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Abstract

Rainfall is a climatic factor that strongly influences human activities and plays a crucial role in decision
making related to water resources, mobility, and disaster preparedness. High rainfall intensity may
escalate into hydrometeorological hazards, underscoring the importance of accurate rainfall forecasting
to support early warning and mitigation efforts. This study aims to compare the forecasting accuracy
of monthly rainfall predictions between the Gregorian and lunar calendars using the Bidirectional Long
Short-Term Memory (Bi-LSTM) model optimized through a grid search approach. The method is
designed to capture temporal patterns arising from the distinct structures of two asynchronous
calendars. Daily rainfall data from Bandung City, Indonesia, covering the period from 2000 to 2025,
were converted into monthly series in both calendar systems. The results reveal that the Gregorian
calendar provides significantly better forecasting performance, achieving the lowest MAPE value of
11.60 percent at the three-month horizon. In contrast, the lunar calendar shows higher variability and
reaches its best MAPE of 31.43 percent at the same horizon. These findings indicate that the Gregorian
calendar offers a more stable temporal representation for rainfall forecasting in Bandung and supports
improved predictive modeling for climate-related decision making.
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1. INTRODUCTION

Rainfall constitutes a fundamental component of hydrological, agricultural, and urban
environmental systems, particularly in tropical regions such as Indonesia. The capacity to
generate accurate rainfall forecasts is essential to support water resource management, disaster
risk reduction, and climate-sensitive urban planning [1]. Bandung City, situated in the highland
area of West Java, exhibits complex spatiotemporal rainfall dynamics due to its basin morphology
and surrounding orographic structures. These characteristics generate high variability in
precipitation, thereby reducing the effectiveness of traditional statistical forecasting approaches.
The intensification of climate variability further underscores the need for more adaptive and data-
driven forecasting techniques in regional climatology [2].

Rainfall forecasting has conventionally relied on the Gregorian calendar as the primary
temporal reference. However, several atmospheric studies have reported that lunar phases and
gravitational atmospheric tides influence cloud formation and precipitation, indicating that the
lunar calendar may reveal cyclic rainfall variations that are not captured by the Gregorian system
[3]. Incorporating lunar time structures has been shown to enhance the identification of periodic
climatic signals, resulting in improved forecast accuracy in several recent studies [4].
Consequently, analytical approaches that integrate both Gregorian and lunar calendars have
emerged as a promising direction in contemporary climate modeling research [5].

Advancements in artificial intelligence have further strengthened rainfall forecasting
methodologies. Deep learning models, particularly Long Short-Term Memory (LSTM) and
Bidirectional LSTM (Bi LSTM), demonstrate superior capability in capturing nonlinear temporal
dependencies and long-range interactions within precipitation time series [6]. Despite these
advantages, the predictive effectiveness of such models is greatly influenced by the selection of
hyperparameters. Systematic optimization methods such as grid search are therefore required to
ensure robust model performance and to minimize structural bias in the learning process [7].

Although Bi LSTM combined with hyperparameter optimization has been employed in various
meteorological studies, the application of an integrated Gregorian and lunar calendar framework
remains limited, particularly in West Java. A recent investigation conducted in Bogor City
revealed that rainfall modeling based on the lunar calendar achieved higher accuracy than that
based solely on the Gregorian calendar, thereby highlighting the potential benefits of dual
temporal structures [8]. Bandung City, despite possessing distinct climatological and
topographical characteristics, has not yet been examined using a dual calendar and a deep learning
optimized forecasting framework. This gap indicates the need for more comprehensive research
that integrates alternative temporal representations with advanced predictive modeling
techniques.

To address this research gap, the present study proposes an enhanced rainfall forecasting
framework for Bandung City by integrating Gregorian and lunar calendar time series into a Bi
LSTM model optimized through grid search. The scientific contribution of this work lies in the
formulation of a dual calendar based temporal transformation combined with systematic
hyperparameter optimization, which collectively aims to improve forecasting accuracy beyond
that achieved by conventional single calendar deep learning models. The outcomes of this
research are expected to advance regional climate forecasting methodologies and provide robust
analytical support for climate resilient urban planning in Bandung City [9].

