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ABSTRACT1 

Article History Chio condensation method is a method to compute the determinant of an 𝒏 × 𝒏 matrix A where 𝒂𝟏𝟏 ≠ 𝟎 by 

reducing the order of the matrix to an (𝒏 − 𝟏) × (𝒏 − 𝟏)matrix. In this paper, we will generalize the condition 

where 𝒂𝟏𝟏 can be equal to zero. To compute the determinant, we can choose any element of matrix A that is 
not equal to zero as a pivot element. 
 

This article is an open access article distributed under the terms and conditions of the Creative Commons 
Attribution-NonCommercial 4.0 International License. Editor of PIJMath, Pattimura University 

Received: 21st February 2024 
Revised: April 12th, 2024 
Accepted: April 28th, 2024 
Published: May 1st, 2024 
 
Keywords 
Determinant; 
Chio’s Condensation Method; 
Pivot Element; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1

How to cite this article: 

A. Muanalifah, Y. Sagita, Nurwan, A. Fitriyah, and R. Artes Jr, “A GENERALIZATION OF CHIO’S CONDESATION METHOD”, 
Pattimura Int. J. Math. (PIJMATH)., vol. 03, iss. 01, pp. 015-022, May 2024. 
© 2024  by the Author(s) 

 
 
e-mail: pijmath.journal@mail.unpatti.ac.id 
Homepagehttps://ojs3.unpatti.ac.id/index.php/pijmath 

mailto:any.muanalifah@walisongo.ac.id
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://ojs3.unpatti.ac.id/index.php/pijmath


A. Muanalifah, et. al.  A Generalization of Chio’s Condensation Method  16 
 

1. Introduction 

Numerous branches of mathematics, science, and engineering make regular use of determinants in various 

contexts. Calculating the determinants of small matrices is a simple process that can be done using the Laplace expansion 

by rows or columns [1]. The challenges come into play when one needs to work with very big matrices. There are just 

a few intriguing non-traditional ways for determining the determinant of a square matrix in the older literature. 

These ways, on the other hand, are based on something called the” condensation method,” which involves 

changing the order of the original determinant [2]. The two most popular of these methods are called Chio [3]  and 

Dodgson’s condensation[4]. In this paper, we will review the above-mentioned condensation methods and then show a 

new way to find the determinant of a square matrix by reducing its order one step at a time using Chio and Dodgson’s 

determinantal identities. This will give us a determinant of order two, which is easy to find. Some researchers have 

worked on Chio’s condensation method such as [5], [6], [7]  and [8]. 

The Chio condensation method is a method for computing the determinant of a matrix by reducing the matrix 

order 𝑛 × 𝑛 into 𝑛 − 1 × 𝑛 − 1 and suppose 𝑎11 ≠ 0 as a pivot element. The Chio condensation method was first proposed 

by F. Chio in 1853.  However, there are earlier indications of this method in C. Hermite’s article published in 1849 [3]. 

The general form of the Chio condensation process is det𝐴 =
det𝐵

𝑎11
𝑛−2 .  

The supposing that using the 𝒂𝟏𝟏 element as a pivot element would be difficult if found the element 𝑎11 = 0 in a 

matrix. Therefore, modification of the flexible pivot of the Chiocondensation method is needed for any element that can 

be selected flexibly to be a pivot element. In this paper, we introduce the generalization of Chio’s condensation method, 

when we find the 𝑎11 element is equal to zero. We also then make a conclusion that we can choose any element in an 

𝑛 × 𝑛 matrix that is not equal to zero.  

 

 

2. Determinant and Chio’s Condensation 

In this section, we will discuss the basic concept of determinants and Chio’s condensation method. 

 

2.1 Determinant 

In linear algebra, the determinant is a scalar value that can be calculated for a square matrix. The determinant of matrix 

A is typically denoted as 𝐝𝐞𝐭 𝑨 or |𝑨|. 

