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Abstract.  Let 𝐾/𝐹 be an extension field where [𝐾: 𝐹] denotes dimension of 𝐾 as a vector space over 𝐹. Let 𝐴𝑢𝑡(𝐾/𝐹) 
be the group of all automorphism of 𝐾 that fixes 𝐹 where the order of 𝐴𝑢𝑡(𝐾/𝐹) is denoted by |𝐴𝑢𝑡(𝐾/𝐹) |. Particularly, 

an extension field is called a Galois extension if |𝐴𝑢𝑡(𝐾/𝐹) | = [𝐾: 𝐹]. Moreover, we will give some properties of an 

extension field 𝐾/𝐹 which is a Galois extension. Using the properties of Galois extension, we will show that there is an 

one-one correspondence between the set of all intermediate fields in 𝐾 and the set of all subgroups in 𝐴𝑢𝑡(𝐾/𝐹). 
Furthermore, we will give some examples of Galois group correspondence using an extension field over ℚ. 
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INTRODUCTION 

Suppose 𝐹 and 𝐾 be fields where 𝐹 ⊆ 𝐾. The field 𝐾 is called an extension field of 𝐹 and is denoted by 𝐾/𝐹. We  

know that 𝐾 can be viewed as a vector space over 𝐹. Thus, 𝐾 have a basis where the dimension of 𝐾 is denoted by 

[𝐾: 𝐹]. Moreover, we form a set of all automorphisms of 𝐾 that fixes 𝐹 that is 

𝐴𝑢𝑡(𝐾/𝐹) = {𝜎: 𝐾 → 𝐾 automorphism|𝜎(𝑥) = 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐹} 
Note that 𝐴𝑢𝑡(𝐾/𝐹) is a group under the operation of composition in 𝐴𝑢𝑡(𝐾/𝐹). The group 𝐴𝑢𝑡(𝐾/𝐹) is called 

automorphism group of 𝐾/𝐹. The number of elements in 𝐴𝑢𝑡(𝐾/𝐹) is called order of 𝐴𝑢𝑡(𝐾/𝐹) and is written as 

|𝐴𝑢𝑡(𝐾/𝐹) |. In particular, an extension field 𝐾/𝐹  is called a Galois extension 𝐾/𝐹 if |𝐴𝑢𝑡(𝐾/𝐹) | = [𝐾: 𝐹].   
  

Let 𝐾/𝐹 be an extension field with its automorphism group 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). An intermediate field 𝐸  of 𝐾/𝐹 is a 

subfiend in 𝐾 containing 𝐹 that is 𝐹 ⊆ 𝐸 ⊆ 𝐾. Let 𝐻 be a subgroup in 𝐺. Then, we form a set in 𝐾 defined by 

𝐾𝐻 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜎 ∈ 𝐻 }. 
In other words, 𝐾𝐻 is the set of all elements in 𝐾 which are mapped into itself by every 𝜎 ∈ 𝐻. The set 𝐾𝐻 is a 

subfield in 𝐾 containing 𝐹 and is called fixed field of 𝑆. Thus, for every subgroup in 𝐺, we can form an intermediate 

subfield in 𝐾 defined by 𝐾𝐻. Furthermore, suppose  ℋ is the set of all subgroups in 𝐺, and ℱ is the set of all 

intermediate field of 𝐾/𝐹. We can form a function between ℋ and ℱ defined by 

𝜌:ℋ → ℱ 

𝐻 ↦ 𝐾𝐻 

for all 𝐻 ∈ ℋ. Using this correspondence, we can compute all subfields of 𝐾/𝐹. For example, ℚ(√2)/ℚ is an 

extension field where its automorphism group is 𝐺 = {𝑖𝑑, 𝜎} where 𝜎(1) = 1 and 𝜎(√2) = −√2. Note that, the set 
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of all subgroups in 𝐺 is 𝐻1 = {𝑖𝑑} and 𝐻2 = 𝐺 itself. Using the function, we obtain ℚ(√2)
𝐻1
= ℚ(√2) and 

ℚ(√2)
𝐻2
= ℚ. Thus, the intermediate subfields of ℚ(√2)/ℚ are ℚ(√2) and ℚ. 

Throughout this research, we will show that if 𝐾/𝐹 is a Galois extension then there is a one-one correspondence 

between the set of all subfields in 𝐾 which contains 𝐹 and the set of all subgroups in 𝐴𝑢𝑡(𝐾/𝐹) (i.e. ℱ and ℋ). We 

called this correspondence as Galois correspondence.  Furthermore, we will give an example related to Galois group 

correspondence especially extension fields over ℚ. 

 

SOME RESULTS 

 

In this part, we will discuss about an extension field 𝐾/𝐹 with its properties related to its role as a vector space 

over 𝐹. Next, we will also explain the automorphism group of an extension field 𝐾/𝐹 and give some examples on 

finding all automorphisms of 𝐾/𝐹. Moreover, we will discuss about Galois extension with its properties. Using the 

properties of Galois extension, we will also discuss Galois corrrespondence.  

 

Definition 1[3] 

Let 𝐹 and 𝐾 be fields where 𝐹 ⊆ 𝐾. The field 𝐾 is called an extension field of 𝐹 (denoted by 𝐾/𝐹). 
 

Example 2 

i. ℝ is an extension field of ℚ. 

ii. ℚ(√2) = {𝑎 + 𝑏√2|𝑎, 𝑏 ∈ ℚ} is an extension field of ℚ. 

iii. ℚ(√2, √3) = (𝑄(√2)(√3) = {𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√6|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ} is an extension field of ℚ. 

 

 Let 𝐾/𝐹 is an extension field. We know that 𝐾 can be viewed as a vector space over 𝐹. Thus, 𝐾 has a basis 

𝐵 over 𝐹 where the number of elements in 𝐵 is called dimension of 𝐾 denoted by [𝐾: 𝐹].  
 

Definition [3] 

Let 𝐾/𝐹 is an extension field. If [𝐾: 𝐹] < ∞ then 𝐾 is called a finite extension of 𝐹. 

 

Next, we will give an example of the dimension of a finite extension field.  

 

Example 4 

i. Given ℚ with its extension ℚ(√2). Every 𝑥 ∈ ℚ(√2) can be expressed by 

𝑥 = 𝑎 + 𝑏√2. 

Therefore, 𝑥 can be written as a linear combination of {1, √2}. It is clear that {1, √2} is linearly independent over 

ℚ. So, {1, √2} is a basis for 𝑄(√2) over ℚ. Hence, [ℚ(√2):ℚ] = 2. 

ii.  Let ℚ(√2, √3)/ℚ be an extension field. Note that 

ℚ(√2, √3) = (ℚ(√2)(√3) = {𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√6|𝑎, 𝑏, 𝑐, 𝑑 ∈ℚ}. 

 Therefore, basis of ℚ(√2, √3) over ℚ is {1, √2, √3, √6}. Thus, [ℚ(√2, √3)/ℚ] = 4. 

