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Abstract. In online learning, giving an objective assessment is quite tricky task. Most of exams in online learning are 

done as take-home exams. Unlike in face-to-face onsite class, in which the students can be observed directly when doing 

the exam, in online class the students have chance to cheat and work together to gain unfair advantage. To tackle this, the 

teachers need to modify the exam format. One possible solution is to create some variations of exam questions and 

distribute them to the students such that they do not get the same set of questions. However, we cannot create too many 

variations since it would make the grading process more difficult for the teacher. Thus, we need to find an optimal way to 

do so. In this article, we will discuss how Maximum Separable Distance (MDS) Codes in coding theory can be applied to 

provide a solution for this problem. Moreover, distribution patterns for class of size 27, 64 and 125 students will also be 

presented. 
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1. INTRODUCTION 

Basically, cheating is an old problem in our education system. Many students with narrow-minded and pragmatic 

way of thinking tend to do everything to achieve good grades and not using their own abilities. Even in “classical” 

examination system by doing test onsite, under observation from the teacher, some students often find such a way to 

cheat. This problem already existed at various level of education, as explained in [1], [2] and [3], and it becomes 

worse in online learning because take-home exams format gives them more room to cheat and/or work together with 

other students. All exams should be done independently, but not many students doing so in take-home exams. 

These situations make more difficulties for the teacher to give accurate and objective assessment to the students. 

Therefore, the teacher needs to be more creative in creating the exam questions to tackle any chance of cheating. 

Preventing students to cheat is not practically possible, but at least the unfair advantage they gain by cheating must 

be minimized. In other side, the teacher must make sure that the modified exam format is still relevant to assess 

specific skills and learning outcomes of the course. 

Starting from this concern, the author tries to create a strategy to deal with this situation. The initial idea is 

creating variations of exam questions such that the set of questions done by the students are different one to each 

other. However, creating too many variations means creating too many exam questions and that just makes the 

teacher’s work more difficult. The teacher will put too much extra effort in creating the exam questions and the 
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grading will be some nightmare. Thus, an optimal solution is needed: how the teacher distributes the variations of 

exam questions in such way without having to create too many variations. 

In solving this problem, the author tries to apply concept from coding theory. There are some terminologies in 

coding theory which can be associated with this exam questions distribution problem. The main concept used in this 

approach is the linear block codes, and more specifically to reach the optimality, the maximum distance separable 

(MDS) codes. Details of this approach and how it works will be discussed in later sections of this article. 

 

2. THE PROBLEM OF DISTRIBUTING EXAM QUESTIONS 

First, we need to describe the exam questions distribution problem in previous section more precisely and define 

the criteria of the expected solution. In college level, questions in mathematics exams are usually essays. We need to 

assess the students’ conceptual understanding and they are expected to write the answer in detailed, structured, and 

systematic manner. Multiple choice and short answer questions are rarely found in college exams since they can be 

done by guessing and using some slices of luck. 

Usually, the number of essay questions is either 4 or 5, done in two hours, depend on the difficulty level of the 

course material. Typically, those exam questions represent different topics, and the teachers want to assess how 

good the students in understanding all topics. For example, in Differential Calculus exam we want to create four 

questions: first question is about limits, second question is about continuous functions, third question is about 

derivatives and fourth question is about extreme value problem. Therefore, we cannot just pick 4 or 5 questions 

randomly from a “question bank”. 

The basic idea is to create some variations of each exam question with are assumed to have equal difficulty level. 

We may create few variations for each of those questions, namely type A, type B, etc. We want that question set for 

one student is different with other students, so they cannot just copy-paste their friend’s work. For some questions, 

two different students might get to do the same variants, but for the other questions, they will do different variants. 

For example, in Differential Calculus exam, it is possible that two students get same variant for question about 

limits, but they get different variant for question about derivatives. 

