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ABSTRACT 

Article History Futures contracts are one of the buying and selling activities based on an agreement on an asset at a 
price and time that has been agreed upon in advance. Basically, futures are also a derivative market 
because the underlying assets affect the price of the futures contract. In general, futures have different 
risks, so risk analysis is needed to improve the effectiveness and efficiency of investment management. 
In this research, we have the London Metal Exchange (LME) in the metal scope of commodity futures to 
conduct risk analysis. For commodity price modeling, the Holt-Winters Model is applied so that this 
research assumes that past data used to predict prices is limited to one period and its seasonal period. 
Hereafter, Expected Tail Loss (ETL) with the Monte Carlo process is applied to analyze risk measurement 
through the prediction results of the Holt-Winters model obtained. We took six commodity futures at the 
LME to implement the method as samples, such as Zinc, Lead, Aluminum, Copper, Nickel, and Tin. Based 
on the analysis, each commodity has a different average ETL value, where Nickel has the greatest risk 
with an ETL value of 0.036; which shows that the potential expected loss on the investor's investment 
assets is 3.6% 
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1. Introduction 

Futures is a binding agreement between a seller and a buyer to make and receive delivery of an underlying asset 

commodity on a specified future date with agreed payment terms. In futures contracts, most do not result in delivery of 

the underlying commodity. Futures contracts are usually regulated by several provisions, such as the month of delivery, 

such as quantity, quality, location of delivery, and payment terms. [1]. Standardizing futures contract terms is important 

because it allows traders to focus on the pricing of their variables. Changes caused by commodity price levels make 

futures contracts considered as commodity price information that is in accordance with that in the market. [2]. 

In some countries, futures contracts are a special form of forward contracts that are standardized and promised 

on a particular futures exchange. For example, there is the London Metal Exchange which has many features of futures 

contracts. Between futures and forward contracts, there is a significant difference where future contracts are legally 

required to be traded on futures exchange, while forwards are usually created by individual parties operating in the 

decentralized exchange [3]. 

As with many other investment instruments, futures contracts also have risks in them. Each futures contract has 

different risks according to its nature and type. In conducting risk analysis, there are three most important things, namely 

results that affect community values, uncertainty resulting from probability, and the possibility of both occurring [4]. 

Futures that have the highest return also have the highest risk, which we know as the concept of high return-high risk 

[5]. Based on the concept of high return-high risk, if investors want to obtain high return expectations, they will be faced 

with high levels of uncertainty, so in this case risk management is needed to increase the effectiveness and efficiency of 

investment management [6]. 

This paper will discuss the Expected Tail Loss with the Monte Carlo process concerning the analyzed risk 

measures of commodity futures in the London Metal Exchange (LME) based on Expected Tail Loss (ETL) by iteration 

using Monte Carlo Simulation. The remainder of the paper is organized as follows. In the next section, we propose the 

methodology used in this study, which includes the data, stationarity data, estimation of the Holt-Winters model, 

normality test, Monte Carlo simulation, and estimation of the Expected Tail Loss (ETL). Subsequently, the following 

section presents the results and discussion. Finally, the last section concludes the study.  

2. Research Methods 

2.1.  Data 

In this study, we apply analysis to data in the form of historical daily closing prices of several commodities listed 

on the London Metal Exchange (LME), namely Zinc Futures (MZNc1), Lead Futures (LEAD), Aluminum Futures 

(MALTRc1), Copper Futures (MCU), Nickel Futures (NICKEL), and Tin Futures (TIN) from 2 January 2018 to 31 

October 2024. All datasets can be downloaded via www.investing.com 

2.2.  Stationarity Data 

In the first section, we conducted a test to obtain data stationary information. The method or approach that is 

often used in stationarity testing is by identifying the existence of a unit root. Given time series observational data 

𝑌1, 𝑌2, … , 𝑌𝑡 , … , 𝑌𝑇, one of the commonly used stationarity tests is the augmented Dickey-Fuller (ADF) test. The ADF 

test identifies the existence of a unit root through a mechanism by generating data based on the OLS estimator �̂�𝑛 of 𝑝, 

obtained by fitting the following equation: 

