Galois Group Correspondence On Extension Fields Over \mathbb{Q}

Novita Dahoklory ${ }^{1, \text { a) }}$, Henry W. M. Patty ${ }^{1, b)}$
${ }^{1}$ Department of Mathematics, Pattimura University
${ }^{\text {a) }}$ Corresponding author: novitadahoklory93@ gmail.com
${ }^{\text {b) }}$ henrywmpatty $81 @$ gmail.com

Abstract

Let K / F be an extension field where $[K: F]$ denotes dimension of K as a vector space over F. Let $A u t(K / F)$ be the group of all automorphism of K that fixes F where the order of $\operatorname{Aut}(K / F)$ is denoted by $|\operatorname{Aut}(K / F)|$. Particularly, an extension field is called a Galois extension if $|\operatorname{Aut}(K / F)|=[K: F]$. Moreover, we will give some properties of an extension field K / F which is a Galois extension. Using the properties of Galois extension, we will show that there is an one-one correspondence between the set of all intermediate fields in K and the set of all subgroups in $\operatorname{Aut}(K / F)$. Furthermore, we will give some examples of Galois group correspondence using an extension field over \mathbb{Q}.

Keywords: Extension fields, Galois extension, Galois correspondence 2020 Mathematical Subject Classification: 11T71, 94B05, 94B25, 97D60

INTRODUCTION

Suppose F and K be fields where $F \subseteq K$. The field K is called an extension field of F and is denoted by K / F. We know that K can be viewed as a vector space over F. Thus, K have a basis where the dimension of K is denoted by [$K: F]$. Moreover, we form a set of all automorphisms of K that fixes F that is

$$
\operatorname{Aut}(K / F)=\{\sigma: K \rightarrow K \text { automorphism } \mid \sigma(x)=x, \text { for all } x \in F\}
$$

Note that $\operatorname{Aut}(K / F)$ is a group under the operation of composition in $\operatorname{Aut}(K / F)$. The group $\operatorname{Aut}(K / F)$ is called automorphism group of K / F. The number of elements in $A u t(K / F)$ is called order of $\operatorname{Aut}(K / F)$ and is written as $|A u t(K / F)|$. In particular, an extension field K / F is called a Galois extension K / F if $|A u t(K / F)|=[K: F]$.

Let K / F be an extension field with its automorphism group $G=A u t(K / F)$. An intermediate field E of K / F is a subfiend in K containing F that is $F \subseteq E \subseteq K$. Let H be a subgroup in G. Then, we form a set in K defined by

$$
K^{H}=\{x \in K \mid \sigma(x)=x \text { for every } \sigma \in H\}
$$

In other words, K^{H} is the set of all elements in K which are mapped into itself by every $\sigma \in H$. The set K^{H} is a subfield in K containing F and is called fixed field of S. Thus, for every subgroup in G, we can form an intermediate subfield in K defined by K^{H}. Furthermore, suppose \mathcal{H} is the set of all subgroups in G, and \mathcal{F} is the set of all intermediate field of K / F. We can form a function between \mathcal{H} and \mathcal{F} defined by

$$
\begin{gathered}
\rho: \mathcal{H} \rightarrow \mathcal{F} \\
H \mapsto K^{H}
\end{gathered}
$$

for all $H \in \mathcal{H}$. Using this correspondence, we can compute all subfields of K / F. For example, $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is an extension field where its automorphism group is $G=\{i d, \sigma\}$ where $\sigma(1)=1$ and $\sigma(\sqrt{2})=-\sqrt{2}$. Note that, the set
of all subgroups in G is $H_{1}=\{i d\}$ and $H_{2}=G$ itself. Using the function, we obtain $\mathbb{Q}(\sqrt{2})^{H_{1}}=\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2})^{H_{2}}=\mathbb{Q}$. Thus, the intermediate subfields of $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ are $\mathbb{Q}(\sqrt{2})$ and \mathbb{Q}.

Throughout this research, we will show that if K / F is a Galois extension then there is a one-one correspondence between the set of all subfields in K which contains F and the set of all subgroups in $A u t(K / F)$ (i.e. \mathcal{F} and $\mathcal{H})$. We called this correspondence as Galois correspondence. Furthermore, we will give an example related to Galois group correspondence especially extension fields over \mathbb{Q}.

SOME RESULTS

In this part, we will discuss about an extension field K / F with its properties related to its role as a vector space over F. Next, we will also explain the automorphism group of an extension field K / F and give some examples on finding all automorphisms of K / F. Moreover, we will discuss about Galois extension with its properties. Using the properties of Galois extension, we will also discuss Galois corrrespondence.

Definition 1[3]

Let F and K be fields where $F \subseteq K$. The field K is called an extension field of F (denoted by K / F).

Example 2

i. $\quad \mathbb{R}$ is an extension field of \mathbb{Q}.
ii. $\quad \mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ is an extension field of \mathbb{Q}.
iii. $\mathbb{Q}(\sqrt{2}, \sqrt{3})=(Q(\sqrt{2})(\sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}$ is an extension field of \mathbb{Q}.

Let K / F is an extension field. We know that K can be viewed as a vector space over F. Thus, K has a basis B over F where the number of elements in B is called dimension of K denoted by $[K: F]$.

Definition [3]

Let K / F is an extension field. If $[K: F]<\infty$ then K is called a finite extension of F.
Next, we will give an example of the dimension of a finite extension field.

Example 4

i. Given \mathbb{Q} with its extension $\mathbb{Q}(\sqrt{2})$. Every $x \in \mathbb{Q}(\sqrt{2})$ can be expressed by

$$
x=a+b \sqrt{2}
$$

Therefore, x can be written as a linear combination of $\{1, \sqrt{2}\}$. It is clear that $\{1, \sqrt{2}\}$ is linearly independent over \mathbb{Q}. So, $\{1, \sqrt{2}\}$ is a basis for $Q(\sqrt{2})$ over \mathbb{Q}. Hence, $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$.
ii. Let $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ be an extension field. Note that

$$
\mathbb{Q}(\sqrt{2}, \sqrt{3})=(\mathbb{Q}(\sqrt{2})(\sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\} .
$$

Therefore, basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$. Thus, $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}]=4$.
Suppose K / F is an extension field and E is a subfield in K containing F i.e. $F \subseteq E \subseteq K$. Thus, we obtain extension fields K / E and E / F. We will give a property of $[K: E]$ and $[E: F]$ in the following Lemma.

Lemma 5[3]

If K, E, F are fields where $F \subseteq E \subseteq K$ then $[K: F]=[K: E] .[E: F]$.