We do not expect to create too many variants for each question since it will be very difficult to grade. The most 

extreme case is when the teacher creates question variants as many as the number of students. This is both the best 

and the most stupid solution since the number of different exam questions will be increased extremely, and this will 

backfire the teacher and create a disaster when it comes to grading. Thus, we expect that the number of variants is 

low (let’s say at least two and at most five), and then the problem is switched to how to distribute the variants such 

that any two students will not get too similar set of questions. 

Therefore, based on previous explanation about the problem, we can describe some criteria for our expected 

solution, which are: 

1. The exam consists of 4 or 5 different types of questions. 

2. For each type of questions, at most 5 different variants are created. 

3. Two sets of questions which have at least one question with different variants are considered as different 

ones. 

4. Any two different sets of questions can only have at most two questions in common of the same variants. 

To make it clear, let us identify the variants of first question as 1A, 1B and 1C, variants of second questions as 

2A, 2B and 2C, and so on. Suppose that a student gets this set of questions: 1A-2B-3A-4C. Another student can get 

1A-2A-3C-4A (only has one question in common, that is 1A), but should not get 1A-2A-3A-4C (has three questions 

in common: 1A, 3A and 4C). This condition must be satisfied for any possible pair of students, and this is the main 

challenge. 

 

 

3. MAXIMUM DISTANCE SEPARABLE (MDS) CODES AND THEIR PROPERTIES 

The main idea of this research is that properties of maximum distance separable (MDS) codes in coding theory 

have equivalent association with our expected solution. In this section we discuss MDS codes and their properties, 

which also explain why MDS codes can be a solution for the problem. Then we can construct some specific MDS 

codes and apply them to create an exam questions distribution patterns as the main result.  
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Coding theory is a branch of mathematics which is concerned with how to successfully transmit data through a 

noisy channel and correct errors in possible corrupted messages. In [4], concepts of coding theory can be based on 

various branches of mathematics such as linear algebra, abstract algebra, and combinatorics. In coding theory, a 

message is represented as a sequence of code symbols. One of the most familiar examples is the binary strings that is 

a sequence of binary digits (the code symbols is either 0 or 1). 

Coding theory has two main processes: encoding and decoding. Encoding is the process of representing 

messages into codewords before they are sent through a communication channel. Decoding is the process of 

detecting and correcting errors in the received words. Errors might occur in the data transmission such that the 

received word is not same with the sent codeword. An encoding-decoding process is expected to be able to detect 

and correct as many as possible number of errors. Here are some definitions and terminologies which are used in 

coding theory: 

Definition 1. ([4]) Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑞} be a set of size 𝑞. A word of length 𝑛 over 𝐴 is a sequence 𝑤 =

𝑤1𝑤2 … 𝑤𝑛 with each 𝑤𝑖 ∈ 𝐴 for all 𝑖, which may also be written as a vector (𝑤1, 𝑤2, … , 𝑤𝑛). In this context, the set 

𝐴 is the code alphabet and its elements are called code symbols. 

(i) A block code of length 𝑛 over 𝐴 is a nonempty set 𝐶 of words of the same length 𝑛. 

(ii) An element of 𝐶 is called a codeword in 𝐶. 

(iii) The size of 𝐶 is the number of codewords in 𝐶, denoted by |𝐶|. 
(iv) Let 𝑥 and 𝑦 be words of length 𝑛 over 𝐴. The Hamming distance between 𝑥 and 𝑦, denoted by 𝑑(𝑥, 𝑦), is 

defined to be the number of different corresponding digits between 𝑥 and 𝑦. 

(v) If a block code 𝐶 containing at least two codewords, then the minimum distance of 𝐶, denoted by 𝑑(𝐶), is 

the smallest possible Hamming distance between two different codewords in 𝐶. 

Example 1. Let the code alphabet is 𝐴 = {0,1}. Both 𝑥 = 01010 and 𝑦 = 11111 are words over 𝐴 of length 5. 

Their Hamming distance is 𝑑(𝑥, 𝑦) = 3, because they differ at the first, third and last digits. 