 

 Suppose 𝐾/𝐹 is an extension field and 𝐸 is a subfield in 𝐾 containing 𝐹 i.e. 𝐹 ⊆ 𝐸 ⊆ 𝐾. Thus, we obtain 

extension fields 𝐾/𝐸 and 𝐸/𝐹. We will give a property of [𝐾: 𝐸] and [𝐸: 𝐹] in the following Lemma. 

 

Lemma 5[3] 

If 𝐾, 𝐸, 𝐹 are fields where 𝐹 ⊆ 𝐸 ⊆ 𝐾 then [𝐾: 𝐹] = [𝐾: 𝐸]. [𝐸: 𝐹]. 
Proof 

Let [𝐾: 𝐸] = 𝑚 and [𝐸: 𝐹] = 𝑛. We will show that [𝐾: 𝐹] = [𝐾: 𝐸]. [𝐸: 𝐹] = 𝑚𝑛. 

Suppose that {𝑣1, 𝑣2, … , 𝑣𝑚} and {𝑤1, 𝑤2, … , 𝑤𝑛} be basis for 𝐾/𝐸 and 𝐸/𝐹, respectively. Take any 𝑥 ∈ 𝐾. Since 𝐾 

is a vector space over 𝐸, 𝑥 can be expressed as 

𝑥 = 𝛼1𝑣1 + 𝛼2𝑣2 +⋯+ 𝛼𝑚𝑣𝑚. 
for 𝛼1, 𝛼2, … , 𝛼𝑚 ∈ 𝐸. Note that 𝐸 is a vector space over 𝐹, we obtain  
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𝛼𝑖 = 𝛽𝑖1𝑤1 + 𝛽𝑖2𝑤2 +⋯+ 𝛽𝑖𝑛𝑤𝑛 

for 𝑖 = 1,2, … ,𝑚. Then, 

𝑥 = (𝛽11𝑤1 + 𝛽12𝑤2 +⋯+ 𝛽1𝑛𝑤𝑛)𝑣1 +⋯+ (𝛽𝑚1𝑤1 + 𝛽𝑚2𝑤2 +⋯+ 𝛽𝑚𝑛𝑤𝑛)𝑣𝑚 

= 𝛽11𝑣1𝑤1 + 𝛽12𝑣1𝑤2 +⋯+ 𝛽1𝑛𝑣1𝑤𝑛 +⋯+ 𝛽𝑚1𝑣𝑚𝑤1 + 𝛽𝑚2𝑣𝑚𝑤2 +⋯+ 𝛽𝑚𝑛𝑣𝑚𝑤𝑛. 
Thus, 𝐾 is generated by 𝐵 = {𝑣𝑖𝑤𝑗|𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛}. Now, we will show that 𝐵 is linearly independent. 

Suppose that 

𝑐11𝑣1𝑤1 + 𝑐12𝑣1𝑤2 +⋯+ 𝑐1𝑛𝑣2𝑤𝑛 +⋯+ 𝑐𝑚1𝑣𝑚𝑤1 + 𝑐𝑚2𝑣𝑚𝑤2 +⋯+ 𝑐𝑚𝑛𝑣𝑚𝑤𝑛 = 0 

So, 

(𝑐11𝑤1 + 𝑐12𝑤2 +⋯+ 𝑐1𝑛𝑤𝑛)𝑣1 +⋯+ (𝑐𝑚1𝑤1 + 𝑐𝑚2𝑤2 +⋯+ 𝑐𝑚𝑛𝑤𝑛)𝑣𝑚 = 0. 
Since {𝑣1, 𝑣2, … , 𝑣𝑚} is linearly independent, we obtain 𝑐𝑖1𝑤1 + 𝑐𝑖2𝑤2 +⋯+ 𝑐𝑖𝑛𝑤𝑛 = 0 for 𝑖 = 1,2, … ,𝑚. Also, 

since {𝑤1, 𝑤2, … , 𝑤𝑛} is linearly independent, it means 𝑐𝑖1 = 𝑐𝑖2 = ⋯ = 𝑐𝑖𝑛 = 0. Thus, 𝑐𝑖𝑗 = 0 for 𝑖 = 1,2, … ,𝑚 and 

𝑗 = 1,2, … , 𝑛. We have 𝐵 is a basis of 𝐾 over 𝐹. Hence, 𝐵 = {𝑣𝑖𝑤𝑗|𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛} and [𝐾: 𝐹] = 𝑚𝑛.  

◼ 

 

Next, we will discuss automorphism group of an extension field. Moreover, we will give some properties related to 

the automorphism group. 

 

Let 𝐾/𝐹 be an extension field. We form the set of all automorphism of 𝐾 which is defined by 

𝐴𝑢𝑡(𝐾/𝐹) = {𝜎: 𝐾 → 𝐾 𝑎𝑢𝑡𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 |𝜎(𝑥) = 𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐹  }. 
𝐴𝑢𝑡(𝐾/𝐹) is a group under the operation of composition and is called the automorphism group of 𝑲/𝑭.  

 

Next, we will give some examples of 𝐴𝑢𝑡(𝐾/𝐹) of extension field 𝐾/𝐹. 

 

Example 6 

Suppose an extension field ℚ(√2)/ℚ with its basis 𝐵 = {1, √2}. It is known that each automorphism can be defined 

by a function  

𝜌: 𝐵 → ℚ(√2). 

The function will then be extended to 𝜌′: ℚ(√2) → ℚ(√2). Because 𝜎 is an element in 𝐴𝑢𝑡(ℚ(√2)/ℚ), we have 

𝜎(1) = 1 and 𝜎(𝑎) = 𝜎(1. 𝑎) = 𝑎. 𝜎(1) = 𝑎. 1 = 𝑎 for every 𝑎 ∈ ℚ. Note that,  

0 = 𝜎(0) = 𝜎 ((√2)
2
− 2) = 𝜎(√2)2 − 2. 

So, 𝜎(√2)2 = 2 and 𝜎(√2) = √2 or −√2. So, we get two automorphisms of ℚ(√2) which is defined by 

𝜎1: 𝐵 → ℚ(√2) 

1 ↦ 1 

√2 ↦ √2 

and 

𝜎2: 𝐵 → ℚ(√2) 

1 ↦ 1 

√2 ↦ −√2. 
Then, those two functions are extended to  

𝜎1′: ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(√2) 
and 

𝜎2′: ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(−√2) 

Therefore, 𝐴𝑢𝑡(ℚ(√2)/ℚ) = {𝜎1′, 𝜎2′} = {𝑖𝑑, 𝜎2′}. Thus, we have extension field ℚ(√2)/ℚ with its automorphism 

group 𝐺 = 𝐴𝑢𝑡(ℚ(√2)/ℚ) = {𝑖𝑑, 𝜎2′}.  

 

 

Example 7 

Given an extension field ℚ(√2
3
)/ℚ where 
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ℚ(√2
3
) = {𝑎. 1 + 𝑏. √2

3
+ 𝑐. √4

3
}. 