2. METHOD
2.1. Data Acquisition

Daily rainfall data for Bandung City were obtained from the official portal of the Indonesian
Meteorology, Climatology, and Geophysics Agency (BMKG). The daily rainfall series is
represented as D ={r; | t=1,2,..,T}, where rydenotes the rainfall on day t. Long-term
datasets are essential because extended temporal records allow richer exploration of seasonal and
periodic features, which is critical for time-series modeling using deep learning methods such as
Long Short-Term Memory (LSTM). Similar approaches have been adopted in studies of rainfall
prediction in tropical regions, including work in Jambi City, Indonesia, using daily rainfall data
from 2016-2024 [10].

Before analysis, all records were validated and preprocessed to handle missing values,
ensure continuity and consistency, and normalize the data. This process ensures that the rainfall
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series meets quality standards necessary for predictive modeling, reducing biases caused by
incomplete or erroneous observations [11]. Thus, the daily series Dcan be considered a reliable
representation of historical rainfall complete, continuous, and of sufficient quality suitable as
univariate input for LSTM-based predictive modeling.

2.2. Data Preprocessing
Preprocessing included missing value handling, normalization, and temporal aggregation.
2.2.1. Misssing Value Treatment
Missing values were imputed using mean imputation:
.« (To if 1 is observed
e = { T, if 1y is missing
Where 7 is the mean of available observations. This method is widely used in
hydrometeorological data processing and preserves statistical characteristics of the dataset [12].
2.2.2. Normalization
Min Max Scaling was applied to stabilize model convergence:
Xy = i )
Xmax — Xmin
Denormalization after prediction used:
Xdenorm = Xnorm (xmax - xmin) + Xmin (2)
Normalization is essential in deep learning to ensure numerical stability during
optimization [11].
2.3. Gregorian to Lunar Calendar Transformation
Transformation into the lunar calendar followed a structured temporal segmentation
approach that reconstructs monthly rainfall totals according to lunar month boundaries.

Monthly rainfall in calendar system C is defined as:
Rf, = z T 3)
teEMc(m)
Where:
1. R, rainfall in month mfor calendar C
2. M(m): set of days in month mfor Gregorian or lunar system

The dual calendar representation is:

Rauar(m) = {Rgreg (m)iRlunar(m)} 4)

The rationale for adopting this dual-calendar approach is supported by empirical studies that
found statistically significant correlations between lunar phases (or lunar cycles) and rainfall
variability. For instance, a recent study covering 42 years of rainfall data for a major city in
Pakistan reported that incorporating lunar-phase information alongside meteorological factors
improved the performance of rainfall/extreme-rainfall prediction models [13]. Another study
across a very large network of weather stations in Mexico showed that historical cumulative
rainfall exhibited systematic variation with lunar phases: rainfall was most frequently highest
during the New Moon phase and lowest during Waning-Crescent (and related) phases [14].

2.4. Bidirectional Long Short-Term Memory (Bi-LSTM)

Long Short-Term Memory (LSTM) networks were originally introduced to overcome the
vanishing gradient limitation commonly encountered in standard recurrent neural networks,
particularly when modeling long temporal sequences. Each LSTM cell is equipped with three
gating mechanisms—namely the forget gate, input gate, and output gate—which regulate how
information is retained, updated, or discarded throughout the learning process. Owing to this
structure, LSTM has been successfully applied in various domains including sentiment
classification [15], analysis of public responses to COVID-19 vaccination [16], and human
activity recognition using smartphone sensor data [17]. Despite these advantages, LSTM
architectures often involve high computational costs due to their extensive internal operations,
motivating the exploration of more efficient variants with comparable predictive power. One such
extension is the Bidirectional LSTM (Bi-LSTM).

Bi-LSTM was introduced by Graves and Schmidhuber as an enhancement to both traditional
recurrent neural networks and the unidirectional LSTM architecture, which propagate information
solely forward in time. In such models, the hidden representation at time step t depends only on
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prior temporal information. In contrast, Bi-LSTM incorporates two separate LSTM layers: one
processing the input sequence in the forward direction and another processing it in reverse. This
bidirectional structure enables the model to extract contextual information from both past and
future observations within a given sequence, thereby providing a richer temporal representation
[18]. The additional feature extraction performed by these dual layers has been shown to
substantially improve model performance across a variety of prediction tasks [19].