The set 𝐶 = {00000,01010,10101,11111} is a block code over 𝐴 of size 4. Calculating the Hamming distance 

between two different codewords in 𝐶, we obtain: 𝑑(00000,01010) = 2, 𝑑(00000,10101) = 3, 
𝑑(00000,11111) = 5, 𝑑(01010,10101) = 5, 𝑑(01010,11111) = 3, and 𝑑(10101,11111) = 2. Therefore, the 

minimum distance of 𝐶 is 𝑑(𝐶) = 2. 

Minimum distance of a block code determines its error-detecting and error-correcting abilities when being used 

in data transmission. The basic principle of error-detection is that if the received word is not in the block code, then 

it is not a valid codeword and there must be some errors in transmission. For error-correction, we usually use nearest 

neighbor decoding principle, where the received word (containing some errors) is corrected to the codeword which 

has the smallest Hamming distance (i.e., has minimum number of digit differences) to the received word. The 

number of errors is the Hamming distance between the sent codeword and the received word. Based on these 

principles, we have this theorem: 

Theorem 1. ([4]) A linear block code with minimum distance 𝑑 can detect up to 𝑑 − 1 errors and correct up to 

⌊
𝑑−1

2
⌋ errors. 

Since any words of length 𝑛 over code alphabet 𝐴 can be regarded as 𝑛-tuple vectors over 𝐴, naturally we can 

use the concept of linear algebra in coding theory. The block code can be constructed as a vector space over a finite 

field, and here the finite field be the code alphabet. For example, a binary block code can be constructed as a vector 

space over ℤ2 = {0,1}. The set of all binary sequences of length 𝑛 is actually (ℤ2)𝑛 and any subspace of (ℤ2)𝑛 can 

be a binary block code of length 𝑛. Similarly, a ternary block code can be constructed as a vector space over ℤ3 =
{0,1,2}, which is also a finite field. 

Definition 2. ([4]) Let 𝐹𝑞 denotes the finite field of order 𝑞. The set (𝐹𝑞)
𝑛

 is a vector space over 𝐹𝑞 with respect to 

standard vector addition and scalar multiplication (similar with in ℝ𝑛, but the operations are done in 𝐹𝑞). 

(i) A linear code 𝐶 of length 𝑛 over 𝐹𝑞 is a subspace of (𝐹𝑞)
𝑛

. 

(ii) The dimension of a linear code 𝐶 over 𝐹𝑞 is the dimension of 𝐶 as a vector space over 𝐹𝑞, denoted by 

dim(𝐶). 

(iii) A linear code over 𝐹𝑞 of length 𝑛, dimension 𝑘 and minimum distance 𝑑 is called as a 𝑞-ary [𝑛, 𝑘, 𝑑]-

code.  
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Example 2. In previous example, 𝐶 = {00000,01010,10101,11111} is a linear code of length 5 over 𝐹2 = ℤ2, or 

simply binary linear code of length 5. Its dimension is dim(𝐶) = 2, since it has {01010,10101} as basis. Therefore, 

𝐶 is a binary [5,2,2]-linear code. 

Note that the context of basis and dimension here is the generalization from basis and dimension of real vector 

space to vector space over finite field. A linear code over 𝐹𝑞 is the set of all possible linear combinations of its basis, 

where the scalars are in 𝐹𝑞. By counting the number of possible combinations, we have this theorem: 

Theorem 2. ([4]) Let 𝐶 be a linear code over 𝐹𝑞. If dim(𝐶) = 𝑘, then 𝐶 contains 𝑞𝑘 different codewords, i.e., 

|𝐶| = 𝑞𝑘. 

It is clear from Theorem 1 that codes with larger minimum distance will be better in error-detection and error-

correction. Therefore, in coding theory, codes with large distance will be more preferred. However, construction 

methods for linear codes becomes trickier because of some constraints which come from the linear algebra itself. 