So, {1, √2
3
, √4
3
} is a basis of ℚ(√2

3
) over ℚ. We will use the same way from Example 6 to find all automorphisms 

of ℚ(√2
3
). We construct all automorphisms in ℚ(√2

3
) from bijective function which is defined by  

𝜌: 𝐵 → ℚ(√2
3
). 

We obtain 𝜎(1) = 1 and 𝜎(𝑎) = 𝜎(1. 𝑎) = 𝑎. 𝜎(1) = 𝑎. 1 = 𝑎 for every 𝑎 ∈ ℚ. So,  

0 = 𝜎(0) = 𝜎((√2
3
)3 − 2) = 𝜎((√2

3
))3 − 𝜎(2) = 𝜎(√2

3
)
3
− 2. 

So, 

𝜎(√2
3
)
3
= 2. 

We know that the roots of 𝑥3 − 2 = 0 are √2
3
 𝑒
1

3
.2𝜋𝑖
√2
3
, √2
3
 𝑒
2

3
.2𝜋𝑖 ,and√2

3
. Note that √2

3
 𝑒
1

3
.2𝜋𝑖
√2
3
, √2
3
 𝑒
2

3
.2𝜋𝑖 ∉

ℚ(√2
3
), so 𝜎(√2

3
) = √2

3
. Using the same way, we will also only have 𝜎(√4

3
) = √4

3
. Hence, we can only form one 

automorphism defined by 

𝜎1: 𝐵 → ℚ(√2
3
) 

1 ↦ 1 

√2
3

↦ √2
3

 

√4
3

↦ √4
3

 

 

Then, we extend 𝜎1 to 𝜎1′ defined by 

𝜎1′: ℚ(√2
3
) → ℚ(√2

3
) 

𝑎. 1 + 𝑏. √2
3
+ 𝑐. √4

3
↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(√2

3
) + 𝑐. 𝜎1(√4

3
) 

𝑎. 1 + 𝑏. √2
3
+ 𝑐. √4

3
↦ 𝑎. 1 + 𝑏. √2

3
 𝑐 + √4

3
. 

Thus, 𝜎1′ is the identity function of ℚ(√2
3
). In conclusion, we obtain 𝐴𝑢𝑡(ℚ(√2

3
)/ℚ) = {𝜎1′} = {𝑖𝑑}.  

 

Example 8 

Suppose an extension field ℚ(√2, √3)/𝑄 with its basis 𝐵 = {1, √2, √3, √6}. It is known that each automorphism 

can be defined by a function  

𝜎: 𝐵 → ℚ(√2, √3). 

The function will then be extended to 𝜎′:ℚ(√2) → ℚ(√2). Because 𝜎 ∈ 𝐴𝑢𝑡(ℚ(√2)/ℚ), we have 𝜎(1) = 1 

because 𝜎(𝑎) = 𝑎 for every 𝑎 ∈ ℚ. Note that,  

0 = 𝜎(0) = 𝜎 ((√2)
2
− 2) = 𝜎(√2)2 − 2, 

0 = 𝜎(0) = 𝜎 ((√3)
2
− 3) = 𝜎(√3)2 − 3 

So, 𝜎(√2)2 = 2 and 𝜎(√2) = √2 or −√2. Also, 𝜎(√3)2 = 3 so that 𝜎(√3) = 3 or −√3. Note that 𝜎(√6) =

𝜎(√2)𝜎(√3).  It means 𝜎(√6) depends on 𝜎(3) and 𝜎(√3). So, we get four automorphisms of 𝑄(√2) which is 

defined by 

 

𝜎1: 𝐵 → ℚ(√2, √3) 

1 ↦ 1 

√2 ↦ √2 

√3 ↦ √3 

√6 ↦ √6 

 

𝜎2: 𝐵 → ℚ(√2, √3) 

1 ↦ 1 

√2 ↦ −√2 

√3 ↦ √3 

√6 ↦ −√6 

 

𝜎3: 𝐵 → ℚ(√2, √3) 

1 ↦ 1 

√2 ↦ √2 

√3 ↦ −√3 

√6 ↦ −√6 

 

𝜎4: 𝐵 → ℚ(√2, √3) 

1 ↦ 1 

√2 ↦ −√2 

√3 ↦ −√3 

√6 ↦ √6 

 

Next, we extend those four automorphisms to ℚ(√2, √3) defined by 

 

𝜎𝑖′: 𝑄(√2, √3) → 𝑄(√2, √3) 

𝑎. 1 + 𝑏. √2 + 𝑐. √3 + 𝑑. √6 ↦ 𝑎. 𝜎𝑖(1) + 𝑏. 𝜎𝑖(√2) + 𝑐. 𝜎𝑖(√3) + 𝑑. 𝜎𝑖(√6) 
 

Thus, 𝐴𝑢𝑡(ℚ(√2,√3)/ℚ) = { 𝜎1
′ , 𝜎2

′ , 𝜎3
′ , 𝜎4

′}. Note that 𝜎1
′ = 𝑖𝑑 and 𝜎4

′ = 𝜎2
′𝜎3
′ . Hence, 𝐴𝑢𝑡(ℚ(√2, √3)/ℚ) =

{ 𝑖𝑑, 𝜎2
′ , 𝜎3

′ , 𝜎2
′𝜎3
′}. 
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Next, we will give a property of 𝐴𝑢𝑡(𝐾/𝐹) in this following lemma. 

 

Proposition 9[5] 

If {𝜎1, 𝜎2, … , 𝜎𝑛} is the set of automorphisms of 𝐾 then {𝜎1, 𝜎2, … , 𝜎𝑛} is linearly independent (i.e. if 𝛼1𝜎1 + 𝛼2𝜎2 +
⋯+ 𝛼𝑛𝜎𝑛 = 0 then 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0). 
Proof. 

Suppose that {𝜎1, 𝜎2, … , 𝜎𝑛} is the set of automorphisms of 𝐾. We will prove that {𝜎1, 𝜎2, … , 𝜎𝑛} is linearly 

independent using induction method on 𝑘 elements of the given set. 

i. For 𝑘 = 1. We take any 𝜎𝑖 for 𝑖 = 1,2, … , 𝑛 where  𝛼𝑖𝜎𝑖 = 0. It means (𝛼1𝜎1)(𝑥) = 𝛼1(𝜎1(𝑥)) = 0.  Note that 

𝐾 is a field and 𝜎𝑖 is an automorphism, then we have 𝜎1(𝑥) ≠ 0 for every nonzero 𝑥 ∈ 𝐾. Therefore, 𝛼𝑖 = 0. 

ii. It holds for 𝑘 where {𝜎1, 𝜎2, … , 𝜎𝑘} is linearly independent. 