For a 𝟐 × 𝟐 matrix where 𝐀 = [
𝒂𝟏𝟏 𝒂𝟏𝟐
𝒂𝟐𝟏 𝒂𝟐𝟐

] then the determinant of matrix A is calculated as follows: 

 

𝐝𝐞𝐭(𝑨) = 𝒂𝟏𝟏𝒂𝟐𝟐 − 𝒂𝟏𝟐𝒂𝟐𝟏 (1) 

 

If A is an 𝑛 × 𝑛 matrix, determinant is a scalar associated with a square matrix A and denoted as det(A), or |𝐴|. To 

determine the determinant of a 𝑛 × 𝑛 matrix A, a typical technique is cofactor expansion. Let 𝑀𝑖,𝑗 be the minor of entery 

𝑎𝑖,𝑗(𝑖 = 1, 2, … , 𝑛) and 𝑗 = 1, 2, … , 𝑛), which is the determinant of the sub matrix that results from deleting the 𝑖𝑡ℎ row 

and 𝑗𝑡ℎ column of A. If 𝑖𝑡ℎ row of A is opted for cofactor expansion then, 

 

det(𝐴) =∑𝑎𝑖,𝑗𝐴𝑖,𝑗 =∑(−1)𝑖+𝑗𝑎𝑖,𝑗𝑀𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑗=1

  
(2) 

 

where 𝐴𝑖𝑗 is the cofactor of entry 𝑎𝑖𝑗  such that 𝐴1𝑗 = (−1)
1+𝑗𝑀1𝑗. Similarly, the cofactor expansion along the 𝑗𝑡ℎ 

column would be 

det(𝐴) =∑𝑎1𝑗𝐴1𝑗 =∑(−1)1+𝑗𝑎1𝑗𝑀1𝑗

𝑛

𝑗=1

𝑛

𝑗=1

  
(3) 

Another common method used to compute the determinant of a large matrix is elementary row operation. The next 

theorem shows how an elementary row operation computes the determinant of the 𝑛 × 𝑛 matrix. 
 

2.2 Chio Condensation Method 

In this subsection, we begin with a statement of the Chio Condensation Method theorem: 

Theorem 1. [𝟐] Let A be an 𝑛 × 𝑛 matrix and suppose 𝑎11 ≠ 0. Let B denoted the (𝑛 − 1) × (𝑛 − 1) matrix obtained 

by replacing each element 𝑎1𝑗 by |
𝑎11 𝑎12
𝑎21 𝑎22

|. Then |𝐴| =
|𝐵|

𝑎11
𝑛−2, were 
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|B| =  |
𝑎11 𝑎1(𝑗+𝑖)

𝑎(𝑖+1)1 𝑎(𝑖+1)(𝑗+1)
| 

(4) 

Proof. Let A be an 𝑛 × 𝑛 matrix, denoted by 

 

An×n = 

[
 
 
 
 
 
𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑛
𝑎21 𝑎22 𝑎23 𝑎24 ⋯ 𝑎2𝑛
𝑎31 𝑎32 𝑎33 𝑎34 ⋯ 𝑎3𝑛
𝑎41 𝑎42 𝑎43 𝑎44 ⋯ 𝑎4𝑛
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 𝑎𝑛4 ⋯ 𝑎𝑛𝑛]

 
 
 
 
 

 

 

then we can compute the determinant of matrix A using Eq. (3) as follow, 

 

|An×n| =  
|

|

𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑛
𝑎21 𝑎22 𝑎23 𝑎24 ⋯ 𝑎2𝑛
𝑎31 𝑎32 𝑎33 𝑎34 ⋯ 𝑎3𝑛
𝑎41 𝑎42 𝑎43 𝑎44 ⋯ 𝑎4𝑛
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 𝑎𝑛4 ⋯ 𝑎𝑛𝑛

|

|
 

 

 

(5) 

 

Multiply each row of Eq. (5) by 𝑎11 except the first row and then from Theorem ?? we have 

 

|An×n| =
1

𝑎11
𝑛−1  

|

|

𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑛
𝑎21𝑎11 𝑎22𝑎11 𝑎23𝑎11 𝑎24𝑎11 ⋯ 𝑎2𝑛𝑎11
𝑎31𝑎11 𝑎32𝑎11 𝑎33𝑎11 𝑎34𝑎11 ⋯ 𝑎3𝑛𝑎11
𝑎41𝑎11 𝑎42𝑎11 𝑎43𝑎11 𝑎44𝑎11 ⋯ 𝑎4𝑛𝑎11
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛1𝑎11 𝑎𝑛2𝑎11 𝑎𝑛3𝑎11 𝑎𝑛4𝑎11 ⋯ 𝑎𝑛𝑛𝑎11

|

|
 

 

 

(6) 

 

Multiply both side by 𝑎11
𝑛−1 from Eq. (6) then we get the following result. 