One of them is called the Singleton bound, as explained in the following theorem: 

Theorem 3 ([4], Singleton bound). For any [𝑛, 𝑘, 𝑑]-linear code over a finite field 𝐹𝑞, the parameters 𝑛, 𝑘 and 𝑑 

satisfy the inequality: 

𝑑 ≤ 𝑛 − 𝑘 + 1 

From Theorem 3, we find that the minimum distance of a linear code cannot exceed 𝑛 − 𝑘 + 1, where 𝑛 is its 

length and 𝑘 is its dimension. If 𝑘 is bigger, then 𝑛 − 𝑘 + 1, an upper bound of 𝑑, is smaller, and vice versa. From 

Theorem 2, if 𝑘 is bigger, then the linear code contains more codewords and moreover, can encode more different 

messages. However, it also implies that 𝑑 is potentially smaller and therefore the error-detection and correction 

abilities are worse. If we want the linear code to have better error-detection and correction, then 𝑑 must be bigger 

and 𝑘 is potentially must be smaller. This will decrease the number of codewords and consequently unable to encode 

many different messages. 

In short, the Singleton bound tells us that dimension and minimum distance have contradictive impact in terms 

of encoding and decoding performance. This leads to an idea to construct a such optimal code that has the best error-

detection and correction abilities among any 𝑞-ary codes of same length and size. 

Definition 3 ([4], MDS codes). A linear code with parameters [𝑛, 𝑘, 𝑑] such that 𝑑 = 𝑛 − 𝑘 + 1 is called a 

maximum distance separable (MDS) code. 

Example 3. These are examples of MDS codes: 

(i) The binary linear code 𝐶1 = {00000,11111} is a binary MDS code because its length is 𝑛 = 5, its 

dimension is 𝑘 = 1, and its distance is 𝑑 = 5 = 𝑛 − 𝑘 + 1. 

(ii) The ternary linear code 𝐶2 = {0000,0112,0221,1011,1120,1202,2022,2101,2210} is a ternary MDS 

code because it has length 𝑛 = 4, dimension 𝑘 = 2, and distance 𝑑 = 3 = 𝑛 − 𝑘 + 1. 

MDS codes reach the upper bound described in the Singleton bound. Thus, MDS codes are simply the best in 

error-detection and correction among any linear codes with the same parameters 𝑞, 𝑛 and 𝑘. However, constructing 

MDS codes is a quite tricky task. In some cases, MDS codes with such choice of parameters might not exist. For big 

enough parameters, constructing MDS codes also becomes an interesting open problem. Many works on 

constructing MDS codes and their special classes have been done like in [5], [6], and [7], for examples. Sometimes 

any trial-and-error approach might be needed in constructing MDS codes. 

 

4. MAIN RESULTS 

Now we will apply some concepts of MDS codes for getting a solution for the exam questions distribution 

problem. The key here is that in an [𝑛, 𝑘, 𝑑]-linear code, any two different codewords have at least 𝑑 digit 

differences. This condition satisfies the fourth criteria: any two different sets of questions have a minimum number 

of different questions. We have learned that MDS codes are the most optimal codes among codes of the same length 

and dimension. This property makes the work of the teacher easier because the number of variants can be 

minimized. In this section we will see some examples of MDS codes and their associated questions distribution 

pattern, which can be implemented in class of 27, 64 and 125 students. 
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4.1. Exam Questions Distribution Pattern for Class of 27 Students 

Let’s say we want to create an exam of 4 essay questions with 3 variants each. This is equivalent with creating a 

set of 4-digit ternary words, i.e., words over 𝐹3 = {0,1,2}. If we want to make two different sets of questions can 

only have at most two questions in common of the same variants, then any two different 4-digit ternary words must 

have at least two differences, or in other words, their Hamming distance is at least 2. If we want to create a ternary 

MDS code with length 𝑛 = 4 and minimum distance 𝑑 = 2, then its dimension must be 𝑘 = 𝑛 − 𝑑 + 1 = 3. 

