in capturing rainfall variability for short to medium 

forecasting periods. 

At the eighteen-month horizon, the performance gap becomes more evident. The lunar model 

records a MAPE value of 84.24 percent, while the Gregorian model achieves 77.70 percent. This 

outcome further confirms the greater stability of the Gregorian structure in modeling 

intermediate-range rainfall dynamics. 

Although the lunar model attains a lower MAPE value than the Gregorian model at the 

twenty-four-month horizon, this single instance does not alter the overall conclusion. The lunar 

calendar performs less accurately in four out of five forecasting horizons and displays greater 

variability across the evaluation period. In contrast, the Gregorian model demonstrates more 

consistent and predictable behavior, avoiding the large fluctuations in error that characterize the 

lunar-based forecasts. 

Considering all forecasting horizons collectively, the Gregorian calendar provides a more 

coherent and stable temporal foundation for rainfall prediction in Bandung City. The isolated 

improvement observed in the longest horizon of the lunar model does not outweigh its broader 

pattern of underperformance. Thus, the Gregorian calendar remains the more reliable choice for 

practical and operational rainfall forecasting applications. 

 

4. CONCLUSION (11 PT) 
This study examined the forecasting performance of Bi-LSTM models using Gregorian and 

lunar calendar structures for monthly rainfall prediction in Bandung City. The dual-calendar 

approach was developed to evaluate whether alternative temporal segmentation could enhance 

predictive accuracy. The results demonstrate clear compatibility between what was expected in 

the Introduction and the empirical findings presented in the Results and Discussion. 

The analysis shows that the Gregorian calendar provides more accurate and stable 

forecasting performance across nearly all prediction horizons. The MAPE evaluation confirms 
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that the Gregorian-based model consistently outperforms the lunar model in four out of five 

forecasting lengths, particularly within short and medium horizons where rainfall variability is 

strongly governed by seasonal and monsoonal cycles. Although the lunar model achieves a lower 

error at the longest forecast horizon, this single result does not outweigh its overall higher error 

levels and instability in other periods. Therefore, the Gregorian calendar remains the more reliable 

temporal structure for rainfall forecasting in this region. 

The findings of this study highlight the importance of selecting an appropriate temporal 

framework when modeling hydrometeorological variables. Future research may expand this 

approach by incorporating additional climate indicators, integrating attention-based deep learning 

architectures, or applying hybrid calendar models that combine both solar and lunar temporal 

cues. Further application of this methodology to flood early warning systems or climate adaptive 

planning tools may also provide valuable operational benefits for decision-making in Bandung 

City and similar tropical regions. 
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