Proof

Let $[K: E]=m$ and $[E: F]=n$. We will show that $[K: F]=[K: E] .[E: F]=m n$.
Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be basis for K / E and E / F, respectively. Take any $x \in K$. Since K is a vector space over E, x can be expressed as

$$
x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{m} v_{m}
$$

for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in E$. Note that E is a vector space over F, we obtain

$$
\alpha_{i}=\beta_{i 1} w_{1}+\beta_{i 2} w_{2}+\cdots+\beta_{i n} w_{n}
$$

for $i=1,2, \ldots, m$. Then,

$$
\begin{gathered}
x=\left(\beta_{11} w_{1}+\beta_{12} w_{2}+\cdots+\beta_{1 n} w_{n}\right) v_{1}+\cdots+\left(\beta_{m 1} w_{1}+\beta_{m 2} w_{2}+\cdots+\beta_{m n} w_{n}\right) v_{m} \\
=\beta_{11} v_{1} w_{1}+\beta_{12} v_{1} w_{2}+\cdots+\beta_{1 n} v_{1} w_{n}+\cdots+\beta_{m 1} v_{m} w_{1}+\beta_{m 2} v_{m} w_{2}+\cdots+\beta_{m n} v_{m} w_{n} .
\end{gathered}
$$

Thus, K is generated by $B=\left\{v_{i} w_{j} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$. Now, we will show that B is linearly independent. Suppose that

$$
c_{11} v_{1} w_{1}+c_{12} v_{1} w_{2}+\cdots+c_{1 n} v_{2} w_{n}+\cdots+c_{m 1} v_{m} w_{1}+c_{m 2} v_{m} w_{2}+\cdots+c_{m n} v_{m} w_{n}=0
$$

So,

$$
\left(c_{11} w_{1}+c_{12} w_{2}+\cdots+c_{1 n} w_{n}\right) v_{1}+\cdots+\left(c_{m 1} w_{1}+c_{m 2} w_{2}+\cdots+c_{m n} w_{n}\right) v_{m}=0
$$

Since $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent, we obtain $c_{i 1} w_{1}+c_{i 2} w_{2}+\cdots+c_{i n} w_{n}=0$ for $i=1,2, \ldots, m$. Also, since $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is linearly independent, it means $c_{i 1}=c_{i 2}=\cdots=c_{i n}=0$. Thus, $c_{i j}=0$ for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. We have B is a basis of K over F. Hence, $B=\left\{v_{i} w_{j} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$ and $[K: F]=m n$.

Next, we will discuss automorphism group of an extension field. Moreover, we will give some properties related to the automorphism group.

Let K / F be an extension field. We form the set of all automorphism of K which is defined by

$$
\text { Aut }(K / F)=\{\sigma: K \rightarrow K \text { automorphism } \mid \sigma(x)=x, \text { for all } x \in F\}
$$

$\operatorname{Aut}(K / F)$ is a group under the operation of composition and is called the automorphism group of $\boldsymbol{K} / \boldsymbol{F}$.
Next, we will give some examples of $\operatorname{Aut}(K / F)$ of extension field K / F.

Example 6

Suppose an extension field $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ with its basis $B=\{1, \sqrt{2}\}$. It is known that each automorphism can be defined by a function

$$
\rho: B \rightarrow \mathbb{Q}(\sqrt{2}) .
$$

The function will then be extended to $\rho^{\prime}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2})$. Because σ is an element in $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$, we have $\sigma(1)=1$ and $\sigma(a)=\sigma(1 . a)=a \cdot \sigma(1)=a \cdot 1=a$ for every $a \in \mathbb{Q}$. Note that,

$$
0=\sigma(0)=\sigma\left((\sqrt{2})^{2}-2\right)=\sigma(\sqrt{2})^{2}-2
$$

So, $\sigma(\sqrt{2})^{2}=2$ and $\sigma(\sqrt{2})=\sqrt{2}$ or $-\sqrt{2}$. So, we get two automorphisms of $\mathbb{Q}(\sqrt{2})$ which is defined by

$$
\begin{aligned}
\sigma_{1}: B & \rightarrow \mathbb{Q}(\sqrt{2}) \\
1 & \mapsto 1 \\
\sqrt{2} & \mapsto \sqrt{2}
\end{aligned}
$$

and

$$
\begin{gathered}
\sigma_{2}: B \rightarrow \mathbb{Q}(\sqrt{2}) \\
1 \mapsto 1 \\
\sqrt{2} \mapsto-\sqrt{2} .
\end{gathered}
$$

Then, those two functions are extended to

$$
\begin{gathered}
\sigma_{1}{ }^{\prime}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2}) \\
a .1+b \cdot \sqrt{2} \mapsto a \cdot \sigma_{1}(1)+b . \sigma_{1}(\sqrt{2})
\end{gathered}
$$

and

$$
\begin{gathered}
\sigma_{2}{ }^{\prime}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2}) \\
a .1+b \cdot \sqrt{2} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(-\sqrt{2})
\end{gathered}
$$

Therefore, $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\left\{\sigma_{1}{ }^{\prime}, \sigma_{2}{ }^{\prime}\right\}=\left\{i d, \sigma_{2}{ }^{\prime}\right\}$. Thus, we have extension field $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ with its automorphism $\operatorname{group} G=\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\left\{i d, \sigma_{2}{ }^{\prime}\right\}$.

Example 7

Given an extension field $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ where

$$
\mathbb{Q}(\sqrt[3]{2})=\{a \cdot 1+b \cdot \sqrt[3]{2}+c \cdot \sqrt[3]{4}\}
$$

So, $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q}. We will use the same way from Example $\mathbf{6}$ to find all automorphisms of $\mathbb{Q}(\sqrt[3]{2})$. We construct all automorphisms in $\mathbb{Q}(\sqrt[3]{2})$ from bijective function which is defined by

$$
\rho: B \rightarrow \mathbb{Q}(\sqrt[3]{2}) .
$$

We obtain $\sigma(1)=1$ and $\sigma(a)=\sigma(1 \cdot a)=a \cdot \sigma(1)=a .1=a$ for every $a \in \mathbb{Q}$. So,

$$
0=\sigma(0)=\sigma\left((\sqrt[3]{2})^{3}-2\right)=\sigma((\sqrt[3]{2}))^{3}-\sigma(2)=\sigma(\sqrt[3]{2})^{3}-2
$$