 

𝑎11
𝑛−1|An×n| =  

|

|

𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑛
𝑎21𝑎11 𝑎22𝑎11 𝑎23𝑎11 𝑎24𝑎11 ⋯ 𝑎2𝑛𝑎11
𝑎31𝑎11 𝑎32𝑎11 𝑎33𝑎11 𝑎34𝑎11 ⋯ 𝑎3𝑛𝑎11
𝑎41𝑎11 𝑎42𝑎11 𝑎43𝑎11 𝑎44𝑎11 ⋯ 𝑎4𝑛𝑎11
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛1𝑎11 𝑎𝑛2𝑎11 𝑎𝑛3𝑎11 𝑎𝑛4𝑎11 ⋯ 𝑎𝑛𝑛𝑎11

|

|
 

 

 

(7) 

 

Then we do the elementary row operations. Firstly, subtract second row from Eq. (7) by the multiplication of 𝑎21   with 

the first row.  

 

𝑎11
𝑛−1|An×n| =

|

|

𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑛
0 𝑎22𝑎11 − 𝑎12𝑎21 𝑎23𝑎11 − 𝑎13𝑎21 𝑎24𝑎11 − 𝑎14𝑎21 ⋯ 𝑎2𝑛𝑎11 − 𝑎1𝑛𝑎21

𝑎31𝑎11 𝑎32𝑎11 𝑎33𝑎11 𝑎34𝑎11 ⋯ 𝑎3𝑛𝑎11
𝑎41𝑎11 𝑎42𝑎11 𝑎43𝑎11 𝑎44𝑎11 ⋯ 𝑎4𝑛𝑎11
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛1𝑎11 𝑎𝑛2𝑎11 𝑎𝑛3𝑎11 𝑎𝑛4𝑎11 ⋯ 𝑎𝑛𝑛𝑎11

|

|
 

 
after that, subtract second row until the 𝑛𝑡ℎ row from Eq. (7) by the multiplication of 𝑎21, 𝑎31, 𝑎41, ⋯ , 𝑎𝑛1 with the first 

row. 

𝑎11
𝑛−1|An×n| =

|

|

𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑛
0 𝑎22𝑎11 − 𝑎12𝑎21 𝑎23𝑎11 − 𝑎13𝑎21 𝑎24𝑎11 − 𝑎14𝑎21 ⋯ 𝑎2𝑛𝑎11 − 𝑎1𝑛𝑎21
0 𝑎32𝑎11 − 𝑎12𝑎31 𝑎33𝑎11 − 𝑎13𝑎31 𝑎34𝑎11 − 𝑎14𝑎31 ⋯ 𝑎3𝑛𝑎11 − 𝑎1𝑛𝑎31

𝑎41𝑎11 𝑎42𝑎11 𝑎43𝑎11 𝑎44𝑎11 ⋯ 𝑎4𝑛𝑎11
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛1𝑎11 𝑎𝑛2𝑎11 𝑎𝑛3𝑎11 𝑎𝑛4𝑎11 ⋯ 𝑎𝑛𝑛𝑎11

|

|
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𝑎11
𝑛−1|An×n| =

|

|

𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑛
0 𝑎22𝑎11 − 𝑎12𝑎21 𝑎23𝑎11 − 𝑎13𝑎21 𝑎24𝑎11 − 𝑎14𝑎21 ⋯ 𝑎2𝑛𝑎11 − 𝑎1𝑛𝑎21
0 𝑎32𝑎11 − 𝑎12𝑎31 𝑎33𝑎11 − 𝑎13𝑎31 𝑎34𝑎11 − 𝑎14𝑎31 ⋯ 𝑎3𝑛𝑎11 − 𝑎1𝑛𝑎31
0 𝑎42𝑎11 − 𝑎12𝑎41 𝑎43𝑎11 − 𝑎13𝑎41 𝑎44𝑎11 − 𝑎14𝑎41 ⋯ 𝑎4𝑛𝑎11 − 𝑎1𝑛𝑎41
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑛1𝑎11 𝑎𝑛2𝑎11 𝑎𝑛3𝑎11 𝑎𝑛4𝑎11 ⋯ 𝑎𝑛𝑛𝑎11

|

|
 

 