Furthermore, the code will contain 33 = 27 codewords. An example of [4,3,2]-ternary linear code is the code 

generated by the set {1002,0102,0012}, which is: 

{
0000,0012,0021,0102,0111,0120,0201,0210,0222,
1002,1011,1020,1101,1110,1122,1200,1212,1221,
2001,2010,2022,2100,2112,2121,2202,2211,2220

} 

We can show that in above set, the Hamming distance of any two different codewords is always ≥ 2. 

If the first digit represents the variant of first question, the second digit represents the variant of second question, 

and so on, then we can “translate” above set into a distribution pattern. If 0 denotes variant A, 1 denotes variant B, 

and 2 denotes variant C, then we will have this distribution pattern: 

 

TABLE 1. Exam Questions Distribution Pattern Based on A Ternary [4,3,2]-MDS Code 

 

ID Q1 Q2 Q3 Q4  ID Q1 Q2 Q3 Q4 
1 1A 2A 3A 4A  15 1B 2B 3C 4C 

2 1A 2A 3B 4C  16 1B 2C 3A 4A 

3 1A 2A 3C 4B  17 1B 2C 3B 4C 

4 1A 2B 3A 4C  18 1B 2C 3C 4B 

5 1A 2B 3B 4B  19 1C 2A 3A 4B 

6 1A 2B 3C 4A  20 1C 2A 3B 4A 

7 1A 2C 3A 4B  21 1C 2A 3C 4C 

8 1A 2C 3B 4A  22 1C 2B 3A 4A 

9 1A 2C 3C 4C  23 1C 2B 3B 4C 

10 1B 2A 3A 4C  24 1C 2B 3C 4B 

11 1B 2A 3B 4B  25 1C 2C 3A 4C 

12 1B 2A 3C 4A  26 1C 2C 3B 4B 

13 1B 2B 3A 4B  27 1C 2C 3C 4A 

14 1B 2B 3B 4A       

 

Distribution pattern described on Table 1 can be implemented in a class of 27 or less students. A class of 27 

students is usually considered as a small one, while a class of more than 60 students is considered as a big one. If we 

work on larger class, we need to create more set of questions and consequently also need an MDS code of larger 

size. It will be possible if we increase the number of exam questions or the number of variations for each question. 

 

4.2. Exam Questions Distribution Pattern for Class of 64 Students 

Like in previous result, we can create a distribution pattern for a class of 64 students by constructing an MDS 

code over 𝐹4 of length 𝑛 = 5, dimension 𝑘 = 3, and distance 𝑑 = 𝑛 − 𝑘 + 1 = 3. In this case, the exam will consist 

of 5 questions and each question has 4 different variants. Furthermore, any two different students will get at least 3 

questions of different variants, or equivalently, only have at most 2 questions in common of the same variants. 

Remember that 𝐹4, the finite field of order 4, is the ℤ2[𝑥] < 1 + 𝑥 + 𝑥2 >⁄ = {0,1, 𝑥, 1 + 𝑥}, i.e., the set of 

binary polynomials modulo 1 + 𝑥 + 𝑥2. Here we need a [5,3,3]-linear code over 𝐹4, and one of its examples is the 

linear code with standard generator matrix: 

[
1 0
0 1

0 1
0 1

1
𝑥

0 0 1 1 1 + 𝑥
] 

which is explicitly the set: 
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{(0,0,0,0,0), (0,0,1,1,1 + 𝑥), (0,0, 𝑥, 𝑥, 1), (0,0,1 + 𝑥, 1 + 𝑥, 𝑥), (0,1,0,1, 𝑥), (0,1,1,0,1), (0,1, 𝑥, 1 + 𝑥, 1 + 𝑥), 
(0,1,1 + 𝑥, 𝑥, 0), (0, 𝑥, 0, 𝑥, 1 + 𝑥), (0, 𝑥, 1,1 + 𝑥, 0), (0, 𝑥, 𝑥, 0, 𝑥), (0, 𝑥, 1 + 𝑥, 1,1), (0,1 + 𝑥, 0,1 + 𝑥, 1), 