So,

$$
\sigma(\sqrt[3]{2})^{3}=2
$$

We know that the roots of $x^{3}-2=0$ are $\sqrt[3]{2} e^{\frac{1}{3} 2 \pi i \sqrt[3]{2}}, \sqrt[3]{2} e^{\frac{2}{3} 2 \pi i}$, and $\sqrt[3]{2}$. Note that $\sqrt[3]{2} e^{\frac{1}{3} 2 \pi i} \sqrt[3]{2}, \sqrt[3]{2} e^{\frac{2}{2} 2 \pi i} \notin$ $\mathbb{Q}(\sqrt[3]{2})$, so $\sigma(\sqrt[3]{2})=\sqrt[3]{2}$. Using the same way, we will also only have $\sigma(\sqrt[3]{4})=\sqrt[3]{4}$. Hence, we can only form one automorphism defined by

$$
\begin{gathered}
\sigma_{1}: B \rightarrow \mathbb{Q}(\sqrt[3]{2}) \\
1 \mapsto 1 \\
\sqrt[3]{2} \mapsto \sqrt[3]{2} \\
\sqrt[3]{4} \mapsto \sqrt[3]{4}
\end{gathered}
$$

Then, we extend σ_{1} to $\sigma_{1}{ }^{\prime}$ defined by

$$
\begin{gathered}
\sigma_{1}^{\prime}: \mathbb{Q}(\sqrt[3]{2}) \rightarrow \mathbb{Q}(\sqrt[3]{2}) \\
a .1+b \cdot \sqrt[3]{2}+c \cdot \sqrt[3]{4} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(\sqrt[3]{2})+c \cdot \sigma_{1}(\sqrt[3]{4}) \\
a \cdot 1+b \cdot \sqrt[3]{2}+c \cdot \sqrt[3]{4} \mapsto a \cdot 1+b \cdot \sqrt[3]{2} c+\sqrt[3]{4} .
\end{gathered}
$$

Thus, $\sigma_{1}{ }^{\prime}$ is the identity function of $\mathbb{Q}(\sqrt[3]{2})$. In conclusion, we obtain $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=\left\{\sigma_{1}{ }^{\prime}\right\}=\{i d\}$.

Example 8

Suppose an extension field $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / Q$ with its basis $B=\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$. It is known that each automorphism can be defined by a function

$$
\sigma: B \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) .
$$

The function will then be extended to $\sigma^{\prime}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2})$. Because $\sigma \in \operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$, we have $\sigma(1)=1$ because $\sigma(a)=a$ for every $a \in \mathbb{Q}$. Note that,

$$
\begin{aligned}
& 0=\sigma(0)=\sigma\left((\sqrt{2})^{2}-2\right)=\sigma(\sqrt{2})^{2}-2, \\
& 0=\sigma(0)=\sigma\left((\sqrt{3})^{2}-3\right)=\sigma(\sqrt{3})^{2}-3
\end{aligned}
$$

So, $\sigma(\sqrt{2})^{2}=2$ and $\sigma(\sqrt{2})=\sqrt{2}$ or $-\sqrt{2}$. Also, $\sigma(\sqrt{3})^{2}=3$ so that $\sigma(\sqrt{3})=3$ or $-\sqrt{3}$. Note that $\sigma(\sqrt{6})=$ $\sigma(\sqrt{2}) \sigma(\sqrt{3})$. It means $\sigma(\sqrt{6})$ depends on $\sigma(3)$ and $\sigma(\sqrt{3})$. So, we get four automorphisms of $Q(\sqrt{2})$ which is defined by

$$
\begin{array}{llll}
\sigma_{1}: B \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) & \sigma_{2}: B \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) & \sigma_{3}: B \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) & \sigma_{4}: B \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) \\
1 \mapsto 1 & 1 \mapsto 1 & 1 \mapsto 1 & 1 \mapsto 1 \\
\sqrt{2} \mapsto \sqrt{2} & \sqrt{2} \mapsto-\sqrt{2} & \sqrt{2} \mapsto \sqrt{2} & \sqrt{2} \mapsto-\sqrt{2} \\
\sqrt{3} \mapsto \sqrt{3} & \sqrt{3} \mapsto \sqrt{3} & \sqrt{3} \mapsto-\sqrt{3} & \sqrt{3} \mapsto-\sqrt{3} \\
\sqrt{6} \mapsto \sqrt{6} & \sqrt{6} \mapsto-\sqrt{6} & \sqrt{6} \mapsto-\sqrt{6} & \sqrt{6} \mapsto \sqrt{6}
\end{array}
$$

$\sqrt{6}$
Next, we extend those four automorphisms to $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ defined by

$$
\begin{aligned}
\sigma_{i}^{\prime}: Q(\sqrt{2}, \sqrt{3}) & \rightarrow Q(\sqrt{2}, \sqrt{3}) \\
a .1+b \cdot \sqrt{2}+c \cdot \sqrt{3}+d \cdot \sqrt{6} & \mapsto a \cdot \sigma_{i}(1)+b \cdot \sigma_{i}(\sqrt{2})+c \cdot \sigma_{i}(\sqrt{3})+d \cdot \sigma_{i}(\sqrt{6})
\end{aligned}
$$

Thus, $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})=\left\{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}, \sigma_{4}^{\prime}\right\}$. Note that $\sigma_{1}^{\prime}=i d$ and $\sigma_{4}^{\prime}=\sigma_{2}^{\prime} \sigma_{3}^{\prime}$. Hence, $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})=$ $\left\{i d, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}, \sigma_{2}^{\prime} \sigma_{3}^{\prime}\right\}$.

Next, we will give a property of $\operatorname{Aut}(K / F)$ in this following lemma.

Proposition 9[5]

If $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is the set of automorphisms of K then $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is linearly independent (i.e. if $\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+$ $\cdots+\alpha_{n} \sigma_{n}=0$ then $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0$).

Proof.

Suppose that $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is the set of automorphisms of K. We will prove that $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is linearly independent using induction method on k elements of the given set.
i. For $k=1$. We take any σ_{i} for $i=1,2, \ldots, n$ where $\alpha_{i} \sigma_{i}=0$. It means $\left(\alpha_{1} \sigma_{1}\right)(x)=\alpha_{1}\left(\sigma_{1}(x)\right)=0$. Note that K is a field and σ_{i} is an automorphism, then we have $\sigma_{1}(x) \neq 0$ for every nonzero $x \in K$. Therefore, $\alpha_{i}=0$.
ii. It holds for k where $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}$ is linearly independent.
iii. We will prove that also holds for $k+1$. Suppose that

$$
\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\cdots+\alpha_{k+1} \sigma_{k+1}=0
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k+1} \in F$. So, for every $x \in K$

$$
\left(\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\cdots+\alpha_{k+1} \sigma_{k+1}\right)(x)=0
$$

Thus,

$$
\begin{equation*}
\alpha_{1} \sigma_{1}(x)+\alpha_{2} \sigma_{2}(x)+\cdots+\alpha_{k+1} \sigma_{k+1}(x)=0 \tag{i}
\end{equation*}
$$