By learning temporal dependencies in two directions simultaneously, Bi-LSTM is able to
preserve information from long-range sequences more effectively than its unidirectional
counterpart. Its architectural design prevents the model from prematurely forgetting earlier or
later observations during training, thus offering improved stability in long sequence modeling
[20]. As a result, Bi-LSTM often demonstrates superior predictive accuracy compared to
conventional LSTM networks [28]. The general architecture of the Bi-LSTM model is illustrated
in Figure 1 [21].

In this architecture, the forward LSTM layer operates in the same order as a standard LSTM,
producing hidden states at t—1, t, and t+1. Meanwhile, the backward layer processes the same
sequence in reverse order, generating hidden states from t+1 backward to t—1. These two hidden
states, denoted by the forward component h;”and the backward component h;, are jointly utilized
to form a more comprehensive output representation. According to [22], the hidden state updates
for the two directions can be expressed as:

¢ = LSTM(x,, he’4), ¢ = LSTM(x¢, hiiq (5)

The final output at time t is then computed by combining the contributions of both directional
hidden states as formulated in [23]:

ye = Uyhy + Wyhi + b, 6)

where Uy and W, represent the weight matrices associated with the forward and backward outputs,
respectively, and by denotes the output bias.

The application of Bi-LSTM has been widely documented in multiple fields. Prior studies
have utilized this architecture for forecasting wastewater flow rates [6], predicting the
development of tropical cyclones [24], estimating soil and groundwater moisture content [25],
and modeling streamflow variations in major river basins [26]. These studies collectively
demonstrate the capability of Bi-LSTM to deliver enhanced accuracy in time series prediction
tasks that exhibit complex temporal dependencies.
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Figure 1. Architecture of Bidirectonal LSTM (Bi-LSTM)

2.5. Hyperparameter Optimization Using Grid Search

In constructing machine learning models such as Bi-LSTM, selecting an appropriate set of
hyperparameters is essential because these parameters directly influence model performance,
stability, and learning efficiency. Hyperparameter tuning enables the model to operate under its
optimal configuration by systematically evaluating predefined parameter combinations [7]. In this
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study, the Bi-LSTM architecture is enhanced through an integrated grid search procedure, as
illustrated in Figure 3, to ensure that the resulting forecasting model achieves the highest possible
accuracy.

The Bi-LSTM-—grid search architecture consists of several key components: an input layer,
a Bi-LSTM processing layer, a dropout layer, a dense layer, an output layer, and a hyperparameter
search module. The input layer receives the sequential rainfall data, while the Bi-LSTM layer
performs dual-direction temporal feature extraction. To mitigate overfitting, dropout
regularization is inserted between layers, reducing the co-adaptation of neurons during training
[5]. The dense layer acts as the final transformation layer that maps the extracted features into
numerical predictions, and the output layer generates the final rainfall forecast.

The grid search procedure systematically explores the predefined hyperparameter space:
number of hidden neurons (hidden units), batch size, number of epochs, dropout rate; and where
applicable learning rate and optimizer type. For each candidate combination, the model is trained
and evaluated using k-fold cross-validation. In this study, a 5-fold cross-validation scheme is
adopted to balance computational cost and validation robustness. The configuration that achieves
the lowest average validation error is selected as the optimal hyperparameter set.

The use of cross-validation in hyperparameter search ensures robust evaluation: the dataset
is partitioned into k subsets (folds); in each iteration, the model is trained on k—/ subsets and
validated on the remaining subset. This process repeats k times, each fold serving once as
validation, and the performance is averaged across folds thus reducing variance in performance
estimates and mitigating overfitting risks.

The effectiveness of hyperparameter tuning via grid search (or similar systematic search) for
(Bi-)LSTM-based time-series forecasting has been demonstrated in recent literature. For instance,
in the context of photovoltaic power forecasting, Sutarna et al. (2024) showed that Bi-LSTM with
optimized hyperparameters (optimizer, learning rate, activation function) significantly improved
forecasting accuracy [27]. In renewable-energy time series forecasting (wind power), a hybrid
RNN-LSTM optimized with Grid Search + cross-validation also achieved high accuracy[28]. In
a broader review of rainfall forecasting using Al techniques, hyperparameter tuning was reported
to play an important role in minimizing forecasting errors in a substantial fraction of studies [29].