𝑌𝑡 = 𝜌𝑌𝑡−1 +∑𝑎𝑗,𝑝𝛥𝑌𝑡−𝑗 + 𝑒𝑡,𝑝

𝑝

𝑗=1

(1) 

to the observed stretch of data. In the above notation, 𝛥𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1, while the order 𝑝 is allowed to depend on 𝑛, i.e., 

𝑝 is short-hand for �̂�𝑛, in a way related to the assumptions imposed on the underlying process. Here {𝑒𝑡} is the residual 

of the ordered equation based on 𝑡 which is identical, independent (𝑖. 𝑖. 𝑑.) and has a mean value of zero and variance 

0 < 𝜎𝑒
2 < ∞. While 𝑎𝑖 are the estimated coefficient of 𝛥𝑌 [7]. 

To test 𝐻0 (data is not stationary), Dickey and Fuller initiated the studentized statistic: 

𝑡𝑛 =
�̂�𝑛 − 1

𝑆𝑡�̂�(�̂�𝑛)
(2) 
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where 𝑆𝑡�̂�(�̂�𝑛) denotes an estimator of the standard deviation of the OLS estimator �̂�𝑛 [8]. 

2.3.  Estimation of the Holt-Winters Model 

In the next section, we estimate the Holt-Winters model of historical daily closing price for each commodity 

futures. There are several approaches available for time series data analysis. In this study, we use an exponential 

smoothing technique to model seasonal time series. The method we use was initially introduced by Holt (1957) and 

Winters (1960) and is commonly known as the Winters method, where seasonal adjustments are made to the linear trend 

model. There are two types of adjustments suggested, namely additive and multiplicative [9][10]. The Holt Winters 

Multiplicative approach is often better than additive, but the opposite is possible, depending on the data condition. In 

addition, the main structure of the Holt-Winters model consists of three main components commonly referred to as 

constant/linear (level), trend, and seasonality which are weighted through three smoothing weights (𝛼, 𝛽, 𝛾) as constant 

value. [11]. 

2.3.1. Model with additive seasonality 

This approach assumes that the seasonal time series is considered as an additive expression. In general, the Holt-

Winters model with an additive approach is stated as follows: 

𝑌𝑡 = 𝐿𝑡 + 𝑆𝑡 + 𝜀𝑡 (3) 
 

where 𝐿𝑡 is a notation for the level or linear trend component; 𝑏𝑡 is a notation for the trend component; 𝑆𝑡 is a 

notation for the seasonal adjustment with 𝑆𝑡 = 𝑆𝑡+𝑠 = 𝑆𝑡+2𝑠 =. .. for 𝑡 = 1,2, . . . ,1 − 𝑠, where 𝑠 is the length of a season 

in a cycle. The 𝜀𝑡 are identical and independent with mean 0 and variance 𝜎𝜀
2 [12]. 

The modeling steps to obtain optimal model parameters to obtain accurate predictions from actual data 𝑌𝑡 are 

stated as follows: 

1. Update the estimate 𝐿𝑡 using: 

𝐿𝑡 = 𝛼(𝑌𝑡 − 𝑆𝑡−𝑠) + (1 − 𝛼)(𝐿𝑡−1 + 𝑏𝑡−1) (4) 

where 0 < 𝛼 < 1 and 𝛼is the smoothing weight of level component. 

2. Update the estimate 𝑏𝑡 using: 

𝑏𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (5) 

where 0 < 𝛽 < 1 and 𝛽is the smoothing weight of trend component. 

3. Update the estimate 𝑆𝑡 using: 

𝑆𝑡 = 𝛾(𝑌𝑡 − 𝐿𝑡) + (1 − 𝛾)𝑆𝑡−𝑠 (6) 

where 0 < 𝛾 < 1 and 𝛾is the smoothing weight of seasonal component. 