Because $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ are distinct, there is a nonzero $y \in K$ such that $\sigma_{1}(y) \neq \sigma_{2}(y)$. Using equation (i), we obtain

$$
\begin{align*}
& \Leftrightarrow \alpha_{1} \sigma_{1}(x y)+\alpha_{2} \sigma_{2}(x y)+\cdots+\alpha_{k+1} \sigma_{k+1}(x y)=0 \\
& \Leftrightarrow \alpha_{1} \sigma_{1}(x) \sigma_{1}(y)+\alpha_{2} \sigma_{2}(x) \sigma_{2}(y)+\cdots+\alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y)=0 \tag{ii}
\end{align*}
$$

From (i), we obtain

$$
\begin{equation*}
\alpha_{1} \sigma_{1}(x)=-\alpha_{2} \sigma_{2}(x)-\cdots-\alpha_{k+1} \sigma_{k+1}(x) \tag{iii}
\end{equation*}
$$

Then, we substitute (iii) to (ii)

$$
\begin{aligned}
& \Leftrightarrow\left(-\alpha_{2} \sigma_{2}(x)-\alpha_{3} \sigma_{3}(x)-\cdots-\alpha_{k+1} \sigma_{k+1}(x)\right) \sigma_{1}(y)+\alpha_{2} \sigma_{2}(x) \sigma_{2}(y)+\cdots+\alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y)=0 \\
& \Leftrightarrow-\alpha_{2} \sigma_{2}(x) \sigma_{1}(y)-\alpha_{3} \sigma_{3}(x) \sigma_{1}(y) \ldots-\alpha_{k+1} \sigma_{k+1}(x) \sigma_{1}(y)+\alpha_{2} \sigma_{2}(x) \sigma_{2}(y)+\cdots+\alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y) \\
& \quad \quad 0 \\
& \Leftrightarrow-\alpha_{2} \sigma_{2}(x) \sigma_{1}(y)-\alpha_{3} \sigma_{3}(x) \sigma_{1}(y)-\cdots-\alpha_{k+1} \sigma_{k+1}(x) \sigma_{1}(y)+\alpha_{2} \sigma_{2}(x) \sigma_{2}(y)+\alpha_{3} \sigma_{3}(x) \sigma_{3}(y)+\cdots \\
& \quad+\alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y)=0 \\
& \Leftrightarrow \alpha_{2} \sigma_{2}(x)\left(\sigma_{2}(y)-\sigma_{1}(y)\right)+\alpha_{3} \sigma_{3}(x)\left(\sigma_{3}(y)-\sigma_{1}(y)\right) \ldots+\alpha_{k+1} \sigma_{k+1}(x)\left(\sigma_{k+1}(y)-\sigma_{1}(y)\right)=0 \\
& \Leftrightarrow \alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right) \sigma_{2}(x)+\alpha_{3}\left(\sigma_{3}(y)-\sigma_{1}(y)\right) \sigma_{3}(x)+\cdots+\alpha_{k+1}\left(\sigma_{k+1}(y)-\sigma_{1}(y)\right) \sigma_{k+1}(x)=0 \\
& \Leftrightarrow\left(\alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right) \sigma_{2}+\alpha_{3}\left(\sigma_{3}(y)-\sigma_{1}(y)\right) \sigma_{3} \ldots+\alpha_{k+1}\left(\sigma_{k+1}(y)-\sigma_{1}(y)\right) \sigma_{k+1}\right)(x)=0
\end{aligned}
$$

Using the assumption for k, we obtain
$\alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right)=\alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right)=\cdots=\alpha_{k+1}\left(\sigma_{k+1}(y)-\sigma_{1}(y)\right)=0$.
Note that $\alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right)=0$ and $(y) \neq \sigma_{1}(y)$, so we have $\alpha_{2}=0$. Moreover, using (i) and $\alpha_{2}=0$, we also have

$$
\begin{aligned}
& \Leftrightarrow \alpha_{1} \sigma_{1}(x)+\alpha_{3} \sigma_{3}(x) \ldots+\alpha_{k+1} \sigma_{k+1}(x)=0 \\
& \Leftrightarrow\left(\alpha_{1} \sigma_{1}+\alpha_{3} \sigma_{3}+\cdots+\alpha_{k+1} \sigma_{k+1}\right)(x)=0 .
\end{aligned}
$$

Therefore, $\alpha_{1} \sigma_{1}+\alpha_{3} \sigma_{3}+\cdots+\alpha_{k+1} \sigma_{k+1}=0$. Again, using the assumption for $n=k$, it implies that that $\alpha_{1}=$ $\alpha_{3}=\cdots=\alpha_{k+1}=0$. Hence, $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is linealy independent over F.

Moreover, we will give the relation between $|A u t(K / F)|$ and $[K: F]$ in the proposition below.

Proposition 10 [5]

If K / F is an extension field then $|A u t(K / F)| \leq[K: F]$.

Proof

Write $G=\operatorname{Aut}(K / F)$. Suppose $G=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ so that $|G|=n$. Let $[K: F]=n$ and the basis of K / F is $B=$ $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ for some $d \in \mathbb{N}$. We will prove that $n \leq d$ using method of contradiction.
Suppose $n>d$. We form a linear equation system i.e.

$$
\begin{gathered}
\sigma_{1}\left(v_{1}\right) x_{1}+\sigma_{2}\left(v_{1}\right) x_{2}+\cdots+\sigma_{n}\left(v_{1}\right) x_{n}=0 \\
\sigma_{1}\left(v_{2}\right) x_{1}+\sigma_{2}\left(v_{2}\right) x_{2}+\cdots+\sigma_{n}\left(v_{2}\right) x_{n}=0 \\
\vdots \vdots \\
\sigma_{1}\left(v_{d}\right) x_{1}+\sigma_{2}\left(v_{d}\right) x_{2}+\cdots+\sigma_{n}\left(v_{d}\right) x_{n}=0 .
\end{gathered}
$$