 

𝑎11
𝑛−1|An×n| =

|

|

𝑎11 𝑎12 𝑎13 𝑎14 ⋯ 𝑎1𝑛
0 𝑎22𝑎11 − 𝑎12𝑎21 𝑎23𝑎11 − 𝑎13𝑎21 𝑎24𝑎11 − 𝑎14𝑎21 ⋯ 𝑎2𝑛𝑎11 − 𝑎1𝑛𝑎21
0 𝑎32𝑎11 − 𝑎12𝑎31 𝑎33𝑎11 − 𝑎13𝑎31 𝑎34𝑎11 − 𝑎14𝑎31 ⋯ 𝑎3𝑛𝑎11 − 𝑎1𝑛𝑎31
0 𝑎42𝑎11 − 𝑎12𝑎41 𝑎43𝑎11 − 𝑎13𝑎41 𝑎44𝑎11 − 𝑎14𝑎41 ⋯ 𝑎4𝑛𝑎11 − 𝑎1𝑛𝑎41
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 𝑎𝑛2𝑎11 − 𝑎12𝑎𝑛1 𝑎𝑛3𝑎11 − 𝑎13𝑎𝑛1 𝑎𝑛4𝑎11 − 𝑎14𝑎𝑛1 ⋯ 𝑎𝑛𝑛𝑎11 − 𝑎1𝑛𝑎𝑛1

|

|
 

 

𝑎11
𝑛−1|An×n| = |

|

𝑎22𝑎11 − 𝑎12𝑎21 𝑎23𝑎11 − 𝑎13𝑎21 𝑎24𝑎11 − 𝑎14𝑎21 ⋯ 𝑎2𝑛𝑎11 − 𝑎1𝑛𝑎21
𝑎32𝑎11 − 𝑎12𝑎31 𝑎33𝑎11 − 𝑎13𝑎31 𝑎34𝑎11 − 𝑎14𝑎31 ⋯ 𝑎3𝑛𝑎11 − 𝑎1𝑛𝑎31
𝑎42𝑎11 − 𝑎12𝑎41 𝑎43𝑎11 − 𝑎13𝑎41 𝑎44𝑎11 − 𝑎14𝑎41 ⋯ 𝑎4𝑛𝑎11 − 𝑎1𝑛𝑎41

⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑛2𝑎11 − 𝑎12𝑎𝑛1 𝑎𝑛3𝑎11 − 𝑎13𝑎𝑛1 𝑎𝑛4𝑎11 − 𝑎14𝑎𝑛1 ⋯ 𝑎𝑛𝑛𝑎11 − 𝑎1𝑛𝑎𝑛1

|
| 

 

Multiply both side by 
1

𝑎11
𝑛−1 then we have 

|An×n| =
1

𝑎11
𝑛−2

|

|

|

|
𝑎11 𝑎12
𝑎21 𝑎22

| |
𝑎11 𝑎13
𝑎21 𝑎23

| |
𝑎11 𝑎14
𝑎21 𝑎24

| ⋯ |
𝑎11 𝑎1𝑛
𝑎21 𝑎2𝑛

|

|
𝑎11 𝑎12
𝑎31 𝑎32

| |
𝑎11 𝑎13
𝑎31 𝑎33

| |
𝑎11 𝑎14
𝑎31 𝑎34

| ⋯ |
𝑎11 𝑎1𝑛
𝑎31 𝑎3𝑛

|

|
𝑎11 𝑎12
𝑎41 𝑎42

| |
𝑎11 𝑎13
𝑎41 𝑎43

| |
𝑎11 𝑎14
𝑎41 𝑎44

| ⋯ |
𝑎11 𝑎1𝑛
𝑎41 𝑎4𝑛

|

⋮ ⋮ ⋮ ⋱ ⋮

|
𝑎11 𝑎12
𝑎𝑛1 𝑎𝑛2

| |
𝑎11 𝑎13
𝑎𝑛1 𝑎𝑛3

| |
𝑎11 𝑎14
𝑎𝑛1 𝑎𝑛4

| ⋯ |
𝑎11 𝑎1𝑛
𝑎𝑛1 𝑎𝑛𝑛

|

|

|

|

 

 

 

 

 

(8) 

Eq. (8) has the following form. 