Get the forecast for 𝑚-step-ahead, 𝑌𝑡+𝑚(𝑡), through the following formula: 

𝑌𝑡+𝑚(𝑡) = 𝐿𝑡 + 𝑏𝑡𝑚 + 𝑆𝑡−𝑠+𝑚 (7) 

2.3.2. Model with multiplicative seasonality 

This approach assumes that the seasonal time series is considered as a multiplicative expression. In general, the 

Holt-Winters model with a multiplicative approach is stated as follows: 

𝑌𝑡 = 𝐿𝑡𝑆𝑡 + 𝜀𝑡 (8) 

where 𝐿𝑡 is a notation for the level or linear trend component;𝑏𝑡 is a notation for the trend component; 𝑆𝑡 is a 

notation for the seasonal adjustment with 𝑆𝑡 = 𝑆𝑡+𝑠 = 𝑆𝑡+2𝑠 =. .. for 𝑡 = 1,2, . . . ,1 − 𝑠, where 𝑠 is the length of a season 

in a cycle. The 𝜀𝑡 are identical and independent with mean 0 and variance 𝜎𝜀
2 [12]. 

The modeling steps to obtain optimal model parameters to obtain accurate predictions from actual data 𝑌𝑡  are 

stated as follows: 
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1. Update the estimate 𝐿𝑡 using: 

𝐿𝑡 = 𝛼
𝑌𝑡
𝑆𝑡−𝑠

+ (1 − 𝛼)(𝐿𝑡−1 + 𝑏𝑡−1) (9) 

here 0 < 𝛼 < 1 and 𝛼 is the smoothing weight of level component. 

2. Update the estimate 𝑏𝑡 using: 

 

𝑏𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (10) 
 

where 0 < 𝛽 < 1 and 𝛽 is the smoothing weight of trend component. 

3. Update the estimate 𝑆𝑡using: 

𝑆𝑡 = 𝛾
𝑌𝑡
𝐿𝑡
+ (1 − 𝛾)𝑆𝑡−𝑠 (11) 

where 0 < 𝛾 < 1 and 𝛾 is the smoothing weight of seasonal component. 

Get the forecast for 𝑚 -step-ahead, 𝑌𝑡+𝑚(𝑡), through the following formula: 

𝑌𝑡+𝑚(𝑡) = (𝐿𝑡 + 𝑏𝑡𝑚)𝑆𝑡−𝑠+𝑚 (12) 

2.4.  Normality Test 

After successfully obtaining the model, we then tested the normality of the residual model using the Kolmogorov-

Smirnov (KS) test. In the KS test, suppose that the sample consists of 𝑇 independent observations. These observations 

are sorted 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑇 . For a given mean 𝜇 and variance 𝜎2, the cumulative density function of the normal 

distribution of 𝑦𝑘  is Φ (
𝑦𝑘−𝜇

𝜎
). The KS statistics is provided by: 

𝐾𝑆(𝜇, 𝜎) = 𝑚𝑎𝑥
1≤𝑘≤𝑛

{
𝑘

𝑛
− 𝛷 (

𝑦𝑘 − 𝜇

𝜎
) , 𝛷 (

𝑦𝑘 − 𝜇

𝜎
) −

𝑘 − 1

𝑛
} (13) 

In the traditional basic concept, the KS statistic is stated as 𝐾𝑆(�̄�, 𝑠) where 𝜇 = �̄� and 𝜎 = 𝑠 [13]. This test 

determines the choice of method in estimating the Expected Tail Loss value. If the model residuals obtained have 

followed a normal distribution, then the estimation of ETL uses the usual (historical) method. However, if the obtained 

model residuals do not follow a normal distribution, the ETL estimation must use the modified method. 

2.5.  Monte Carlo Simulation 

Monte Carlo simulation estimates the expected value of a random variable 𝑌, expressed by 𝐸(𝑌), by finding the 

average value of the results of some independent experiments with the same distribution of these random variables. The 

simple algorithm in the return simulation using the Monte Carlo simulation method on the portfolio is as follows [14]: 

1. Determine the parameter value for the return variable of the assets that make up the portfolio. The 

distribution and parameters of the return on assets are determined through the distribution of fittings. If the 

return is not normally distributed, then the installation is carried out based on the generalized lambda 

distribution. 

2. Simulating the return value by generating random returns on assets according to the distribution and 

parameters obtained in step 1 of 𝑛 data. 