Note that there are more variables than the number of equations. It implies there is a nonzero solution, $\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=$ $\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)$ where $c_{i} \neq 0$ for some $i \in\{1,2, \ldots, n\}$. Let $w \in K / F$. It means w can be expressed as

$$
w=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}
$$

where $a_{1}, a_{2}, \ldots, a_{d} \in F$. Then, we multiply a_{i} to the system of equations. Thus,

$$
\begin{gathered}
a_{1} \sigma_{1}\left(v_{1}\right) x_{1}+a_{1} \sigma_{2}\left(v_{1}\right) x_{2}+\cdots+a_{1} \sigma_{n}\left(v_{1}\right) x_{n}=0 \\
a_{2} \sigma_{1}\left(v_{2}\right) x_{1}+a_{2} \sigma_{2}\left(v_{2}\right) x_{2}+\cdots+a_{2} \sigma_{n}\left(v_{2}\right) x_{n}=0 \\
\vdots \\
a_{d} \sigma_{1}\left(v_{d}\right) x_{1}+a_{d} \sigma_{2}\left(v_{d}\right) x_{2}+\cdots+a_{d} \sigma_{n}\left(v_{d}\right) x_{n}=0 .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& \left(a_{1} \sigma_{1}\left(v_{1}\right)+a_{2} \sigma_{1}\left(v_{2}\right)+\cdots+a_{d} \sigma_{1}\left(v_{d}\right)\right) c_{1}+\left(a_{1} \sigma_{2}\left(v_{1}\right)+a_{2} \sigma_{2}\left(v_{2}\right)+\cdots+a_{d} \sigma_{2}\left(v_{d}\right)\right) c_{2}+\cdots+\left(a_{1} \sigma_{n}\left(v_{1}\right)\right. \\
& \left.+a_{2} \sigma_{n}\left(v_{2}\right)+\cdots+a_{d} \sigma_{n}\left(v_{d}\right)\right) c_{n}=0 \\
& \text { and } \\
& \sigma_{1}\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}\right) \cdot c_{1}+\sigma_{2}\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}\right) \cdot c_{2}+\cdots+\sigma_{n}\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}\right) \cdot c_{n} \\
& =0 \text {. }
\end{aligned}
$$

So, $c_{1} \cdot \sigma_{1}(w)+c_{2} \cdot \sigma_{2}(w)+\cdots+c_{n} \sigma_{n}(w)=0$ and $\left(c_{1} \sigma_{1}+c_{1} \sigma_{2}+\cdots+c_{n} \sigma_{n}\right)(w)=0$. It holds for every $w \in$ K / F. It implies that $\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\cdots+\alpha_{n} \sigma_{d}=0$. Note that there is $c_{i} \neq 0$ for some $i=1,2, \ldots, n$. Hence, $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is linearly independent. It implies contradiction with Proposition 7. Hence, $n \leq d$ that is $|G| \leq$ [K:F].

Based on Proposition 10, we have $|\operatorname{Aut}(K / F)| \leq[K: F]$. However, the equality does not always hold to all extension fields. We will give an example to describe it.

Example 11

Given an extension field $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. From Example 4, we know that $\mathbb{Q}(\sqrt[3]{2})=\{a .1+b \cdot \sqrt[3]{2}+c \cdot \sqrt[3]{4}\}$ So, $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q}. We also have $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=\{i d\}$. Thus, $[\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}]=3$ and $|\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})|=1$.

Based on the example above, it then motivates the definition of Galois extension. We will give the definition of Galois extension on the following definition.

Definition 12[5]

Let K / F be a finite extension field. K is called Galois extension over F if $|\operatorname{Aut}(K / F)|=[K: F]$.
It's common to write the automorphism $\operatorname{Aut}(K / F)$ as $\boldsymbol{G a l}(\boldsymbol{K} / \boldsymbol{F})$ when K is a Galois extension and is called Galois group of K / F. Next, we will give example of a Galois extension and a non-Galois extension in the following example.

Example 13

i. Using Example 6, we have $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is a Galois extension. Because the basis of $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is $\{1, \sqrt{2}\}$. We obtain $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\left\{\right.$ id, $\left.\sigma_{2}\right\}$. Thus, $|\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})|=[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$. Hence, $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is a Galois extension field over \mathbb{Q}.
ii. Based on Example 7, we know that $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not a Galois extension because $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=\{$ id $\}$ and the basis of $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is $\{1, \sqrt[3]{2}\}$. So, $|\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})| \neq[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=2$.

Let K / F be an extension field and $A u t(K / F)$ be the automorphism group of K / F. For every, $S \subseteq A u t(K / F)$, We form a subset of K defined by

$$
K^{S}=\{x \in K \mid \sigma(x)=x, \forall \sigma \in S\}
$$

Note that $\forall a, b \in K^{S}$ dan $\sigma \in S$, we obtain

$$
\sigma(a-b)=\sigma(a)-\sigma(b)=a-b
$$

and
$\sigma\left(a b^{-1}\right)=\sigma(a) \sigma\left(b^{-1}\right)=\sigma(a)(\sigma(b))^{-1}=a b^{-1}$.
Therefore, K^{S} is a subfield in K containing F and is called the fixed field of \boldsymbol{S} [5]. In other words, \boldsymbol{S} fixed all elements in K^{S}.

Example 14

Using Example 6, we have $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$. We obtain $G=\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\left\{i d, \sigma_{2}{ }^{\prime}\right\}$ where
id: $\mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2})$

$$
a .1+b . \sqrt{2} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(\sqrt{2})
$$

and

$$
\begin{gathered}
\sigma_{2}^{\prime}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2}) \\
a .1+b \cdot \sqrt{2} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(-\sqrt{2}) .
\end{gathered}
$$

Thus, $i d(a .1)=a$ and $\sigma_{2}^{\prime}(a .1)=a$ where $a \in \mathbb{Q}$. Hence, $\mathbb{Q}(\sqrt{2})^{G}=\mathbb{Q}$.
Let K / F be an extension field where it automorphism group is $G=A u t(K / F)$. Suppose H is a subgroup in H. Next, we will give a property related to fixed field of a H which is denoted by K^{H} in this following Lemma.

Theorem 15 [5]

Let K / F be an extension field where $[K: F]<\infty$. If $K^{G}=F$ then $[K: F]=|\operatorname{Aut}(K / F)|$.

Proof.