iii. We will prove that also holds for 𝑘 + 1. Suppose that  

𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑘+1𝜎𝑘+1 = 0 

where 𝛼1, 𝛼2, … , 𝛼𝑘+1 ∈ 𝐹. So, for every 𝑥 ∈ 𝐾 

(𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑘+1𝜎𝑘+1)(𝑥) = 0. 
Thus,  

𝛼1𝜎1(𝑥) + 𝛼2𝜎2(𝑥) + ⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥) = 0.            (i) 

  

 Because {𝜎1, 𝜎2, … , 𝜎𝑛} are distinct, there is a nonzero 𝑦 ∈ 𝐾 such that 𝜎1(𝑦) ≠ 𝜎2(𝑦). Using equation (i), we 

 obtain 

⟺ 𝛼1𝜎1(𝑥𝑦) + 𝛼2𝜎2(𝑥𝑦) + ⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥𝑦) = 0 

⟺ 𝛼1𝜎1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) + ⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0       (ii) 

 From (i), we obtain 

 𝛼1𝜎1(𝑥) = −𝛼2𝜎2(𝑥) − ⋯− 𝛼𝑘+1𝜎𝑘+1(𝑥)         (iii) 

 

 Then, we substitute (iii) to (ii)  

 

⟺ (−𝛼2𝜎2(𝑥)−𝛼3𝜎3(𝑥) − ⋯− 𝛼𝑘+1𝜎𝑘+1(𝑥) )𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) + ⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0 

⟺−𝛼2𝜎2(𝑥)𝜎1(𝑦)−𝛼3𝜎3(𝑥)𝜎1(𝑦)…− 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) + ⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦)
= 0 

⟺−𝛼2𝜎2(𝑥)𝜎1(𝑦)−𝛼3𝜎3(𝑥)𝜎1(𝑦) − ⋯−𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) + 𝛼3𝜎3(𝑥)𝜎3(𝑦) + ⋯
+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0 

⟺ 𝛼2𝜎2(𝑥)(𝜎2(𝑦) − 𝜎1(𝑦)) + 𝛼3𝜎3(𝑥)(𝜎3(𝑦) − 𝜎1(𝑦))…+ 𝛼𝑘+1𝜎𝑘+1(𝑥)(𝜎𝑘+1(𝑦) − 𝜎1(𝑦)) = 0 

⟺ 𝛼2(𝜎2(𝑦) − 𝜎1(𝑦))𝜎2(𝑥) + 𝛼3(𝜎3(𝑦) − 𝜎1(𝑦))𝜎3(𝑥) + ⋯+ 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦))𝜎𝑘+1(𝑥) = 0 

⟺ (𝛼2(𝜎2(𝑦) − 𝜎1(𝑦))𝜎2 + 𝛼3(𝜎3(𝑦) − 𝜎1(𝑦))𝜎3…+ 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦))𝜎𝑘+1) (𝑥) = 0 

 

Using the assumption for 𝑘, we obtain 

𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = 𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = ⋯ = 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦)) = 0. 

 

Note that 𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = 0 and (𝑦) ≠ 𝜎1(𝑦), so we have 𝛼2 = 0. Moreover, using (i) and 𝛼2 = 0, we 

also have 

⟺ 𝛼1𝜎1(𝑥) + 𝛼3𝜎3(𝑥)…+ 𝛼𝑘+1𝜎𝑘+1(𝑥) = 0 

⟺ (𝛼1𝜎1 + 𝛼3𝜎3 +⋯+ 𝛼𝑘+1𝜎𝑘+1)(𝑥) = 0. 
 

Therefore, 𝛼1𝜎1 + 𝛼3𝜎3 +⋯+ 𝛼𝑘+1𝜎𝑘+1 = 0. Again, using the assumption for 𝑛 = 𝑘, it implies that that  𝛼1 =
𝛼3 = ⋯ = 𝛼𝑘+1 = 0. Hence, {𝜎1, 𝜎2, … , 𝜎𝑛} is linealy independent over 𝐹. ◼ 

 

Moreover, we will give the relation between |𝐴𝑢𝑡(𝐾/𝐹)| and [𝐾: 𝐹] in the proposition below. 

 

 

Proposition 10 [5] 

If 𝐾/𝐹 is an extension field then |𝐴𝑢𝑡(𝐾/𝐹)| ≤ [𝐾: 𝐹]. 
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Proof 

Write 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). Suppose 𝐺 = {𝜎1, 𝜎2, … , 𝜎𝑛} so that |𝐺| = 𝑛. Let [𝐾: 𝐹] = 𝑛 and the basis of 𝐾/𝐹 is  𝐵 =
{𝑣1, 𝑣2, … , 𝑣𝑑} for some 𝑑 ∈ ℕ. We will prove that  𝑛 ≤ 𝑑 using method of contradiction. 

Suppose 𝑛 > 𝑑. We form a linear equation system i.e. 

𝜎1(𝑣1)𝑥1 + 𝜎2(𝑣1)𝑥2 +⋯+ 𝜎𝑛(𝑣1)𝑥𝑛 = 0 

𝜎1(𝑣2)𝑥1 + 𝜎2(𝑣2)𝑥2 +⋯+ 𝜎𝑛(𝑣2)𝑥𝑛 = 0 

⋮ 
𝜎1(𝑣𝑑)𝑥1 + 𝜎2(𝑣𝑑)𝑥2 +⋯+ 𝜎𝑛(𝑣𝑑)𝑥𝑛 = 0. 

Note that there are more variables than the number of equations. It implies there is a nonzero solution, (

𝑥1
𝑥2
⋮
𝑥𝑛

) =

(

𝑐1
𝑐2
⋮
𝑐𝑛

) where 𝑐𝑖 ≠ 0 for some 𝑖 ∈ {1,2, … , 𝑛}. Let 𝑤 ∈ 𝐾/𝐹. It means 𝑤 can be expressed as 

𝑤 = 𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑 

where 𝑎1, 𝑎2, … , 𝑎𝑑 ∈ 𝐹. Then, we multiply 𝑎𝑖 to the system of equations. Thus, 

𝑎1𝜎1(𝑣1)𝑥1 + 𝑎1𝜎2(𝑣1)𝑥2 +⋯+ 𝑎1𝜎𝑛(𝑣1)𝑥𝑛 = 0 

𝑎2𝜎1(𝑣2)𝑥1 + 𝑎2𝜎2(𝑣2)𝑥2 +⋯+ 𝑎2𝜎𝑛(𝑣2)𝑥𝑛 = 0 

⋮ 
𝑎𝑑𝜎1(𝑣𝑑)𝑥1 + 𝑎𝑑𝜎2(𝑣𝑑)𝑥2 +⋯+ 𝑎𝑑𝜎𝑛(𝑣𝑑)𝑥𝑛 = 0. 