3. Repeat step 2 as many times as m to reflect the different possible return vectors. 

Determination of the number of iterations in the Monte-Carlo simulation depends on the expected error 

percentage. One approach used is the percentage of the error to the mean [15]. The advantage of this approach is that 

the error percentage is a normalized value. In other words, the value is obtained based on the standard normal approach 
(𝑁(0,1)). Driels and Shien recommend using an average error percentage equal to half the Confidence Interval (CI) 

value [16]. The average maximum error percentage denoted by 𝜀 is expressed as: 

𝜀 = 𝑍𝛼
2

100𝑠

�̄�√𝑚
(14) 
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So, the number of iterations (𝑚) is defined as: 

𝑚 = [𝑍𝛼
2

100𝑠

𝜀�̄�
]
2

(15) 

 

where 𝑚 is the number of iterations, 𝑍 is the cumulative density function value of the standard normal distribution, 𝑠 

denotes the sample standard deviation, and 𝑌 is the sample mean [17]. 

2.6.  Estimation of the Expected Tail Loss 

In the first step, we estimate the Value at Risk (VaR). VaR is defined as the estimated value of an asset's loss, 

where the market movement does not exceed a predetermined probability. [18]. The VaR value can be obtained by 

estimating the value of the quantiles 𝛼, denoted 𝑦𝑡,𝛼 from a known distribution [19]. In general, the calculation of VaR 

value is stated as follows: 

𝑃 (
𝑃𝑡+ℎ + 𝑃𝑡

𝑃𝑡
< 𝑦𝑡,𝛼) = 𝛼 (16) 

𝑉𝑎𝑅𝑡,𝛼 = −𝑦𝑡,𝛼 (17) 
where 𝑃𝑡 is the price at time 𝑡 -th, ℎ is the time period, and 𝛼is the confidence level of threshold. 

Considering the shortcomings of the VaR method, especially in extreme cases, namely not verifying the principle 

of diversification, and especially because it is not successful in modelling phenomena that are considered extraordinary 

[20]. Therefore, another alternative, further analysis of VaR, has been developed to correct the shortcomings presented 

by VaR, commonly known as Expected Tail Loss (ETL) or Conditional VaR (CVaR), defined as the expected loss 

outside the VaR limit [21].  

Let 𝑌 is a random variable representing the risk a particular portfolio, and 𝑉𝑎𝑅𝛼(𝑌) = 𝜋𝛼  is a value that indicates 

the magnitude of risk of a random variable (or asset) 𝑌 with a level of confidence (1 − 𝛼)100%. In general, the 

conditional VaR, denoted 𝐸𝑇𝐿𝛼(𝑌), value is expressed as follows: [22]: 

𝐸𝑇𝐿𝛼
𝑡 (𝑌) = 𝐸[𝑌|𝑌 > 𝜋𝛼] 

=
1

(1 − 𝐹(𝜋𝛼))
∫ 𝑦 ∙ 𝑓(𝑦)

∞

𝜋𝛼

𝑑𝑦 

= 𝜋𝛼 +
(∫ (𝑥 − 𝜋𝛼)𝑓(𝑦)

∞

𝜋𝛼
𝑑𝑦)

(1 − 𝛼)
 

= 𝑉𝑎𝑅𝛼(𝑌) + 𝑒(𝜋𝛼) (18) 

There are cases where the data is not normally distributed because it has an excess of skewness and kurtosis. 

Therefore, Cornish-Fisher developed a "modification" method to estimate VaR and ETL for the case. The method is 

stated as follows [23][24]: 

𝐹𝐶𝐹
−1(𝛼) = 𝜙−1(𝛼) +

𝜍

6
([|𝜙−1(𝛼)|]2 − 1) +

(𝑘 − 3)

24
([|𝜙−1(𝛼)|]3 − 3𝜙−1(𝛼)) −

𝜍2

36
(2[|𝜙−1(𝛼)|]3 − 5𝜙−1(𝛼))(19) 

So that: 

𝐸𝑇𝐿𝛼
2 (𝑋) = −�̂�𝑡+𝑡

�̂�𝑡

𝛼√2𝜋
𝑒
(𝐹𝐶𝐹

−1(𝛼))

2 (20) 

where �̂�𝑡, �̂�𝑡 denote the expectation and standard deviation of the data at 𝑡-th time period, respectively, 𝐹𝐶𝐹
−1 indicates 

the quantile value at 𝛼 from the distribution of 𝑧𝑡, 𝜙
−1(𝛼) indicates the quantile value at 𝛼 from the standard normal 

distribution, and 𝜍, 𝑘 denote the skewness and kurtosis of �̂�𝑡, respectively, where �̂�𝑡 =
𝑦𝑡−�̂�𝑡

�̂�𝑡
. 