 (0,1 + 𝑥, 1, 𝑥, 𝑥), (0,1 + 𝑥, 𝑥, 1,0), (0,1 + 𝑥, 1 + 𝑥, 0,1 + 𝑥), (1,0,0,1,1), (1,0,1,0, 𝑥), (1,0, 𝑥, 1 + 𝑥, 0), 
(1,0,1 + 𝑥, 𝑥, 1 + 𝑥), (1,1,0,0,1 + 𝑥), (1,1,1,1,0), (1,1, 𝑥, 𝑥, 𝑥), (1,1,1 + 𝑥, 1 + 𝑥, 1), (1, 𝑥, 0,1 + 𝑥, 𝑥), 

(1, 𝑥, 1, 𝑥, 1), (1, 𝑥, 𝑥, 1,1 + 𝑥), (1, 𝑥, 1 + 𝑥, 0,0), (1,1 + 𝑥, 0, 𝑥, 0), (1,1 + 𝑥, 1,1 + 𝑥, 1 + 𝑥), (1,1 + 𝑥, 𝑥, 0,1), 
(1,1 + 𝑥, 1 + 𝑥, 1, 𝑥), (𝑥, 0,0, 𝑥, 𝑥), (𝑥, 0,1,1 + 𝑥, 1), (𝑥, 0, 𝑥, 0,1 + 𝑥), (𝑥, 0,1 + 𝑥, 1,0), (𝑥, 1,0,1 + 𝑥, 0), 

(𝑥, 1,1, 𝑥, 1 + 𝑥), (𝑥, 1, 𝑥, 1,1), (𝑥, 1,1 + 𝑥, 0, 𝑥), (𝑥, 𝑥, 0,0,1), (𝑥, 𝑥, 1,1, 𝑥), (𝑥, 𝑥, 𝑥, 𝑥, 0), (𝑥, 𝑥, 1 + 𝑥, 1 + 𝑥, 1 + 𝑥), 
(𝑥, 1 + 𝑥, 0,1,1 + 𝑥), (𝑥, 1 + 𝑥, 1,0,0), (𝑥, 1 + 𝑥, 𝑥, 1 + 𝑥, 𝑥), (𝑥, 1 + 𝑥, 1 + 𝑥, 𝑥, 1), (1 + 𝑥, 0,0,1 + 𝑥, 1 + 𝑥), 

(1 + 𝑥, 0,1, 𝑥, 0), (1 + 𝑥, 0, 𝑥, 1, 𝑥), (1 + 𝑥, 0,1 + 𝑥, 0,1), (1 + 𝑥, 1,0, 𝑥, 1), (1 + 𝑥, 1,1,1 + 𝑥, 𝑥), (1 + 𝑥, 1, 𝑥, 0,0), 
(1 + 𝑥, 1,1 + 𝑥, 1,1 + 𝑥), (1 + 𝑥, 𝑥, 0,1,0), (1 + 𝑥, 𝑥, 1,0,1 + 𝑥), (1 + 𝑥, 𝑥, 𝑥, 1 + 𝑥, 1), (1 + 𝑥, 𝑥, 1 + 𝑥, 𝑥, 𝑥), 

(1 + 𝑥, 1 + 𝑥, 0,0, 𝑥), (1 + 𝑥, 1 + 𝑥, 1,1,1), (1 + 𝑥, 1 + 𝑥, 𝑥, 𝑥, 1 + 𝑥), (1 + 𝑥, 1 + 𝑥, 1 + 𝑥, 1 + 𝑥, 0)} 

 

Here 0 − 1 − 𝑥 − (1 + 𝑥)  will then be replaced by A-B-C-D, respectively, to identify the variants. The 

associated distribution pattern is presented in the following table. 