Therefore, employing Grid Search combined with cross-validation in this study provides a
methodologically sound and empirically justified approach to finding optimal hyperparameter
configurations for the Bi-LSTM rainfall forecasting model, improving both accuracy and
generalization capability.

Table 1. Parameter Description

Parameter Value
Neuron Hidden 5,10, 15, 20
Batch 4, 8,16, 32
Epoch 50, 100, 150. 200
Dropout 0.1,0.2
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Figure 2. Proposed model Bi-LSTM-Grid Search
2.6. Model Evaluation

Two primary evaluation metrics were used: Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE).

MAPE
100 =P
MAPE = — |y‘ yl| (10)
n Vi

RMSE

RMSE = (11)

Where y; denotes the observed rainfall and ¥; denotes the model’s forecast at time i.

MAPE gives the average percentage error relative to the observed values, making it easy to
interpret how large the error is in relative (percentage) terms, which is often meaningful in rainfall
forecasting. RMSE gives a measure of the magnitude of the forecast error in the same units as the
target variable (e.g. mm of rainfall), and penalizes larger errors more heavily, which is useful for
capturing large deviations.

Several recent studies on rainfall forecasting use these metrics for model evaluation. For
example, in a monthly rainfall forecasting study in Chuping, the authors used MAE, RMSE and
MAPE to evaluate model performance in both temperature and rainfall forecasting [30].
Another recent research applying a hybrid ANN—Fuzzy model for annual rainfall prediction in
Indonesia reports RMSE (alongside MAE and R?) as one of primary evaluation metrics [31].

Therefore, in this study, using MAPE and RMSE as primary evaluation metrics is aligned
with common practice in rainfall and hydrometeorological forecasting literature, and provides
complementary perspectives on forecast accuracy: percentage-based relative error (MAPE) and
absolute error magnitude (RMSE)

3. RESULTS AND DISCUSSION

This section presents the forecasting performance of the Bi-LSTM model developed under
two calendar systems Gregorian and lunar. The analysis includes hyperparameter optimization,
model evaluation using mean absolute percentage error (MAPE), and an examination of
performance variation across forecasting horizons. All tables and figures are inserted following
standard scientific reporting conventions.
3.1.Calendar Conversion

The data used in this study consist of daily rainfall observations recorded from 1 January 2000
to 31 August 2025 in Bandung City. These observations were obtained from the Meteorological,
Climatological, and Geophysical Agency. The daily rainfall values in the Gregorian calendar were
first aggregated into monthly totals to form the Gregorian-based monthly time series. The
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conversion process produced 273 monthly observations over the twenty-five-year period, as
presented in Table 2.

Subsequently, the same daily rainfall dataset was transformed into a lunar-based monthly
series using the calendar conversion procedure described earlier. Due to differences in month
length and calendar segmentation between the lunar and Gregorian systems, the lunar-based
aggregation resulted in a total of 286 months, as shown in Table 3. This increase in the number
of months reflects the shorter average duration of lunar months and the distinct structural
properties of the lunar calendar. The conversion outcome confirms that the two temporal
frameworks produce different time series representations, which are further analyzed in the
subsequent forecasting evaluation.