3. Results and Discussion 

This section used the return of closing price data of commodity futures to estimate the Expected Tail Loss (ETL). 

First, find the Holt-Winters model of price data of commodity futures and then estimate the Expected Tail Loss that 
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depends on the distribution of the Holt-Winters residuals, using historical if normally distributed and modified if 

otherwise.  

3.1.  Statistics Estimation of Futures Price 

Statistics estimation summarize daily closing price data for commodity metal futures on the London Metal 

Exchange (LME) for Zinc, Lead, Aluminum, Copper, Nickel, and Tin, including the number of observations, basic 

location statistics such as mean, median, minimum, and maximum, and basic variety statistics such as standard deviation, 

skewness, and kurtosis. Statistics on commodity futures prices are given in Table 1. 

Table 1. Statistics value of the daily closing price of commodity metal futures 

Commodity Zinc Lead Aluminum Copper Nickel Tin 

Sample 950 950 948 950 950 950 

Mean 2627 2054 1977 6843 14550 20656 

Median 2584 2025 1906 6395 13922 19314 

Minimum 1815 1598 1426 4608 10678 13165 

Maximum 3580 2669 2957 10557 20410 36798 

Standard Deviation 380.3312 221.5964 303.0919 1322.723 2360.744 4914.292 

Skewness 0.1703488 0.5208408 0.779647 1.115487 0.5338214 1.547965 

Kurtosis -0.3819262 -0.05420627 0.359816 0.1884386 -0.7798046 1.716502 

Table 1 shows that each Commodity has different statistics, which shows that the data conditions are quite 

diverse before the modeling process is carried out. 

3.2.  The Result of Stationarity Test 

The stationarity of data for each commodity was tested using the ADF test. The significance of the stationary test 

based on ADF is presented in Table 2. 

Table 2. Stationary test results of the daily closing price of commodity metal futures 

Commodities Zinc Lead Aluminum Copper Nickel Tin 

Dickey-Fuller Statistic -1.6658 -2.2145 0.39768 -1.5553 -2.1037 0.40514 

P-Value 0.7198 0.4875 >0.9900 0.7666 0.5344 >0.9900 

The Augmented Dickey-Fuller test has an alternative hypothesis that data is stationary. Referring to Table 2, it 

is found that all data on closing prices of commodity futures are not stationary because they have a p-value above 5%. 

Therefore, it is assumed that all that data contains trend, seasonality, or both elements, so that the Holt-Winters model 

is considered to be able to be used to model the actual data that exists. 

3.3.  Estimation of the Holt-Winters Model 

The data in the form of historical daily closing prices for each commodity metal futures is modeled using Holt-

Winters. Under normal circumstances, the amount of data available is only five for each week, which refers to the 

number of trading days; so, the length of the seasonal data is assumed to be five. Let 𝛼, 𝛽, 𝛾 denote the smoothing 

parameters for updating the mean level, trend, and seasonal index respectively, the estimation results of smoothing 

weight parameters are shown in Table 3. 

Table 3. Estimation results of smoothing weight parameters 

Commodities Zinc Lead Aluminum Copper Nickel Tin 

𝛼 0.9462934 0.9929290 0.9757433 0.9387490 0.9916444 0.9987155 

𝜷 0.0001129 0.0001000 0.0048527 0.0041865 0.0026866 0.0079639 

𝛾 0.0001251 0.002191 0.0001844 0.0001000 0.0065530 0.0001002 

Seasonal Effect Additive Additive Additive Additive Additive Additive 

 

1. Holt-Winters model for commodity future price of Zinc: 

𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑏𝑡𝑚 + 𝑆𝑡−𝑠+𝑚 

where 

( ) ( )
( )
( )