|An×n| =
1

𝑎11
𝑛−2

|𝐵| 

 
 

 

 

 

□ 

 

Using Theorem 1 we can compute the determinant of matrices easily. Therefore, we construct the algorithm for 

computing the determinant of an 𝑛 ×  𝑛 matrix based on Theorem 1 as follows: 

 

Algorithm 1: Theorem 1 Condensation Method 

Input: 𝐴𝑛×𝑛 where 𝑎11 ≠ 0 

Output: the determinant of matrix A 

We do the Chio’s condensation method in the following steps: 

1. Choose 𝑎11 ≠ 0 as a pivot element 

2. transform matrix A by reducing the dimension (𝑛 −  1)  ×  (𝑛 −  1) matrix B as in Eq. (4) 

3. repeat the step 2 by reducing of matrix B is equal to 2 ×  2. 

4. Calculate |𝐴𝑛×𝑛| =
1

𝑎11
𝑛−2 |𝐵| 

 

Example 1. Consider an 4 ×  4  matrix 𝐴 as follows: 
 

𝐴 = [

1 2 3 4
8 7 6 5
1 8 3 7
3 6 4 5

] 
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then we can compute det(A) using Theorem 1. First of All, we choose 𝑎11  =  1 as a pivot element. Then we construct 

an (4 − 1) × (4 − 1) matrix B as defined in Algorithm 1. 

 

𝐵 =

[
 
 
 
 
 |
1 2
8 7

| |
1 3
8 6

| |
1 4
8 5

|

|
1 2
1 8

| |
1 3
1 2

| |
1 4
1 7

|

|
1 2
3 6

| |
1 3
3 4

| |
1 4
3 5

|]
 
 
 
 
 

= [
−9 −18 −27
6 −1 3
0 −5 −7

] 

repeating the process until we have a 2 ×  2 matrix B as follows. 

 

𝐵 = [
117 135
45 63

] 

 

then we have 

 

|𝐴| =
1

93−2
|
117 135
45 63

| =
1

−9
(1296) = −144 

 

 

3. Generalisation of Chio Method 

In this section, we modify the flexible pivot of Chio’s condensation method where 𝑎11 =  0. 
Theorem 2 (Chio’s condensation 𝑎11 =  0). Let A be an 𝑛 × 𝑛 matrix where 𝑎11 =  0.  Let any element of matrix A, i.e. 

𝑎𝑟,𝑠 as a pivot element with r-th and s-th column. Let B be an (𝑛 −  1)  × (𝑛 −  1) defined by 

 

𝐵 = (𝑏𝑖𝑗) =

{
 
 
 

 
 
 |

𝑎𝑖𝑗 𝑎𝑖𝑠
𝑎𝑟𝑗 𝑎𝑟𝑠

| 𝑖𝑓 𝑖 < 𝑟 𝑎𝑛𝑑 𝑗 < 𝑠

− |
𝑎𝑖𝑠 𝑎𝑖(𝑗+𝑖)
𝑎𝑟𝑠 𝑎𝑟(𝑗+1)

| 𝑖𝑓 𝑖 ≤ 𝑠 𝑎𝑛𝑑 𝑠 ≤ 𝑗 ≤ 𝑟

− |
𝑎𝑖𝑗 𝑎𝑟𝑠

𝑎(𝑖+1)𝑗 𝑎(𝑖+1)𝑠
| 𝑖𝑓 𝑖 = 𝑟 𝑎𝑛𝑑 𝑠 ≤ 𝑗 ≤ 𝑟

|
𝑎𝑟𝑠 𝑎𝑖(𝑗+1)

𝑎(𝑖+1)𝑠 𝑎𝑖+1𝑎𝑗+1
| 𝑖𝑓 𝑖 = 𝑟 𝑎𝑛𝑑 𝑗 < 𝑠

 

 

 

 

 

(9) 

for 𝑖, 𝑗 ∈  |𝑛 − 1|. Then |𝐴| =
(−1)𝑟+𝑥

𝑎𝑟𝑥
𝑛−2 |𝐵|. 