Therefore,    

(𝑎1𝜎1(𝑣1) + 𝑎2𝜎1(𝑣2) +⋯+ 𝑎𝑑𝜎1(𝑣𝑑))𝑐1 + (𝑎1𝜎2(𝑣1) + 𝑎2𝜎2(𝑣2) + ⋯+ 𝑎𝑑𝜎2(𝑣𝑑))𝑐2 +⋯+ (𝑎1𝜎𝑛(𝑣1)
+ 𝑎2𝜎𝑛(𝑣2) + ⋯+ 𝑎𝑑𝜎𝑛(𝑣𝑑))𝑐𝑛 = 0 

and 

𝜎1(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐1 + 𝜎2(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐2 +⋯+ 𝜎𝑛(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐𝑛
= 0. 

 

So, 𝑐1. 𝜎1(𝑤) + 𝑐2. 𝜎2(𝑤) +⋯+ 𝑐𝑛𝜎𝑛(𝑤) = 0 and (𝑐1𝜎1 + 𝑐1𝜎2 +⋯+ 𝑐𝑛𝜎𝑛)(𝑤) = 0. It holds for every 𝑤 ∈
𝐾/𝐹. It implies that 𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑛𝜎𝑑 = 0. Note that there is 𝑐𝑖 ≠ 0 for some 𝑖 = 1,2, … , 𝑛. Hence,  

{𝜎1, 𝜎2, … , 𝜎𝑛} is linearly independent. It implies contradiction with Proposition 7. Hence, 𝑛 ≤ 𝑑 that is |𝐺| ≤
[𝐾: 𝐹]. ◼ 

 

 Based on Proposition 10, we have |𝐴𝑢𝑡(𝐾/𝐹)| ≤ [𝐾: 𝐹]. However, the equality does not always hold to 

all extension fields. We will give an example to describe it. 

 

Example 11 

Given an extension field ℚ(√2
3
)/ℚ. From Example 4, we know that ℚ(√2

3
) = {𝑎. 1 + 𝑏. √2

3
+ 𝑐. √4

3
} So, 

{1, √2
3
, √4
3
} is a basis of ℚ(√2

3
) over ℚ. We also have 𝐴𝑢𝑡(ℚ(√2

3
)/ℚ) = {𝑖𝑑}. Thus, [ℚ(√2

3
)/ℚ] = 3 and 

|𝐴𝑢𝑡(ℚ(√2
3
)/ℚ)| = 1. 

 

 Based on the example above, it then motivates the definition of Galois extension. We will give the definition 

of Galois extension on the following definition. 

 

Definition 12[5] 

Let 𝐾/𝐹 be a finite extension field. 𝐾 is called Galois extension over 𝐹 if |𝐴𝑢𝑡(𝐾/𝐹)| = [𝐾: 𝐹].  
 

 It’s common to write the automorphism 𝐴𝑢𝑡(𝐾/𝐹) as 𝑮𝒂𝒍(𝑲/𝑭) when 𝐾 is a Galois extension and is called 

Galois group of 𝐾/𝐹. Next, we will give example of a Galois extension and a non-Galois extension in the following 

example. 
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Example 13 

i. Using Example 6, we have ℚ(√2)/ℚ is a Galois extension. Because the basis of ℚ(√2)/ℚ  is{1, √2}. We 

obtain 𝐴𝑢𝑡(ℚ(√2)/ℚ ) = {𝑖𝑑, 𝜎2}. Thus, |𝐴𝑢𝑡(ℚ(√2)/ℚ)| = [ℚ(√2):ℚ] = 2. Hence, ℚ(√2)/ℚ is a 

Galois extension field over ℚ. 

ii. Based on Example 7, we know that ℚ(√2
3
)/ℚ is not a Galois extension because 𝐴𝑢𝑡(ℚ(√2

3
)/ℚ ) = {𝑖𝑑} 

and the basis of ℚ(√2
3
)/ℚ is {1, √2

3
}. So, |𝐴𝑢𝑡(ℚ(√2

3
)/ℚ)| ≠ [ℚ(√2

3
):ℚ] = 2. 

 

 

Let 𝐾/𝐹 be an extension field and 𝐴𝑢𝑡(𝐾/𝐹) be the automorphism group of 𝐾/𝐹. For every, 𝑆 ⊆ 𝐴𝑢𝑡(𝐾/𝐹),  We 

form a subset of 𝐾 defined by 

𝐾𝑆 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥, ∀𝜎 ∈ 𝑆}. 
Note that ∀𝑎, 𝑏 ∈ 𝐾𝑆 dan 𝜎 ∈ 𝑆, we obtain  

𝜎(𝑎 − 𝑏) = 𝜎(𝑎) − 𝜎(𝑏) = 𝑎 − 𝑏 

and 

𝜎(𝑎𝑏−1) = 𝜎(𝑎)𝜎(𝑏−1) = 𝜎(𝑎)(𝜎(𝑏))−1 = 𝑎𝑏−1. 

 

Therefore, 𝐾𝑆 is a subfield in 𝐾 containing 𝐹 and is called the fixed field of 𝑺 [5]. In other words, 𝑺 fixed all 

elements in  𝐾𝑆. 
 

Example 14 

Using Example 6, we have ℚ(√2)/ℚ. We obtain 𝐺 = 𝐴𝑢𝑡(ℚ(√2)/ℚ ) = {𝑖𝑑, 𝜎2′} where  

𝑖𝑑:ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(√2) 
and 

𝜎2′: ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(−√2). 

Thus, 𝑖𝑑(𝑎. 1) = 𝑎 and 𝜎2
′(𝑎. 1) = 𝑎 where 𝑎 ∈ ℚ. Hence, ℚ(√2)

𝐺
= ℚ. 

 

 Let 𝐾/𝐹 be an extension field where it automorphism group is 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). Suppose 𝐻 is a subgroup in 

𝐻. Next, we will give a property related to fixed field of a 𝐻 which is denoted by  𝐾𝐻 in this following Lemma. 

 

Theorem 15 [5] 

Let 𝐾/𝐹 be an extension field where [𝐾: 𝐹] < ∞. If 𝐾𝐺 = 𝐹 then [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. 
Proof. 

Let [𝐾: 𝐹] = 𝑑 and |𝐴𝑢𝑡(𝐾/𝐹)| = 𝑛. Based on Proposition 10, we have 𝑑 ≥ 𝑛. Next, we will prove that 𝑑 ≤ 𝑛 

using method of contradiction. 

Suppose 𝑑 > 𝑛. Thus, there exist 𝑛 + 1 elements 𝑣1, 𝑣2, … , 𝑣𝑛+1 which are linearly independent over 𝐹. Then, we 

construct the following system of equations 

 

𝜎1(𝑣1)𝑥1 + 𝜎1(𝑣2)𝑥2 +⋯+ 𝜎1(𝑣𝑛+1)𝑥𝑛+1 = 0 

𝜎2(𝑣1)𝑥1 + 𝜎2(𝑣2)𝑥2 +⋯+ 𝜎2(𝑣𝑛+1)𝑥𝑛+1 = 0 

⋮ 
𝜎𝑛(𝑣1)𝑥1 + 𝜎2(𝑣2)𝑥2 +⋯+ 𝜎𝑛(𝑣𝑛+1)𝑥𝑛+1 = 0. 