Table 1. Monthly Rainfall Data (mm) Based on The Georgian Calendar

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2000 | 261.4 | 140.7 | 135.7 259 240.1 | 474 80.2 19.8 44.8 | 1524 | 317.1 70.6
2001 219 248.9 208 2443 | 829 875 | 1872 | 52.3 107 409.7 | 526.4 | 755
2002 | 364.8 | 814 | 344.1 | 1835 55 54.1 1219 | 37.8 10.3 20.8 | 1955 | 457.2
2003 | 69.1 | 265.6 359 136 111.7 | 37.4 40.5 74.7 76.3 | 320.2 | 185.6 | 203.2
2004 | 195.6 | 191.2 | 240.8 | 301.8 | 286.5 | 76.2 34.4 11.4 84.7 835 | 184.4 | 238.9
2005 | 1682 | 416.7 | 307.7 | 213.5 | 190.6 201 76.3 642 | 1453 | 1149 | 225.8 | 204.7
2006 | 2999 | 2823 | 534 | 232.6 | 89.7 322 45 0 0.3 57.1 109.3 | 499.8
2007 | 127.5 | 405.7 | 105.4 472 88.6 | 164.1 11 0 44.1 984 | 301.7 | 359.7
2008 | 2409 | 116.5 | 2424 | 2971 | 1654 | 653 3.6 58.6 41.5 137 277.3 | 332.8
2009 | 2085 | 200.5 | 365.7 | 165.6 | 183.8 101 24.2 0.5 24 2345 | 3182 | 271.1
2010 | 353.3 | 557.1 531 93 345 131.9 | 220.8 | 106.1 | 4244 | 2922 | 4014 | 237.5
2011 63 76.7 89.4 | 3815 | 1934 | 117.6 | 772 3.1 102.8 | 103.6 | 321.4 259
2012 | 829 | 303.7 | 1555 | 290.8 | 257.1 60.5 34.2 0 27 125 537 636.9
2013 | 2169 | 249.6 | 304.8 | 2858 | 1709 | 231.5 | 159.1 743 | 171.7 | 35.8 64.1 | 325.6
2014 | 2727 | 834 | 260.6 | 1951 | 176.7 173 164.8 | 119.8 0.6 60.8 | 246.8 | 246.8
2015 | 167.3 | 179.7 248 231 208.1 56.4 0.3 50.4 43.2 345 | 4194 | 301.8
2016 | 3915 | 387.5 | 376.2 523 317.8 | 139.3 | 1823 | 128.7 | 286.2 | 362.3 | 4425 | 62.1
2017 | 683 | 196.3 | 396.5 | 210.8 | 222.3 | 684 7.9 45.7 90.8 | 3453 442 129.9
2018 | 190.8 | 239.3 292 2975 | 1239 | 33.4 0.3 38.9 40.8 | 124.8 | 483.2 | 3229
2019 | 2314 | 2693 | 2233 | 2989 243 36.9 13.4 0.2 55 84.2 | 2709 | 3155
2020 | 207.6 | 336.6 | 290.8 | 271.4 | 2923 | 30.3 63.7 41.6 87.7 | 327.3 | 207.3 | 261.8
2021 | 148.6 | 153.9 309 1772 | 2389 | 924 33.2 91.8 73 2184 | 454.3 | 198.5
2022 | 59.5 | 117.1 | 2389 | 336.2 | 1469 | 150.6 | 82.2 299 | 1822 | 366.7 | 307.2 | 277.7
2023 | 683 | 111.1 | 199.8 | 2755 | 2685 | 89.8 24 29.7 18.2 712 | 239.3 | 366.4
2024 | 3285 263 275 2134 | 69.8 | 156.8 17 532 | 1355 | 628 | 477.6 | 89.7
2025 | 2255 | 1314 | 2741 | 233.1 319 146.5 | 1129 | 211.9
Table 3. Conversion of Monthly Rainfall (mm) Data Based on The Lunar Calendar.