Let $[K: F]=d$ and $|\operatorname{Aut}(K / F)|=n$. Based on Proposition 10, we have $d \geq n$. Next, we will prove that $d \leq n$ using method of contradiction.
Suppose $d>n$. Thus, there exist $n+1$ elements $v_{1}, v_{2}, \ldots, v_{n+1}$ which are linearly independent over F. Then, we construct the following system of equations

$$
\begin{gathered}
\sigma_{1}\left(v_{1}\right) x_{1}+\sigma_{1}\left(v_{2}\right) x_{2}+\cdots+\sigma_{1}\left(v_{n+1}\right) x_{n+1}=0 \\
\sigma_{2}\left(v_{1}\right) x_{1}+\sigma_{2}\left(v_{2}\right) x_{2}+\cdots+\sigma_{2}\left(v_{n+1}\right) x_{n+1}=0 \\
\vdots \\
\sigma_{n}\left(v_{1}\right) x_{1}+\sigma_{2}\left(v_{2}\right) x_{2}+\cdots+\sigma_{n}\left(v_{n+1}\right) x_{n+1}=0
\end{gathered}
$$

Note that there are more variables than the number of equations. It implies there is a non-trivial solution, $\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n+1}\end{array}\right)=$ $\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n+1}\end{array}\right)$ where $\alpha_{i} \neq 0$ for some $i \in\{1,2, \ldots, n+1\}$. Among all non-trivial solutions, we choose r as the least number of nonzero elements. Moreover, $r \neq 1$ because $\sigma_{1}\left(v_{1}\right) \alpha_{1}=0$ implies $\sigma_{1}\left(v_{1}\right)=0$ and $v_{1}=0$.
i. We will prove that there exists a non-trivial solutions where α_{i} are in F for any $i \in\{1,2, \ldots, n+1\}$. Supposed $\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{r} \\ 0 \\ \vdots \\ 0\end{array}\right)$ is a non-trivial solution with r non-zero elements where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \neq 0$. We obtain a new non-trivial solution by multiplying the given solution with $\frac{1}{\alpha_{r}}$ which is $\left(\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{r} \\ 0 \\ \vdots \\ 0\end{array}\right)=\left(\begin{array}{c}\alpha_{1} / \alpha_{r} \\ \alpha_{2} / \alpha_{r} \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right)$. Thus,

$$
\begin{equation*}
\beta_{1} \sigma_{i}\left(v_{1}\right)+\beta_{2} \sigma_{i}\left(v_{2}\right)+\cdots+1 . \sigma_{i}\left(v_{n+1}\right)=0 \tag{*}
\end{equation*}
$$

For $i=1,2, \ldots, n$. Now, we will show that β_{i} are in F for any $i \in\{1,2, \ldots, n+1\}$ using method of contradiction. Suppose there exists $\beta_{i} \notin F$, say β_{1}. We know that $F=K^{G}$ so that β_{1} is not an element of the fixed field. In other words, there exists $\sigma_{k} \in G$ where $\sigma_{k}\left(\beta_{1}\right) \neq \beta_{1}$. So, $\sigma_{k}\left(\beta_{1}\right)-\beta_{1} \neq 0$. Since G is a group, it implies $\sigma_{k} G=G$. It means for any $\sigma_{i} \in G$, we obtain $\sigma_{i}=\sigma_{k} \sigma_{j}$ for $j=1,2, \ldots, n$. Applying σ_{k} to the expressions of (*)

$$
\begin{aligned}
& \Leftrightarrow \sigma_{k}\left(\beta_{1} \sigma_{j}\left(v_{1}\right)+\beta_{2} \sigma_{j}\left(v_{2}\right)+\cdots+1 \cdot \sigma_{j}\left(v_{r}\right)\right)=0 \\
& \Leftrightarrow \sigma_{k}\left(\beta_{1}\right) \cdot \sigma_{k} \sigma_{j}\left(v_{1}\right)+\sigma_{k}\left(\beta_{2}\right) \cdot \sigma_{k} \sigma_{j}\left(v_{2}\right)+\cdots+\sigma_{k} \sigma_{j}\left(v_{r}\right)=0
\end{aligned}
$$

for $j=1,2, \ldots, n$ so that from $\sigma_{i}=\sigma_{k} \sigma_{j}$. We obtain

$$
\begin{equation*}
\sigma_{k}\left(\beta_{1}\right) \cdot \sigma_{i}\left(v_{1}\right)+\sigma_{k}\left(\beta_{2}\right) \cdot \sigma_{i}\left(v_{2}\right)+\cdots+\sigma_{i}\left(v_{r}\right)=0 \tag{**}
\end{equation*}
$$

Subtracting $(*)$ and $\left({ }^{* *}\right)$, we have

$$
\left(\beta_{1}-\sigma_{k}\left(\beta_{1}\right) \sigma_{i}\left(v_{1}\right)+\left(\beta_{2}-\sigma_{k}\left(\beta_{2}\right) \sigma_{i}\left(v_{2}\right)+\cdots+\left(\beta_{r-1}-\sigma_{k}\left(\beta_{r-1}\right) \sigma_{i}\left(v_{r-1}\right)+0=0\right.\right.\right.
$$

which is non-trivial solution because $\sigma_{k}\left(\beta_{1}\right) \neq \beta_{1}$ and is having $r-1$ non-zeo elements, contrary to the choice of r as the minimality. Hence, $\left(\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{r} \\ 0 \\ \vdots \\ 0\end{array}\right)$ is a non-trivial where all $\beta_{i} \in F$ for any $i=1,2, \ldots, n$.
ii. Using (i), we obtain a nonzero solution with all elements are in F. So, using the first equation in the system, we obtain

$$
\begin{gathered}
\sigma_{1}\left(v_{1}\right) \beta_{1}+\sigma_{1}\left(v_{2}\right) \beta_{2}+\cdots+\sigma_{1}\left(v_{r}\right) \beta_{r}=0 \\
\sigma_{1}\left(\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{r} v_{r}\right)=0 .
\end{gathered}
$$

Because σ_{1} is an automorphism, we obtain $\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{r} v_{r}=0$ where $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$ are nonzero elements in K. It is contrary to $v_{1}, v_{2}, \ldots, v_{n+1}$ which are linearly independent over F.

Thus, we have $d \leq n$. Hence, $d=n$ i.e. $[K: F]=|A u t(K / F)|$.

Next, we will give a neccesary and sufficient contdition for K / F is Galois using its fixed field.

Corollary 16[5]

Let K / F be an extension field where $[K: F]<\infty$ with its automorphism group $G=A u t(K / F)$. The field K / F is a Galois extension over F if and only if $K^{G}=F$.

Proof.

(\Rightarrow) We have K is a Galois extension over F. It means $[K: F]=|A u t(K / F)|$. We will show that $K^{G}=F$. We know that K^{G} is a subfield of K and $F \subseteq K^{G} \subseteq K$. Based on Lemma 5 and Theorem 15, we obtain

$$
|\operatorname{Aut}(K / F)|=\left[K: K^{G}\right]=[K: F] /\left[K^{G}: F\right] .
$$

Because $[K: F]=|\operatorname{Aut}(K / F)|$. It implies $\left[K^{G}: F\right]=1$. Hence, $K^{G}=F$.
(\Leftarrow) We know that $K^{G}=F$. Using Theorem 15, we have $\left[K: K^{G}\right]=[K: F]=|A u t(K / F)|$. Thus, K is a Galois extension over F.

Let K / F be an extension field with its automorphsim group $G=\operatorname{Aut}(K / F)$. Using the Corollary above, we can determine that K / F is a Galois extension by showing that the fixed field of its automorphism group G is F itself (that is $K^{G}=F$).