Proof. Let A be an 𝑛 × 𝑛 matrix denoted by 

 

𝐴𝑛×𝑛 =

[
 
 
 
 
𝑎11 ⋯ 𝑎1𝑗 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮ ⋱ ⋮
𝑎𝑟1 ⋯ 𝑎𝑟𝑠 ⋯ 𝑎𝑟𝑛
⋯ ⋱ ⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑗 ⋯ 𝑎𝑛𝑛]

 
 
 
 

𝑎11 = 0 

 

 

 

(10) 

Then we can compute determinant of matrix A in Eq. (10) using Eq. (3) as follows, 

 

|𝐴𝑛×𝑛| = |
|

𝑎11 ⋯ 𝑎1𝑗 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮ ⋱ ⋮
𝑎𝑟1 ⋯ 𝑎𝑟𝑠 ⋯ 𝑎𝑟𝑛
⋯ ⋱ ⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑗 ⋯ 𝑎𝑛𝑛

|
| 𝑎11 = 0 

 

 

 

(11) 

Element ars in matrix A as a pivot, with 𝑎𝑟𝑠 ≠ 𝑎11 and 𝑎𝑟𝑠 ≠ 0 Multiply each row of Eq. (12) by 𝑎𝑟𝑠  except the 𝑟𝑡ℎ 

row and 𝑠𝑡ℎ  column and then from Theorem ?? we have, 

 

|𝐴𝑛×𝑛| =
1

𝑎𝑟𝑠
𝑛−1 |

|

𝑎𝑟𝑠𝑎11 ⋯ 𝑎𝑟𝑠𝑎1𝑗 ⋯ 𝑎𝑟𝑠𝑎1𝑛
⋮ ⋱ ⋮ ⋱ ⋮

𝑎𝑟𝑠𝑎𝑟1 ⋯ 𝑎𝑟𝑠𝑎𝑟𝑠 ⋯ 𝑎𝑟𝑠𝑎𝑟𝑛
⋯ ⋱ ⋮ ⋱ ⋮

𝑎𝑟𝑠𝑎𝑛1 ⋯ 𝑎𝑟𝑠𝑎𝑛𝑗 ⋯ 𝑎𝑟𝑠𝑎𝑛𝑛

|
|
 

 

Multiply by both side by 𝑎𝑟𝑠
𝑛−1

 then we get the following result: 
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𝑎𝑟𝑠
𝑛−1|𝐴𝑛×𝑛| = |

|

𝑎𝑟𝑠𝑎11 ⋯ 𝑎𝑟𝑠𝑎1𝑗 ⋯ 𝑎𝑟𝑠𝑎1𝑛
⋮ ⋱ ⋮ ⋱ ⋮
𝑎𝑟1 ⋯ 𝑎𝑟𝑠 ⋯ 𝑎𝑟𝑛
⋯ ⋱ ⋮ ⋱ ⋮

𝑎𝑟𝑠𝑎𝑛1 ⋯ 𝑎𝑟𝑠𝑎𝑛𝑗 ⋯ 𝑎𝑟𝑠𝑎𝑛𝑛

|
|
 

 

Then we do the elementary row operations to make each element on the 𝑠𝑡ℎ   column except the 𝑟𝑡ℎrow gets to 0. 

𝑎𝑟𝑠
𝑛−1|𝐴𝑛×𝑛| = |

|

𝑎𝑟𝑠𝑎11 − 𝑎𝑟1𝑎𝑖𝑠 ⋯ 0 ⋯ 𝑎𝑟𝑠𝑎1𝑛 − 𝑎𝑟𝑛𝑎𝑖𝑠
⋮ ⋱ ⋮ ⋱ ⋮
𝑎𝑟1 ⋯ 𝑎𝑟𝑠 ⋯ 𝑎𝑟𝑛
⋯ ⋱ ⋮ ⋱ ⋮

𝑎𝑟𝑠𝑎𝑛1 − 𝑎𝑟1𝑎𝑖𝑠 ⋯ 0 ⋯ 𝑎𝑟𝑠𝑎𝑛𝑛𝑎𝑟𝑛𝑎𝑛𝑠

|
| 

 

Using Theorem 2 

 

𝑎𝑟𝑠
𝑛−1|𝐴𝑛×𝑛| = 𝑎

𝑟𝑠 |
𝑎𝑟𝑠𝑎11 − 𝑎𝑟1𝑎𝑖𝑠 ⋯ −(𝑎𝑟𝑛𝑎𝑖𝑠 − 𝑎𝑟𝑠𝑎1𝑛)