Note that there are more variables than the number of equations. It implies there is a non-trivial solution, (

𝑥1
𝑥2
⋮

𝑥𝑛+1

) =

(

𝛼1
𝛼2
⋮

𝛼𝑛+1

) where 𝛼𝑖 ≠ 0 for some 𝑖 ∈ {1,2, … , 𝑛 + 1}. Among all non-trivial solutions, we choose 𝑟 as the least number 

of nonzero elements. Moreover, 𝑟 ≠ 1 because 𝜎1(𝑣1)𝛼1 = 0 implies 𝜎1(𝑣1) = 0 and 𝑣1 = 0. 
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i. We will prove that there exists a non-trivial solutions where 𝛼𝑖 are in 𝐹 for any 𝑖 ∈ {1,2, … , 𝑛 + 1}. 

Supposed 

(

 
 
 

𝛼1
𝛼2
⋮
𝛼𝑟
0
⋮
0 )

 
 
 

 is a non-trivial solution with 𝑟 non-zero elements where 𝛼1, 𝛼2, … , 𝛼𝑟 ≠ 0. We obtain a 

new non-trivial solution by multiplying the given solution with 
1

𝛼𝑟
 which is 

(

 
 
 
 

𝛽1
𝛽2
⋮
𝛽𝑟
0
⋮
0 )

 
 
 
 

=

(

 
 
 
 

𝛼1/𝛼𝑟
𝛼2/𝛼𝑟
⋮
1
0
⋮
0 )

 
 
 
 

. Thus,  

𝛽1𝜎𝑖(𝑣1) + 𝛽2𝜎𝑖(𝑣2) + ⋯+ 1. 𝜎𝑖(𝑣𝑛+1) = 0            (*) 

 

For 𝑖 = 1,2, … , 𝑛. Now, we will show that 𝛽𝑖 are in 𝐹 for any 𝑖 ∈ {1,2, … , 𝑛 + 1} using method of 

contradiction. Suppose there exists 𝛽𝑖 ∉ 𝐹, say 𝛽1. We know that 𝐹 = 𝐾𝐺 so that 𝛽1 is not an element of the 

fixed field. In other words, there exists 𝜎𝑘 ∈ 𝐺 where 𝜎𝑘(𝛽1) ≠ 𝛽1. So, 𝜎𝑘(𝛽1) − 𝛽1 ≠ 0. Since 𝐺 is a group, 

it implies 𝜎𝑘𝐺 = 𝐺. It means for any 𝜎𝑖 ∈ 𝐺, we obtain 𝜎𝑖 = 𝜎𝑘𝜎𝑗 for 𝑗 = 1,2, … , 𝑛. Applying 𝜎𝑘 to the 

expressions of (*) 

⟺ 𝜎𝑘(𝛽1𝜎𝑗(𝑣1) + 𝛽2𝜎𝑗(𝑣2) + ⋯+ 1. 𝜎𝑗(𝑣𝑟)) = 0 

⟺ 𝜎𝑘(𝛽1). 𝜎𝑘𝜎𝑗(𝑣1) + 𝜎𝑘(𝛽2). 𝜎𝑘𝜎𝑗(𝑣2) + ⋯+ 𝜎𝑘𝜎𝑗(𝑣𝑟) = 0 

for 𝑗 = 1,2, … , 𝑛 so that from 𝜎𝑖 = 𝜎𝑘𝜎𝑗. We obtain  

𝜎𝑘(𝛽1). 𝜎𝑖(𝑣1) + 𝜎𝑘(𝛽2). 𝜎𝑖(𝑣2) + ⋯+ 𝜎𝑖(𝑣𝑟) = 0.    (**) 

 

Subtracting (*) and (**), we have 

(𝛽1 − 𝜎𝑘(𝛽1)𝜎𝑖(𝑣1) + (𝛽2 − 𝜎𝑘(𝛽2)𝜎𝑖(𝑣2) + ⋯+ (𝛽𝑟−1 − 𝜎𝑘(𝛽𝑟−1)𝜎𝑖(𝑣𝑟−1) + 0 = 0 

which is non-trivial solution because 𝜎𝑘(𝛽1) ≠ 𝛽1 and is having 𝑟 − 1 non-zeo elements, contrary to the 

choice of 𝑟 as the minimality. Hence, 

(

 
 
 
 

𝛽1
𝛽2
⋮
𝛽𝑟
0
⋮
0 )

 
 
 
 

 is a non-trivial where all 𝛽𝑖 ∈ 𝐹 for any 𝑖 = 1,2, … , 𝑛. 

ii. Using (i), we obtain a nonzero solution with all elements are in 𝐹. So, using the first equation in the system, 

we obtain 

𝜎1(𝑣1)𝛽1 + 𝜎1(𝑣2)𝛽2 +⋯+ 𝜎1(𝑣𝑟)𝛽𝑟 = 0 

𝜎1(𝛽1𝑣1 + 𝛽2𝑣2 +⋯+ 𝛽𝑟𝑣𝑟) = 0. 
Because 𝜎1is an automorphism, we obtain 𝛽1𝑣1 + 𝛽2𝑣2 +⋯+ 𝛽𝑟𝑣𝑟 = 0 where 𝛽1, 𝛽2, … , 𝛽𝑟 are nonzero 

elements in 𝐾. It is contrary to 𝑣1, 𝑣2, … , 𝑣𝑛+1 which are linearly independent over 𝐹. 

 

Thus, we have 𝑑 ≤ 𝑛. Hence, 𝑑 = 𝑛 i.e. [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. ◼ 

 

 

Next, we will give a neccesary and sufficient contdition for 𝐾/𝐹 is Galois using its fixed field. 

 

Corollary 16[5] 

Let 𝐾/𝐹 be an extension field where [𝐾: 𝐹] < ∞ with its automorphism group 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). The field 𝐾/𝐹 is a 

Galois extension over 𝐹 if and only if 𝐾𝐺 = 𝐹. 

Proof. 

(⇒) We have 𝐾 is a Galois extension over 𝐹. It means [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. We will show that 𝐾𝐺 = 𝐹. We know 

that 𝐾𝐺 is a subfield of 𝐾 and 𝐹 ⊆ 𝐾𝐺 ⊆ 𝐾. Based on Lemma 5 and Theorem 15, we obtain 
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|𝐴𝑢𝑡(𝐾/𝐹)| = [𝐾:𝐾𝐺] = [𝐾: 𝐹]/[𝐾𝐺: 𝐹]. 
Because  [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. It implies [𝐾𝐺: 𝐹] = 1. Hence, 𝐾𝐺 = 𝐹. 

 

(⇐) We know that 𝐾𝐺 = 𝐹. Using Theorem 15, we have [𝐾: 𝐾𝐺] = [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. Thus, 𝐾 is a Galois 

extension over 𝐹. ◼ 

 

Let 𝐾/𝐹 be an extension field with its automorphsim group 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). Using the Corollary above, we can 

determine that 𝐾/𝐹 is a Galois extension by showing that the fixed field of its automorphism group 𝐺 is 𝐹 itself (that 

is 𝐾𝐺 = 𝐹). 
 