Lemma 17 [5]

Let K / F be an extension field and E be an intermediate field of K / F that is $F \subseteq E \subseteq K$. The automorphism group $\operatorname{Aut}(K / E)$ is a subgroup in $\operatorname{Aut}(K / F)$.

Proof.

Let K / F be an extension field and E be an intermediate field of K / F. Write $G=\operatorname{Aut}(K / F)$. Note that K / E is an extension field. So, $H=\operatorname{Aut}(K / E)$ is the automorphism group of K / E where

$$
\operatorname{Aut}(K / E)=\{\sigma: K \rightarrow K \text { automorphism } \mid \sigma(x)=x, \text { for all } x \in E\}
$$

Moreover, let $\sigma \in H$. It means, $\sigma(x)=x$ for all $x \in E$. Because $F \subseteq E$, so $\sigma(x)=x$ for all $x \in F \subseteq E$. Thus, $\sigma \in$ $\operatorname{Aut}(K / F)=G$. Hence, H is group and a subset in G. It implies that H is a subgroup of G.

Lemma 18 [5]

Let K / F be Galois extension field. If E is an intermediate field of K / F then K / E is a Galois extension.

Proof.

Let K / F be Galois extension field. If E is an intermediate field of K / F. We have, K / E is an extension field with it automorphism group $H=\operatorname{Aut}(K / E)$. Based on Corollary 16, we will prove that K / E is a Galois extension by showing that E is the fixed field of its automorphism group Aut (K / E) i.e. $E=K^{\operatorname{Aut}(K / E)}$. Write $G=A u t(K / F)$.

Suppose H is a subgroup of G where its fixed field is E i.e. $E=K^{H}$.
i. First, we will show that $H=\operatorname{Aut}(K / E)$. Let $\sigma \in H \subseteq G$. We know that H fixes all element in E. So, $\sigma(x)=x$
for all $x \in E$. Using the definition of $\operatorname{Aut}(K / E)$, we have $\sigma \in \operatorname{Aut}(K / E)$. Thus, $H \subseteq A u t(K / E)$ and $|H| \leq$ $\left|\operatorname{Aut}\left(K / K^{H}\right)\right|$. Based on Theorem 15 , we have

$$
\left[K: K^{H}\right]=|H| .
$$

Note that K / K^{H} is an extension field, so $\left|\operatorname{Aut}\left(K / K^{H}\right)\right| \leq\left[K: K^{H}\right]$ based on Proposition 10. Therefore,

$$
|H| \leq\left|\operatorname{Aut}\left(K / K^{H}\right)\right| \leq\left[K: K^{H}\right]=|H| .
$$

Thus, $|H|=\left|A u t\left(K / K^{H}\right)\right|$. Because $|H|$ and $\left|A u t\left(K / K^{H}\right)\right|$ are finite and also $H \subseteq A u t(K / E)$, it implies $H=$ $\operatorname{Aut}\left(K / K^{H}\right)=\operatorname{Aut}(K / E)$. In other words, E is the fixed field of $\operatorname{Aut}(K / E)$.
ii. We have E is the fixed field of $\operatorname{Aut}(K / E)$ from (i). It means, $E=K^{\operatorname{Aut}(K / E)}$. Using Corollary 16, we have K / E is a Galois extension with Galois group $H=\operatorname{Aut}\left(K / K^{H}\right)=\operatorname{Aut}(K / E)$.

Let K / F be a Galois extension field where $\operatorname{Aut}(K / F)$ is the automorphism group of K / F. We know that for all subgroups in G, we can form an intermediate subfield in K. Suppose
\mathcal{H} is the set of all subgroups in G, and
\mathcal{F} is the set of all intermediate field of K / F.
We can form a function between \mathcal{H} and \mathcal{F} defined by

$$
\begin{gathered}
\rho: \mathcal{H} \rightarrow \mathcal{F} \\
H \mapsto K^{H}
\end{gathered}
$$

for all $H \in \mathcal{H}$. In other words, H is mapped to its fixed field K^{H}. Using the property of K / F as a Galois extension, we will show that there is a one-one correspondence between \mathcal{H} and \mathcal{F} that is ρ is bijective.

Theorem 19[5]

Let K / F be an extension field. If K is a Galois extension then there is an one-one correspondence between intermediate field E of K / F and subgroups H of G defined by

$$
\begin{gathered}
\rho: \mathcal{H} \rightarrow \mathcal{F} \\
H \mapsto K^{H}
\end{gathered}
$$

Proof

Let K / F be a Galois extension field where $A u t(K / F)$ is the automorphism group of K / F. we will show that there is a one-one correspondence between \mathcal{H} and \mathcal{F} that is ρ is bijective.
i. Suppose E is an intermediate field. From Lemma 18, we have K / E is a Galois extension with its Galois group $H=\operatorname{Aut}(K / E)$. We know that H is a subgroup in G. Thus, E is the fixed field of H that is $E=K^{H}=$ $\rho(H)$. Hence, ρ is surjective.
ii. Let $H_{1}, H_{2} \in \mathcal{H}$ where G where $\rho\left(H_{1}\right)=\rho\left(H_{2}\right)$ that is $K^{H_{1}}=K^{H_{2}}$. Note that $K / K^{H_{1}}$ and $K / K^{H_{2}}$ are Galois extensions by Lemma 18. So, $H_{1}=\operatorname{Aut}\left(K / K^{H_{1}}\right)$ and $H_{2}=\operatorname{Aut}\left(K / K^{H_{2}}\right)$. Also, note that $K^{H_{1}}=K^{H_{2}}$ so that $K^{H_{1}}$ is the fixed field of H_{2}. Thus, $H_{2} \subseteq \operatorname{Aut}\left(K / K^{H_{1}}\right)=H_{1}$. Analogously, $K^{H_{2}}=K^{H_{1}}$. We have, $K^{H_{2}}$ is the fixed field of H_{1}. Hence, $H_{1} \subseteq \operatorname{Aut}\left(K / K^{H_{2}}\right)=H_{2}$. Therefore, $H_{1}=H_{2}$. Hence, ρ is injective

From (i) and (ii), it implies that, ρ is bijective so that there is an one-one correspondence between set of all subgroups in G and the set of all intermediate field of K / F.

Next, we will describe the Galois correspondence using Galois extension field $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ in this following example.