⋮ ⋮ ⋮
−(𝑎𝑟1𝑎𝑖𝑠 − 𝑎𝑟𝑠𝑎𝑛1) ⋯ 𝑎𝑟𝑠𝑎𝑛𝑛𝑎𝑟𝑛𝑎𝑛𝑠

| 
 

(12) 

Multiply both side by 
1

𝑎𝑟𝑠
𝑛−2 fom Eq. (12) obtained, 

 

|𝐴𝑛×𝑛| =
1

𝑎𝑟𝑠
𝑛−2

 |
𝑎𝑟𝑠𝑎11 − 𝑎𝑟1𝑎𝑖𝑠 ⋯ −(𝑎𝑟𝑛𝑎𝑖𝑠 − 𝑎𝑟𝑠𝑎1𝑛)

⋮ ⋮ ⋮
−(𝑎𝑟1𝑎𝑖𝑠 − 𝑎𝑟𝑠𝑎𝑛1) ⋯ 𝑎𝑟𝑠𝑎𝑛𝑛𝑎𝑟𝑛𝑎𝑛𝑠

| 
 

(13) 

 

Eq. (13) can be expressed as, 

 

|𝐴𝑛×𝑛| =
1

𝑎𝑟𝑠
𝑛−2

 ||

|
𝑎11 𝑎1𝑠
𝑎𝑟1 𝑎𝑟𝑠

| ⋯ − |
𝑎1𝑠 𝑎1𝑛
𝑎𝑟𝑠 𝑎𝑟𝑛

|

⋮ ⋱ ⋮

− |
𝑎𝑟1 𝑎𝑟𝑠
𝑎𝑛1 𝑎𝑛𝑠

| ⋯ |
𝑎𝑟𝑠 𝑎𝑟𝑛
𝑎𝑛𝑠 𝑎𝑛𝑛

|

|| 

 

𝑎𝑟𝑠
𝑛−1|𝐴𝑛×𝑛| =

{
 
 
 

 
 
 |

𝑎𝑖𝑗 𝑎𝑖𝑠
𝑎𝑟𝑗 𝑎𝑟𝑠

| 𝑖𝑓 𝑖 < 𝑟 𝑎𝑛𝑑 𝑗 < 𝑠

− |
𝑎𝑖𝑠 𝑎𝑖(𝑗+𝑖)
𝑎𝑟𝑠 𝑎𝑟(𝑗+1)

| 𝑖𝑓 𝑖 ≤ 𝑠 𝑎𝑛𝑑 𝑠 ≤ 𝑗 ≤ 𝑟

− |
𝑎𝑖𝑗 𝑎𝑟𝑠

𝑎(𝑖+1)𝑗 𝑎(𝑖+1)𝑠
| 𝑖𝑓 𝑖 = 𝑟 𝑎𝑛𝑑 𝑠 ≤ 𝑗 ≤ 𝑟

|
𝑎𝑟𝑠 𝑎𝑖(𝑗+1)

𝑎(𝑖+1)𝑠 𝑎𝑖+1𝑎𝑗+1
| 𝑖𝑓 𝑖 = 𝑟 𝑎𝑛𝑑 𝑗 < 𝑠

 

 

           |𝐴| =
(−1)𝑟+𝑠

𝑎𝑟𝑠
𝑛−2

 |𝐵| 

 
 

 

 

 

□ 

 

Algorithm 2: Theorem 2 Generalization of Chio Method 

Input: 𝐴𝑛×𝑛 where 𝑎11 = 0 

Output: the determinant of matrix A 

We do Chio’s condensation method in the following steps: 

1. Choose 𝑎𝑟,𝑠 ≠ 0 and 𝑎𝑟𝑠 ≠ 𝑎11  as a pivot element 

2. transform matrix A by reducing the dimension (𝑛 −  1)  ×  (𝑛 −  1) matrix B as in Eq. (9) 

3. repeat the step 2 by reducing of matrix B is equal to 2 ×  2. 

4. Calculate |𝐴𝑛×𝑛| =
(−1)𝑟+𝑠

𝑎𝑟𝑠
𝑛−2  |𝐵| 
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Here we give an example. 

Example 2. Let A be a 4 × 4 matrix as follows 

𝐴 = [

0 2 3 1
3 −2 8 5
2 1 3 1
4 5 4 −3

] 

 

then we can compute the determinant of matrix A using Algorithm 2. First, we choose 𝑎32  =  1 as a pivot element then 

we construct matrix B by reducing the order of the matrix as follows. 