Year | Muh saf rawal | rakhir | juwal | jukhir | rajab | syaban | ram |syawal | dzq | Dzh
1420 65.9 2658 | 739 | 191.2
1421 | 273.8 | 166.3 52.4 75.2 13.3 51.3 | 1175 | 342.7 | 584 119.5 | 3132 | 170
1422 | 3237 | 81.7 86.7 179.8 76.7 77 179.6 | 484.4 | 335.6 | 114.2 | 3159 | 204.1
1423 | 2382 | 173.4 54.1 63.5 83.4 37.8 | 281 9.5 1922 | 4547 | 91.1 | 259.5
1424 | 3424 | 1374 | 110.3 374 40.5 199 | 131.1 | 2524 | 1856 | 258.1 | 127.1 | 215.6
1425 251 247.2 291 167.9 39.4 0.2 624 | 117.2 64.6 155.7 | 2219 | 246.2
1426 | 4112 | 362.8 | 1421 | 1489 | 179.6 117 115 | 160.5 | 107.1 222 201.1 | 284.7
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1427 | 297.5 51.2 228.6 68.6 59.5 41.1 3.9 0.3 6.1 279.3 | 235.6 | 162.3
1428 | 366.9 | 247.1 241.2 333.3 97.7 83 2.2 3.7 41.7 279.3 | 235.6 301
1429 | 199.9 | 139.7 258.2 276 151.4 449 10.8 51.4 41.5 136.8 | 266.8 | 343.5
1430 | 177.7 | 226.5 328.8 164.6 196.5 127 26.6 21 10 174.8 | 147.4 | 3479
1431 | 410.3 | 503.4 373.5 399.7 166 266.2 | 173.6 | 149.8 185 319 312.9 | 476.5
1432 | 126.9 84.9 56.9 91.9 403.1 210.2 87 63.4 3.1 102.8 71.2 296
1433 | 2735 | 102.3 234.8 166.1 343.3 265.7 | 80.2 8.3 26.2 8 96 148
1434 | 4733 | 255.1 178.1 396.6 191.5 137.5 | 207.4 | 385.5 11.5 1711 171.7 | 36.8
1435 64.1 325.6 272.7 84.4 259.6 195.1 | 176.7 173 164.7 68.1 52.4 4.8
1436 | 263.5 | 246.8 67.5 317.3 97.6 388 2159 | 705 6 50.7 0 76.8
1437 | 1475 371 358.8 371.3 353.6 4009 | 433.1 | 302.3 156.6 159.2 79 335.7
1438 329 472.3 65.8 52 52 146.8 | 638.7 | 223 101.6 8.4 16.4 32
1439 | 222.6 | 489.8 218.4 234.6 132.1 344.4 | 1735 254 79.4 33.4 8.7 50.4
1440 28.9 198.3 424 314.9 223.3 358 193 273.6 209 31.6 13.4 0.2
1441 55 14.6 303.4 291.7 192.6 369.5 | 192.8 | 381.5 307 39.5 53.3 58
1442 27.1 98.8 356.9 199.4 257.4 191 172.4 | 232.8 161.8 | 2184 | 1105 | 12.3
1443 90.3 82.4 352 318.6 192.1 645 | 1125 | 2527 | 329.7 | 139.2 | 150.6 | 82.2
1444 28.4 183.7 361.9 193.6 354.2 96.1 86.9 201 174.8 | 410.1 49.6 56.9
1445 42.2 0.2 28.1 163.8 281.8 4504 | 138.2 | 299.5 | 230.9 188.8 | 1494 | 73.1
1446 58.8 10.3 134 94.3 446.1 89.7 12234 | 1335 | 2741 228.6 | 308.3 148
1447 120 176.6 41.9

3.2. Hyperparameter Optimization Results

Hyperparameter tuning was performed using grid search for four forecasting horizons: 3, 6,
12, and 24 months. The optimal configurations for the Gregorian calendar are presented in Table
4, while the results for the lunar calendar are given in Table 5.

Table 4. Results of Bi LSTM Grid Search Tuning Parameters on the Gregorian

Calendar
Forecasting length | Neuron | Batch | Epoch | Dropout | MSE
3 20 4 200 0.1 0.02889
6 20 4 200 0.1 0.03849
12 15 4 200 0.1 0.03054
18 20 4 200 0.1 0.02378
24 15 4 200 0.1 0.02343

The Gregorian-based model shows relatively stable optimal neuron counts between 15 and
20 across all forecasting horizons. The lowest MSE values are obtained at 18 and 24 months
(0.02378 and 0.02343, respectively), indicating that the Gregorian calendar provides more reliable
forecasting performance at longer prediction intervals. In contrast, short-term forecasting
horizons (3 and 6 months) exhibit slightly higher error levels, suggesting that short-range rainfall
fluctuations are less effectively captured using Gregorian temporal segmentation alone.