1 1

1 1

0.9462934 0.0537066

0.0001129015 0.9998870985

0.0001251316 0.9998748684

t t t s t t

t t t t

t t t t s

L Y S L b

b L L b

S Y L S

− − −

− −

−

= − + +

= − +

= − +

 

2. Holt-Winters model for commodity future price of Lead: 
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𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑏𝑡𝑚 + 𝑆𝑡−𝑠+𝑚 

 

where 

( ) ( )
( )
( )

1 1

1 1

0.992929022 0.007070978

0.0001000191 0.9998999809

0.002190593 0.997809407

t t t s t t

t t t t

t t t t s

L Y S L b

b L L b

S Y L S

− − −

− −

−

= − + +

= − +

= − +

 

3. Holt-Winters model for commodity future price of Aluminum: 

𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑏𝑡𝑚 + 𝑆𝑡−𝑠+𝑚 

where 

( ) ( )
( )
( )

1 1

1 1

0.9757433 0.0242567

0.004852679 0.995147321

0.0001844311 0.9998156689

t t t s t t

t t t t

t t t t s

L Y S L b

b L L b

S Y L S

− − −

− −

−

= − + +

= − +

= − +

 

4. Holt-Winters model for commodity future price of Copper: 

𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑏𝑡𝑚 + 𝑆𝑡−𝑠+𝑚 

where 

( ) ( )
( )
( )

1 1

1 1

0.938749 0.061251

0.004186541 0.995813459

0.0001000032 0.9998999968

t t t s t t

t t t t

t t t t s

L Y S L b

b L L b

S Y L S

− − −

− −

−

= − + +

= − +

= − +

 

5. Holt-Winters model for commodity future price of Nickel: 

𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑏𝑡𝑚 + 𝑆𝑡−𝑠+𝑚 

where 

( ) ( )
( )
( )

1 1

1 1

0.9916444 0.0083556

0.002686596 0.997313404

0.006553036 0.993446964

t t t s t t

t t t t

t t t t s

L Y S L b

b L L b

S Y L S

− − −

− −

−

= − + +

= − +

= − +

 

6. Holt-Winters model for commodity future price of Tin: 

𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑏𝑡𝑚 + 𝑆𝑡−𝑠+𝑚 

where 

( ) ( )
( )
( )

1 1

1 1

0.9987155 0.0012845

0.007963877 0.992036123

0.0001001989 0.9998998011

t t t s t t

t t t t

t t t t s

L Y S L b

b L L b

S Y L S

− − −

− −

−

= − + +

= − +

= − +

 

Based on the result above, it is known that the estimate of 𝛼 parameter for each commodity model is greater than 

the other parameters, i.e., 𝛽 and 𝛾, indicating that the level (linear component) element or mean is the most dominant of 

all elements. In addition, the trend and seasonal parameters of each commodity model have relatively very small values 

(>1%), which means the possibility of the weight of trend and seasonal elements are tiny. However, this is not a problem 

because the main purpose of this study is to estimate and analyze the risk of the price return based on VaR value which 

is calculated from the predicted results of the Holt-Winters model. 

3.4.  The Result of Normality Test 

When we estimate the Expected Tail Loss (ETL) value, we must first find out whether the residual model obtained 

is normally distributed or not. Using the distribution suitability test, Kolmogorov-Smirnov, the p-value results are given 

in Table 4. 

Table 4. Significance of the Kolmogorov-Smirnov normality test 

Commodities Zinc Lead Aluminum Copper Nickel Tin 

Statistic 0.484063 0.4618515 0.4623335 0.5061002 0.5139569 0.5719293 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

In this test, we use a significance level of 5%. Based on Table 4, the level of significance or commonly called p-

value obtained for each commodity is very small (less than 5%), which in this case can be decided to reject the null 

hypothesis (data is normally distributed). Thus, these results conclude that all residual distributions of the model for 

each commodity are not normally distributed. 
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3.5.  Monte Carlo – Expected Tail Loss 

The results of the previous process show that all return data are not normally distributed, so the simulation process 

for estimating the Expected Tail Loss (ETL) value is carried out based on the generalized lambda distribution. The value 

of ETL calculated from return for each commodity based on the Holt-Winters model is estimated using Rstudio, 

especially with “PerformanceAnalytics” packages. Referring to the Holt-Winters modeling results, the model used to 

predict commodity futures prices has seasonal effect with additive properties. The seasonal effect in the additive model 

means that the seasonality has a fixed impact, so that the seasonal pattern will remain uniform even though the data has 

a trend, which better reflects the volatility of commodity futures prices. In addition, when the seasonal effect is 

considered in the model, the ETL results obtained can vary depending on the particular season so that they are not biased. 