 

𝐵 =

[
 
 
 
 
 |
0 2
2 1

| − |
2 3
1 3

| − |
2 1
1 1

|

|
3 −2
2 1

| − |
−2 8
1 3

| |
−2 5
1 1

|

− |
2 1
4 5

| |
1 3
5 4

| |
1 1
5 −3

|]
 
 
 
 
 

= [
−4 −3 −1
7 14 7
−6 −11 −8

] 

 

Then we compute the determinant of matrix A as below 

 

|𝐴| =
(−1)3+2

14−2
|
−4 −3 −1
7 14 7
−6 −11 −8

| 

 

Since the order of matrix B is still 3 × 3  then we construct matrix 𝐵𝑛𝑒𝑤  by reducing the order of matrix B and we choose 

𝑏23  =  7 as a pivot element. Then we have 

 

𝐵𝑛𝑒𝑤 = [
|
−4 −1
7 7

| |
−3 −1
14 7

|

|
7 7
−6 −8

| |
14 7
−11 −8

|
] = [

−21 −7
14 35

] 

 

we repeat the process to compute the determinant of A as follows. 

 

|𝐴| = (−1)
(−1)2+3

73−2
|
−21 −7
14 35

| =
1

7
(−637) = −91 

 

We then generalize that the pivot element does not depend on 𝑎11  =  0 or 𝑎11  ≠  0 as in the following Remark. 

Remark 1. Let 𝐴 = (𝑎𝑖𝑗) be an 𝑛 × 𝑛 matrix for 𝑖, 𝑗 ∈ |𝑛| then we can choose 𝑎𝑟𝑠 ≠ 0 as a pivot element. Then we can 

compute |𝐴| =
(−1)𝑟+𝑠

𝑎𝑟𝑠
𝑛−2  |𝐵|. 

 

 

4. Conclusions 

In this paper presented the generalization of Chio’s condensation method for computing the determinant of  𝑛 × 𝑛 

matrices where 𝑎11  =  0. Let A be an 𝑛 × 𝑛 matrix, the pivot can be selected from any element 𝑎𝑟𝑠  on the 𝑟𝑡ℎ  row and 

𝑠𝑡ℎ  column and we can build an (𝑛 −  1)  ×  (𝑛 −  1) matrix B. The determinant of matrix A can be defined by 

 

|𝐴| =
(−1)𝑟+𝑠

𝑎𝑟𝑠
𝑛−2

 |𝐵| 

 
 

References 
 

 

[1] H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version, 10th edition. United States : John 

Wiley & Sons, 2010. 

[2] H. Eves, Elementary Matrix Theory. United States of America : Dover Publications, Inc, 1966. 

[3] F. CHIÒ, M´emoire sur les Fonctions Connues Sous Le Nom De R´esultantes Ou De D´eterminans. Torino: 

Edité par Pons, 1853. 

[4] Rev. C. L. Dodgson, “Condensation of Determinants, being a new and brief Method for computing their 

arithmetical values,” Proceedings of the Royal Society of London, vol. 15, pp. 150–155, 1867. 



A. Muanalifah, et. al.  A Generalization of Chio’s Condensation Method  22 
 

[5] K. Habgood and I. Arel, “A condensation-based application of Cramer’s rule for solving large-scale linear 

systems,” Journal of Discrete Algorithms, vol. 10, no. 1, pp. 98–109, Jan. 2012, doi: 

10.1016/j.jda.2011.06.007. 

[6] A. Salihu and Q. Gjonbalaj, “New Method to Compute the Determinant of a 4x4 Matrix,” 2009. [Online]. 

Available: https://www.researchgate.net/publication/275580759 

[7] A. Salihu and F. Marevci, “Chio’s-like method for calculating the rectangular (non-square) determinants: 

Computer algorithm interpretation and comparison,” European Journal of Pure and Applied Mathematics, vol. 

14, no. 2, pp. 431–450, 2021, doi: 10.29020/NYBG.EJPAM.V14I2.3920. 

[8] D. Grinberg, K. Karnik, and A. Zhang, “From Chio Pivotal Condensation to the Matrix-Tree theorem,” 2016. 

  
 