 

TABLE 2. Exam Questions Distribution Pattern Based on A [5,3,3]-MDS Code over 𝐹4 

 

ID Q1 Q2 Q3 Q4 Q5  ID Q1 Q2 Q3 Q4 Q5 
1 A A A A A  33 C A A C C 

2 A A B B D  34 C A B D B 

3 A A C C B  35 C A C A D 

4 A A D D C  36 C A D B A 

5 A B A B C  37 C B A D A 

6 A B B A B  38 C B B C D 

7 A B C D D  39 C B C B B 

8 A B D C A  40 C B D A C 

9 A C A C D  41 C C A A B 

10 A C B D A  42 C C B B C 

11 A C C A C  43 C C C C A 

12 A C D B B  44 C C D D D 

13 A D A D B  45 C D A B D 

14 A D B C C  46 C D B A A 

15 A D C B A  47 C D C D C 

16 A D D A D  48 C D D C B 

17 B A A B B  49 D A A D D 

18 B A B A C  50 D A B C A 

19 B A C D A  51 D A C B C 

20 B A D C D  52 D A D A B 

21 B B A A D  53 D B A C B 

22 B B B B A  54 D B B D C 

23 B B C C C  55 D B C A A 

24 B B D D B  56 D B D B D 

25 B C A D C  57 D C A B A 

26 B C B C B  58 D C B A D 

27 B C C B D  59 D C C D B 

28 B C D A A  60 D C D C C 

29 B D A C A  61 D D A A C 

30 B D B D D  62 D D B B B 

31 B D C A B  63 D D C C D 

32 B D D B C  64 D D D D A 

 

Distribution pattern described on Table 2 can be implemented in a class of 64 or less students. In some cases, the 

number of students in a class can be more than 64. So, we might need another MDS code of bigger size. If 

increasing the number of questions is not always feasible for some courses, then we must increase the number of 

variants for each question, i.e., work on MDS codes over bigger finite field. 
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4.3. Exam Questions Distribution Pattern for Class of 125 Students 

Now we will create a distribution pattern for a class of 125 students by constructing an MDS code over 𝐹5 of 

length 𝑛 = 5, dimension 𝑘 = 3, and distance 𝑑 = 𝑛 − 𝑘 + 1 = 3. Like the previous one, the exam will consist of 5 

questions, but now each question has 5 different variants. Remember that 𝐹5, the finite field of order 5, is the ℤ5 =
{0,1,2,3,4}. Here we need a [5,3,3]-linear code over 𝐹5, and one of its examples is the linear code with standard 

generator matrix: 

[
1 0
0 1

0 1
0 1

1
2

0 0 1 1 3
] 

which is explicitly the set: 

{00000,00113,00221,00334,00442,01012,01120,01233,01341,01404,02024,02132,02240,02303,02411, 
03031,03144,03202,03310,03423,04043,04101,04214,04322,04430,10011,10124,10232,10340,10403, 
11023,11131,11244,11302,11410,12030,12143,12201,12314,12422,13042,13100,13213,13321,13434, 
14004,14112,14220,14333,14441,20022,20130,20243,20301,20414, 21034,21142,21200,21313,21421, 
22041,22104,22212,22320, 22433,23003,23111,23224,23332,23440,24010,24123,24231,24344,24402, 
30033,30141,30204,30312,30420,31040,31103,31211,31324,31432,32002,32110,32223,32331,32444, 
33014,33122,33230,33343,33401,34021,34134,34242,34300,34413,40044,40102,40210,40323,40431, 

41001,41114,41222,41330,41443,42013,42121, 42234,42342,42400, 
43020,43133,43241,43304,43412,44032,44140,44203,44311,44424}  

Here 0-1-2-3-4 will then be replaced by A-B-C-D-E, respectively, to identify the variants. The associated 

distribution pattern is presented in the following table. 