Ignoring the seasonal effect can lead to underestimation or overestimation of the risk in calculating ETL because the 

model does not capture seasonal differences in the error distribution. Hereafter, the simulation process is carried out to 

capture all possible estimated values, from the smallest to the largest, and their average. The dissimilarity of the values 

obtained results in the emergence of an acceptable range of results, known as the Confidence Interval (CI). The 

simulation process that has been carried out and has resulted in the estimated value of ETL is stated in Table 5. 

Table 5. The Result of Monte Carlo Simulation Process For ETL 

Commodity Mean Return 
Standard Deviation 

Return 

Number of 

Simulation 

95% CI for ETL 

Lower Upper 

Zinc -0.000065688 0.01306081 60747474 0.02896632 0.02959407 

Lead -0.000168489 0.01257540 85598920 0.02867434 0.02938175 

Aluminum 0.000330451 0.01205135 20437580 0.02560743 0.02628983 

Copper 0.000298815 0.01182279 24054960 0.02721389 0.02799636 

Nickel 0.000490599 0.01662229 17640040 0.03555993 0.03643655 

Tin 0.000590669 0.01257359 69631000 0.03002281 0.03104553 

Based on Table 5, the CI range length for each commodity's ETL is obtained differently. Therefore, we cannot 

directly interpret the level of risk for each commodity and compare it. 

3.6.  Mean Expected Tail Loss 

The final discussion is about the mean value of Monte Carlo simulation of Expected Tail Loss (ETL), which we 

can assume as ETL value. With ETL value, we can analyze what commodity has the greater risk. The estimation results 

of the ETL value for each commodity are given in Table 6. 

 

Table 6. Estimation results of Expected Tail Loss (ETL) 

Commodities Zinc Lead Aluminum Copper Nickel Tin 

𝑬𝑻𝑳𝟓% (%) 0.0292802 0.02902804 0.02594863 0.02760512 0.03599824 0.03053417 

Based on Table 6, we obtain ETL values with relatively small variations, but they are different from each other. 

The commodity with the largest ETL value is Tin, making it have the most significant risk with an ETL value of 0.036. 

The interpretation of this result is that the potential loss expected to be borne by the investor is 3.6%. Assume a sum of 

funds worth USD 100 is purchased for Nickel Commodities with an investment objective of 48 days (5% of 1000 days). 

In this case, the investment period with a 95% confidence level can bear the expected loss by the investor is USD 3.6. 

Basically, the interpretation for each commodity applies the same as nickel for other commodities, so we can also 

estimate the loss value for other commodities. 

4. Conclusions 

The following are the conclusions obtained from the results of this research regarding the Holt-Winters model 

concerning analyzing risk measures of commodity futures in the London Metal Exchange (LME) based on Expected 

Tail Loss (ETL). All closing price data for future commodities used in this study, namely Zinc, Lead, Aluminum, 

Copper, Nickel, and Tin, are not stationary, so it can be suspected that the data does not meet the assumptions because 

it contains trends, seasonality, or both. The estimation results of the Holt-Winters model show that all commodities have 

the same seasonal effect, namely additives, with different smoothing constants (alpha, beta, gamma) for each commodity 

model. The residuals of the Holt-Winters model obtained from all commodities are not normally distributed, so the 

Monte Carlo simulation based on generalized lambda distribution and the estimation of Expected Tail Loss (ETL) is 

obtained using the modified approach. The average ETL estimate for each commodity produces varying values. Futures 

of Nickel has the greatest ETL value, and Futures of Aluminum have the lowest ETL value. Thus, based on the analysis 

of risk measures using ETL, commodity futures of Nickel have the highest risk; in contrast, Commodity futures of 

Aluminum has the minimum risk as an investment. 
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