Example 20

Using Example 8, we have $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ is a Galois extension where its basis $B=\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ and $G=$ $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})=\left\{i d, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}, \sigma_{2}^{\prime} \sigma_{3}^{\prime}\right\}$. Note that $\operatorname{Aut}\left(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}\right.$ is a Klein group generated by $\left\{\sigma_{2}^{\prime}, \sigma_{3}^{\prime}\right\}$. Next, we will find all intermediate fields of $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ using the Galois correspondence. Since, G is a Klein group, we can compute all subgroups in G which are

$$
H_{1}=\{i d\} \quad H_{2}=\left\{i d, \sigma_{2}^{\prime}\right\} \quad H_{3}=\left\{i d, \sigma_{3}^{\prime}\right\} \quad H_{4}=\left\{i d, \sigma_{2}^{\prime} \sigma_{2}^{\prime}\right\} \quad H_{5}=G
$$

Using the set of all subgroups which is $\left\{H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right\}$, we will find all intermediate fields of $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ using the correspondence between
\mathcal{H} is the set of all subgroups in G, and
\mathcal{F} is the set of all intermediate field of $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$
defined by

$$
\begin{aligned}
\rho: \mathcal{H} & \rightarrow \mathcal{F} \\
H_{i} & \mapsto K^{H_{i}}
\end{aligned}
$$

for all $i=1,2,3,4$. Note that each automorphism in G defined by

$$
\begin{array}{cc}
i d: \mathbb{Q}(\sqrt{2}, \sqrt{3}) & \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) \\
\sigma_{2}^{\prime}: \mathbb{Q}(\sqrt{2}, \sqrt{3}) \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) \\
a .1+b \cdot \sqrt{2}+c \cdot \sqrt{3}+d . \sqrt{6} \mapsto a .1+b \cdot \sqrt{2}+c \cdot \sqrt{3}+d . \sqrt{6} & a .1+b \cdot \sqrt{2}+c \cdot \sqrt{3}+d . \sqrt{6} \mapsto a \cdot 1-b \cdot \sqrt{2}+c . \sqrt{3}-d . \sqrt{6}
\end{array}
$$

$$
\sigma_{2}^{\prime}: \mathbb{Q}(\sqrt{2}, \sqrt{3}) \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3}) \quad \sigma_{2}^{\prime} \sigma_{3}^{\prime}: \mathbb{Q}(\sqrt{2}, \sqrt{3}) \rightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3})
$$

$a .1+b . \sqrt{2}+c . \sqrt{3}+d . \sqrt{6} \mapsto a .1+b . \sqrt{2}-c . \sqrt{3}-d . \sqrt{6} \quad a .1+b . \sqrt{2}+c . \sqrt{3}+d . \sqrt{6} \mapsto a .1-b . \sqrt{2}-c . \sqrt{3}+d . \sqrt{6}$. for every $a .1+b \cdot \sqrt{2}+c \cdot \sqrt{3}+d \cdot \sqrt{6} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Therefore, the fixed of fields of each automorphism is

$$
\begin{aligned}
& K^{\{i d\}}=\{a .1+b . \sqrt{2}+c . \sqrt{3}+d . \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}=\mathbb{Q}(\sqrt{2}, \sqrt{3}) \\
& K^{\left\{\sigma_{2}^{\prime}\right\}}=\{a .1+c \cdot \sqrt{3} \mid a, c \in \mathbb{Q}\}=\mathbb{Q}(\sqrt{3}) \\
& K^{\left\{\sigma_{3}^{\prime}\right\}}=\{a .1+b . \sqrt{2} \mid a, b \in \mathbb{Q}\}=\mathbb{Q}(\sqrt{2}) \\
& K^{\left\{\sigma_{2}^{\prime} \sigma_{3}^{\prime}\right\}}=\{a .1+d . \sqrt{6} \mid a, d \in \mathbb{Q}\}=\mathbb{Q}(\sqrt{6})
\end{aligned}
$$

Thus, the fixed field for each subgroups are

$$
\begin{aligned}
& K^{H_{1}}=K^{\{i d\}}=\mathbb{Q}(\sqrt{2}, \sqrt{3}) \\
& K^{H_{2}}=K^{\left\{i d, \sigma_{2}^{\prime}\right\}}=K^{\{i d\}} \cap K^{\left\{\sigma_{2}^{\prime}\right\}}=\mathbb{Q}(\sqrt{3}) \\
& K^{H_{3}}=K^{\left\{i d, \sigma_{3}^{\prime}\right\}}=K^{\{i d\}} \cap K^{\left\{\sigma_{3}^{\prime}\right\}}=\mathbb{Q}(\sqrt{2}) \\
& K^{H_{4}}=K^{\left\{i d, \sigma_{2}^{\prime} \sigma_{3}^{\prime}\right\}}=K^{\{i d\}} \cap K^{\left\{\sigma_{2}^{\prime} \sigma_{3}^{\prime}\right\}}=\mathbb{Q}(\sqrt{6}) \\
& K^{H_{5}}=K^{G}=K^{\{i d\}} \cap K^{\left\{\sigma_{2}^{\prime}\right\}} \cap K^{\left\{\sigma_{3}^{\prime}\right\}} \cap K^{\left\{\sigma_{2}^{\prime} \sigma_{3}^{\prime}\right\}}=\mathbb{Q}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\rho: \mathcal{H} & \rightarrow \mathcal{F} \\
H_{1} & \mapsto \mathbb{Q}(\sqrt{2}, \sqrt{3}) \\
H_{2} & \mapsto \mathbb{Q}(\sqrt{3}) \\
H_{3} & \mapsto \mathbb{Q}(2) \\
H_{4} & \mapsto \mathbb{Q}(\sqrt{6}) \\
H_{5} & \mapsto \mathbb{Q} .
\end{aligned}
$$

Hence, the set of all intermediate fields of $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ is $\{\mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{6})$ and \mathbb{Q}. Furthermore, we will the describe the correspondence using the diagram below

CONCLUSION

Let K / F be an extension field with its automorphism group $G=\operatorname{Aut}(K / F)$.

1. The field K / F is Galois extension if and only if the fixed field of G is F itself.
2. If K / F is a Galois extension then there is one-one correspondence between the set of all intermediate subfields of K / F and the set of all subgroups in G.

REFERENCES

[1] Dummit, Abstract Algebra Dummit and Foote.pdf. 1999.
[2] Khanna, Vijay K. Khanna, S.K. Bhamri - A Course in Abstract Algebra-Vikas (2013).pdf., 2000.
[3] Lidl, R., \& Niederreiter, H., Introduction to finite fields and their applications. Cambridge: Cambridge University Press., 1986.
[4] Malik, D. S., \& Mordeson, J. N. MTH 581-582 Introduction to Abstract Algebra. America, February., 2007.
[5] Morandi, P., Fields and Galois Theory. New York: Springer., 1999.
[6] Roman, S., Advanced Linear Algebra. New York: Springer, 2005