 

TABLE 3. Exam Questions Distribution Pattern Based on A [5,3,3]-MDS Code over 𝐹5 

 
ID Q1 Q2 Q3 Q4 Q5  ID Q1 Q2 Q3 Q4 Q5  ID Q1 Q2 Q3 Q4 Q5 

1 A A A A A  43 B D C B D  85 D B E D C 

2 A A B B D  44 B D D C B  86 D C A A C 

3 A A C C B  45 B D E D E  87 D C B B A 

4 A A D D E  46 B E A A E  88 D C C C D 

5 A A E E C  47 B E B B C  89 D C D D B 

6 A B A B C  48 B E C C A  90 D C E E E 

7 A B B C A  49 B E D D D  91 D D A B E 

8 A B C D D  50 B E E E B  92 D D B C C 

9 A B D E B  51 C A A C C  93 D D C D A 

10 A B E A E  52 C A B D A  94 D D D E D 

11 A C A C E  53 C A C E D  95 D D E A B 

12 A C B D C  54 C A D A B  96 D E A C B 

13 A C C E A  55 C A E B E  97 D E B D E 

14 A C D A D  56 C B A D E  98 D E C E C 

15 A C E B B  57 C B B E C  99 D E D A A 

16 A D A D B  58 C B C A A  100 D E E B D 

17 A D B E E  59 C B D B D  101 E A A E E 

18 A D C A C  60 C B E C B  102 E A B A C 

19 A D D B A  61 C C A E B  103 E A C B A 

20 A D E C D  62 C C B A E  104 E A D C D 

21 A E A E D  63 C C C B C  105 E A E D B 

22 A E B A B  64 C C D C A  106 E B A A B 

23 A E C B E  65 C C E D D  107 E B B B E 

24 A E D C C  66 C D A A D  108 E B C C C 

25 A E E D A  67 C D B B B  109 E B D D A 

26 B A A B B  68 C D C C E  110 E B E E D 

27 B A B C E  69 C D D D C  111 E C A B D 

28 B A C D C  70 C D E E A  112 E C B C B 

29 B A D E A  71 C E A B A  113 E C C D E 

30 B A E A D  72 C E B C D  114 E C D E C 
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31 B B A C D  73 C E C D B  115 E C E A A 

32 B B B D B  74 C E D E E  116 E D A C A 

33 B B C E E  75 C E E A C  117 E D B D D 

34 B B D A C  76 D A A D D  118 E D C E B 

35 B B E B A  77 D A B E B  119 E D D A E 

36 B C A D A  78 D A C A E  120 E D E B C 

37 B C B E D  79 D A D B C  121 E E A D C 

38 B C C A B  80 D A E C A  122 E E B E A 

39 B C D B E  81 D B A E A  123 E E C A D 

40 B C E C C  82 D B B A D  124 E E D B B 

41 B D A E C  83 D B C B B  125 E E E C E 

42 B D B A A  84 D B D C E        

 

Distribution pattern described on Table 3 can be implemented in a class of 125 or less students. It can be shown 

that differences between any two different IDs in that distribution pattern is at least 3. We will not create another 

bigger MDS code since it is unlikely to have a class of more than 125 students. We can simply say that the three 

examples of MDS codes presented in this section have just solved our problems. 

 

5. CONCLUSION 

 From the discussion in previous sections, we can summarize some important points as the conclusion of this 

article as follow: 

1. In take-home exams, the students have bigger chance to cheat and/or work together to gain unfair 

advantage. One strategy to tackle it is by creating some variations for each type of exam questions. Those 

variations need to be distributed in such way to ensure that any two students will get different set of 

questions with significant number of differences. 

2. Coding theory can be applied to solve this exam questions distribution problem since the distribution 

pattern can be associated with block codes. In the context of this problem, the distance between two 

codewords is associated with the number of differences between two different set of questions. 

3. MDS codes have the maximum distance parameter among linear codes of same code alphabet, length, and 

dimension. This optimality can help the teacher in creating variations of exam questions, because the 

number of variants can be minimized. 

4. An example of distribution pattern for small class of up to 27 students has been made using ternary MDS 

code with parameters [4,3,2] and it satisfies all criteria of the expected solution. Another example based on 

an MDS code over 𝐹4 with parameters [5,3,3] can be implemented in class of up to 64 students. For a big 

class of up to 125 students, an MDS code over 𝐹5 with parameters [5,3,3] can be used. 
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