Table 5. Results of Bi LSTM Grid Search Tuning Parameters on the Lunar Calendar

Forecasting length | Neuron | Batch | Epoch | Dropout | MSE
3 20 4 200 0.1 0.02432
6 20 4 200 0.1 0.01876
12 15 4 200 0.1 0.03478
18 20 4 200 0.2 0.03528
24 15 4 200 0.1 0.02379
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The lunar-based model achieves its lowest MSE at 6 months (0.01876), indicating strong
sensitivity to semi-seasonal rainfall cycles. Short-term forecasting (3—6 months) benefits
substantially from the Iunar temporal structure, while performance decreases at longer horizons
(12—18 months), where MSE values rise above 0.03. Interestingly, the 24-month forecasting
horizon again shows improved performance (0.02379), comparable to the Gregorian model,
suggesting that certain long-term rainfall oscillations are also detectable within lunar-aligned time
segmentation.
3.3.Comparative Evaluation of Forecasting Accuracy

The forecasting accuracy of both models was evaluated using MAPE. The results are shown
in Table 6.

Table 6. MAPE Value in the Gregorian and Lunar Calendars

Forecasting Length | MAPE Gregorian (%) | MAPE Lunar (%)
3 11.60 3143
6 33.98 58.57
12 33.40 6547
18 77.70 84.24
24 77.15 54.57

The comparative analysis based on MAPE values demonstrates that the Bi-LSTM model
employing the Gregorian calendar provides superior forecasting performance when compared
with the model structured under the lunar calendar. Across almost all forecasting horizons, the
Gregorian model consistently produces lower error rates. For the short-term horizons of three and
six months, the Gregorian calendar achieves MAPE values of 11.60 percent and 33.98 percent,
whereas the lunar calendar shows substantially higher errors of 31.43 percent and 58.57 percent.
A similar pattern is observed in the twelve-month horizon, with the Gregorian model reaching
33.40 percent and the lunar calendar exceeding 65 percent. These results indicate that Gregorian-
based temporal segmentation is more effective in capturing rainfall variability for short to medium
forecasting periods.

At the eighteen-month horizon, the performance gap becomes more evident. The lunar model
records a MAPE value of 84.24 percent, while the Gregorian model achieves 77.70 percent. This
outcome further confirms the greater stability of the Gregorian structure in modeling
intermediate-range rainfall dynamics.

Although the lunar model attains a lower MAPE value than the Gregorian model at the
twenty-four-month horizon, this single instance does not alter the overall conclusion. The lunar
calendar performs less accurately in four out of five forecasting horizons and displays greater
variability across the evaluation period. In contrast, the Gregorian model demonstrates more
consistent and predictable behavior, avoiding the large fluctuations in error that characterize the
lunar-based forecasts.

Considering all forecasting horizons collectively, the Gregorian calendar provides a more
coherent and stable temporal foundation for rainfall prediction in Bandung City. The isolated
improvement observed in the longest horizon of the lunar model does not outweigh its broader
pattern of underperformance. Thus, the Gregorian calendar remains the more reliable choice for
practical and operational rainfall forecasting applications.

4. CONCLUSION (11 PT)

This study examined the forecasting performance of Bi-LSTM models using Gregorian and
lunar calendar structures for monthly rainfall prediction in Bandung City. The dual-calendar
approach was developed to evaluate whether alternative temporal segmentation could enhance
predictive accuracy. The results demonstrate clear compatibility between what was expected in
the Introduction and the empirical findings presented in the Results and Discussion.

The analysis shows that the Gregorian calendar provides more accurate and stable
forecasting performance across nearly all prediction horizons. The MAPE evaluation confirms
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that the Gregorian-based model consistently outperforms the lunar model in four out of five
forecasting lengths, particularly within short and medium horizons where rainfall variability is
strongly governed by seasonal and monsoonal cycles. Although the lunar model achieves a lower
error at the longest forecast horizon, this single result does not outweigh its overall higher error
levels and instability in other periods. Therefore, the Gregorian calendar remains the more reliable
temporal structure for rainfall forecasting in this region.

The findings of this study highlight the importance of selecting an appropriate temporal
framework when modeling hydrometeorological variables. Future research may expand this
approach by incorporating additional climate indicators, integrating attention-based deep learning
architectures, or applying hybrid calendar models that combine both solar and lunar temporal
cues. Further application of this methodology to flood early warning systems or climate adaptive
planning tools may also provide valuable operational benefits for decision-making in Bandung
City and similar tropical regions.
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