Lemma 17 [5] 

Let 𝐾/𝐹 be an extension field and 𝐸 be an intermediate field of 𝐾/𝐹 that is 𝐹 ⊆ 𝐸 ⊆ 𝐾. The automorphism group 

𝐴𝑢𝑡(𝐾/𝐸) is a subgroup in 𝐴𝑢𝑡(𝐾/𝐹). 
Proof. 

Let 𝐾/𝐹 be an extension field and 𝐸 be an intermediate field of 𝐾/𝐹.  Write 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). Note that 𝐾/𝐸 is an 

extension field. So, 𝐻 = 𝐴𝑢𝑡(𝐾/𝐸) is the automorphism group of 𝐾/𝐸 where 

𝐴𝑢𝑡(𝐾/𝐸) = {𝜎: 𝐾 → 𝐾 automorphism |𝜎(𝑥) = 𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐸  }. 
 Moreover, let 𝜎 ∈ 𝐻. It means, 𝜎(𝑥) = 𝑥 for all 𝑥 ∈ 𝐸. Because  𝐹 ⊆ 𝐸, so 𝜎(𝑥) = 𝑥 for all 𝑥 ∈ 𝐹 ⊆ 𝐸. Thus, 𝜎 ∈
𝐴𝑢𝑡(𝐾/𝐹) = 𝐺. Hence, 𝐻 is group and a subset in 𝐺. It implies that 𝐻 is a subgroup of 𝐺. ◼ 

 

Lemma 18 [5] 

Let 𝐾/𝐹 be Galois extension field. If 𝐸 is an intermediate field of 𝐾/𝐹 then  𝐾/𝐸 is a Galois extension. 

Proof. 

Let 𝐾/𝐹 be  Galois extension field. If 𝐸 is an intermediate field of 𝐾/𝐹. We have, 𝐾/𝐸 is an extension field with it 

automorphism group 𝐻 = 𝐴𝑢𝑡(𝐾/𝐸). Based on Corollary 16, we will prove that 𝐾/𝐸 is a Galois extension by 

showing that 𝐸 is the fixed field of its automorphism group 𝐴𝑢𝑡(𝐾/𝐸) i.e. 𝐸 = 𝐾𝐴𝑢𝑡(𝐾/𝐸). Write 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). 
 

Suppose 𝐻 is a subgroup of 𝐺 where its fixed field is 𝐸 i.e. 𝐸 = 𝐾𝐻. 

i. First, we will show that 𝐻 = 𝐴𝑢𝑡(𝐾/𝐸). Let 𝜎 ∈ 𝐻 ⊆ 𝐺. We know that 𝐻 fixes all element in 𝐸. So, 
𝜎(𝑥) = 𝑥 

for all 𝑥 ∈ 𝐸. Using the definition of 𝐴𝑢𝑡(𝐾/𝐸), we have 𝜎 ∈ 𝐴𝑢𝑡(𝐾/𝐸). Thus, 𝐻 ⊆ 𝐴𝑢𝑡(𝐾/𝐸) and |𝐻| ≤
|𝐴𝑢𝑡(𝐾/𝐾𝐻)|. Based on Theorem 15 , we have 

[𝐾: 𝐾𝐻] = |𝐻|. 
Note that 𝐾/𝐾𝐻 is an extension field, so |𝐴𝑢𝑡(𝐾/𝐾𝐻)| ≤ [𝐾:𝐾𝐻] based on Proposition 10. Therefore, 

|𝐻| ≤ |𝐴𝑢𝑡(𝐾/𝐾𝐻)| ≤ [𝐾:𝐾𝐻] = |𝐻|. 
 

Thus, |𝐻| = |𝐴𝑢𝑡(𝐾/𝐾𝐻)|. Because |𝐻| and |𝐴𝑢𝑡(𝐾/𝐾𝐻)| are finite and also  𝐻 ⊆ 𝐴𝑢𝑡(𝐾/𝐸), it implies 𝐻 =
𝐴𝑢𝑡(𝐾/𝐾𝐻) = 𝐴𝑢𝑡(𝐾/𝐸). In other words, 𝐸 is the fixed field of 𝐴𝑢𝑡(𝐾/𝐸). 
 

ii. We have 𝐸 is the fixed field of 𝐴𝑢𝑡(𝐾/𝐸) from (i). It means, 𝐸 = 𝐾𝐴𝑢𝑡(𝐾/𝐸). Using Corollary 16, we have 

𝐾/𝐸 is a Galois extension with Galois group 𝐻 = 𝐴𝑢𝑡(𝐾/𝐾𝐻) = 𝐴𝑢𝑡(𝐾/𝐸). ◼ 

 

Let 𝐾/𝐹 be a Galois extension field where 𝐴𝑢𝑡(𝐾/𝐹) is the automorphism group of 𝐾/𝐹. We know that for all 

subgroups in 𝐺, we can form an intermediate subfield in 𝐾. Suppose 

ℋ is the set of all subgroups in 𝐺, and 

ℱ is the set of all intermediate field of 𝐾/𝐹. 
We can form a function between ℋ and ℱ defined by 

𝜌:ℋ → ℱ 

𝐻 ↦ 𝐾𝐻 

for all 𝐻 ∈ ℋ. In other words, 𝐻 is mapped to its fixed field 𝐾𝐻. Using the property of 𝐾/𝐹 as a Galois extension, 

we will show that there is a one-one correspondence between ℋ and ℱ that is 𝜌 is bijective. 
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Theorem 19[5] 

Let 𝐾/𝐹 be an extension field. If 𝐾 is a Galois extension then there is an one-one correspondence between 

intermediate field 𝐸 of 𝐾/𝐹 and subgroups 𝐻 of 𝐺 defined by 

𝜌:ℋ → ℱ 

𝐻 ↦ 𝐾𝐻 . 
Proof 

Let 𝐾/𝐹 be a Galois extension field where 𝐴𝑢𝑡(𝐾/𝐹) is the automorphism group of 𝐾/𝐹. we will show that there is 

a one-one correspondence between ℋ and ℱ that is 𝜌 is bijective. 

 

i. Suppose 𝐸 is an intermediate field. From Lemma 18, we have 𝐾/𝐸 is a Galois extension with its Galois 

group 𝐻 = 𝐴𝑢𝑡(𝐾/𝐸). We know that 𝐻 is a subgroup in 𝐺. Thus, 𝐸 is the fixed field of 𝐻 that is 𝐸 = 𝐾𝐻 =
𝜌(𝐻). Hence, 𝜌 is surjective. 

ii. Let 𝐻1, 𝐻2 ∈ ℋ where 𝐺 where 𝜌(𝐻1) = 𝜌(𝐻2) that is 𝐾  𝐻1 = 𝐾  𝐻2 . Note that 𝐾/𝐾  𝐻1 and 𝐾/𝐾  𝐻2 are Galois 

extensions by Lemma 18. So, 𝐻1 = 𝐴𝑢𝑡(𝐾/𝐾
 𝐻1) and 𝐻2 = 𝐴𝑢𝑡(𝐾/𝐾

 𝐻2). Also, note that 𝐾  𝐻1 = 𝐾  𝐻2 so 

that 𝐾  𝐻1 is the fixed field of 𝐻2. Thus, 𝐻2 ⊆ 𝐴𝑢𝑡(𝐾/𝐾
 𝐻1) = 𝐻1.  Analogously, 𝐾  𝐻2 = 𝐾  𝐻1. We have, 

𝐾  𝐻2 is the fixed field of 𝐻1. Hence, 𝐻1 ⊆ 𝐴𝑢𝑡(𝐾/𝐾
 𝐻2) = 𝐻2. Therefore, 𝐻1 = 𝐻2. Hence, 𝜌 is injective 

 

From (i) and (ii), it implies that, 𝜌 is bijective so that there is an one-one correspondence between set of all subgroups 

in 𝐺 and the set of all intermediate field of 𝐾/𝐹. ◼ 

 

Next, we will describe the Galois correspondence using Galois extension field ℚ(√2, √3)/ℚ in this following 

example. 

 

Example 20 

Using Example 8, we have ℚ(√2, √3)/ℚ is a Galois extension where its basis 𝐵 = {1, √2, √3, √6} and 𝐺 =

𝐴𝑢𝑡(ℚ(√2,√3)/ℚ) = { 𝑖𝑑, 𝜎2
′ , 𝜎3

′ , 𝜎2
′𝜎3
′}. Note that 𝐴𝑢𝑡(ℚ(√2, √3)/ℚ is a Klein group generated by {𝜎2

′ , 𝜎3
′}. Next, 

we will find all intermediate fields of ℚ(√2, √3)/ℚ using the Galois correspondence. Since, 𝐺 is a Klein group, we 

can compute all subgroups in 𝐺 which are 

Using the set of all subgroups which is {𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5}, we will find all intermediate fields of ℚ(√2, √3)/ℚ 

using the correspondence between 

ℋ is the set of all subgroups in 𝐺, and 

ℱ is the set of all intermediate field of ℚ(√2,√3)/ℚ 

 

defined by 

𝜌:ℋ → ℱ 

𝐻𝑖 ↦ 𝐾𝐻𝑖 
for all 𝑖 = 1,2,3,4. Note that each automorphism in 𝐺 defined by 

 

𝑖𝑑: ℚ(√2, √3) → ℚ(√2, √3) 𝜎2
′ :ℚ(√2, √3) → ℚ(√2, √3) 

𝑎. 1 + 𝑏. √2 + 𝑐. √3 + 𝑑. √6 ↦ 𝑎. 1 + 𝑏. √2 + 𝑐. √3 + 𝑑. √6 𝑎. 1 + 𝑏. √2 + 𝑐. √3 + 𝑑. √6 ↦ 𝑎. 1 − 𝑏. √2 + 𝑐. √3 − 𝑑. √6 

 

 

𝜎2
′ : ℚ(√2, √3) → ℚ(√2, √3) 𝜎2

′𝜎3
′: ℚ(√2, √3) → ℚ(√2, √3) 

𝑎. 1 + 𝑏. √2 + 𝑐. √3 + 𝑑. √6 ↦ 𝑎. 1 + 𝑏. √2 − 𝑐. √3 − 𝑑. √6 𝑎. 1 + 𝑏. √2 + 𝑐. √3 + 𝑑. √6 ↦ 𝑎. 1 − 𝑏. √2 − 𝑐. √3 + 𝑑. √6. 

for every 𝑎. 1 + 𝑏. √2 + 𝑐. √3 + 𝑑. √6 ∈ ℚ(√2, √3). Therefore, the fixed of fields of each automorphism is 

𝐾{𝑖𝑑} = {𝑎. 1 + 𝑏. √2 + 𝑐. √3 + 𝑑. √6|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ} = ℚ(√2, √3) 

𝐾{𝜎2
′} = {𝑎. 1 + 𝑐. √3|𝑎, 𝑐 ∈ ℚ} = ℚ(√3) 

𝐾{𝜎3
′} = {𝑎. 1 + 𝑏. √2|𝑎, 𝑏 ∈ ℚ} = ℚ(√2) 

𝐾{𝜎2
′𝜎3
′} = {𝑎. 1 + 𝑑. √6|𝑎, 𝑑 ∈ ℚ} = ℚ(√6). 

𝐻1 = {𝑖𝑑} 𝐻2 = {𝑖𝑑, 𝜎2
′} 𝐻3 = {𝑖𝑑, 𝜎3

′} 𝐻4 = {𝑖𝑑, 𝜎2
′𝜎2
′} 𝐻5 = 𝐺. 
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Thus, the fixed field for each subgroups are 

𝐾𝐻1 = 𝐾{𝑖𝑑} = ℚ(√2, √3) 

𝐾𝐻2 = 𝐾{𝑖𝑑,𝜎2
′} = 𝐾{𝑖𝑑} ∩ 𝐾{𝜎2

′} = ℚ(√3) 

𝐾𝐻3 = 𝐾{𝑖𝑑,𝜎3
′} = 𝐾{𝑖𝑑} ∩ 𝐾{𝜎3

′} = ℚ(√2) 

𝐾𝐻4 = 𝐾{𝑖𝑑,𝜎2
′𝜎3
′} = 𝐾{𝑖𝑑} ∩ 𝐾{𝜎2

′𝜎3
′} = ℚ(√6) 

𝐾𝐻5 = 𝐾𝐺 = 𝐾{𝑖𝑑} ∩ 𝐾{𝜎2
′} ∩ 𝐾{𝜎3

′} ∩ 𝐾{𝜎2
′𝜎3
′} = ℚ 

 

Therefore,  

𝜌:ℋ → ℱ 

𝐻1 ↦ ℚ(√2, √3) 

𝐻2 ↦ ℚ(√3) 

𝐻3 ↦ ℚ(2) 

𝐻4 ↦ ℚ(√6) 

𝐻5 ↦ ℚ. 
 

Hence, the set of all intermediate fields of ℚ(√2, √3)/ℚ is {ℚ(√2, √3), ℚ(√3),ℚ(√2),ℚ(√6) and ℚ. Furthermore, 

we will the describe the correspondence using the diagram below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 

Let 𝐾/𝐹 be an extension field with its automorphism group 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹).  
1. The field 𝐾/𝐹 is Galois extension if and only if the fixed field of 𝐺 is 𝐹 itself. 

2. If 𝐾/𝐹 is a Galois extension then there is one-one correspondence between the set of all intermediate 

subfields of 𝐾/𝐹 and the set of all subgroups in 𝐺. 
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