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ABSTRACT1 

Article History Rainbow geodesic is the shortest path that connects two different vertices in graph 𝑮 such that every edge of the 

path has different colors. The strong rainbow connection number of a graph 𝑮, denoted by src(G), is the smallest 

number of colors required to color the edges of G such that there is a rainbow geodesic for each pair of vertices. 
The 𝒅-local strong rainbow connection number, denoted by 𝒍𝒔𝒓𝒄𝒅, is the smallest number of colors required to 

color the edges of 𝑮 such that any pair of vertices with a maximum distance 𝒅 is connected by a rainbow 

geodesic. This paper contains some results of 𝒍𝒔𝒓𝒄𝒅 of  generalized prism graphs (𝑷𝒎 × 𝑪𝒏) and generalized 

antiprism graphs (𝑨𝒎
𝒏 ) for values of 𝒅 =  𝟐, 𝒅 =  𝟑, and 𝒅 =  𝟒. 
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1. Introduction 

Chartrand, Johns, McKoen, and Zhang [1] introduced strong rainbow connection numbers. Let 𝑐 be edge coloring 

of a connected graph 𝐺. For any two edges 𝑢 and 𝑣 in 𝐺, a rainbow geodesic is the shortest rainbow path 𝑢 − 𝑣. 𝐺 is a 

strong rainbow connected graph if any two edges of 𝐺 are connected by a rainbow geodesic. An edge coloring 𝑐 that 

has rainbow geodesic is called strong rainbow coloring of 𝐺. A strong rainbow connection number of connected 𝐺, 

denoted by 𝑠𝑟𝑐(𝐺), is defined as the smallest number of colors in a strong rainbow coloring of 𝐺 [2]. A rainbow 

connection can be applied to the secure transfer of classified information [3]. There are several generalizations of 

rainbow connection. For instance, rainbow 𝑘-connectivity [4], 𝑘-rainbow index [5], the vertex version [6], total version 

[7], directed version [8], and rainbow connection for hypergraphs [9]. The reader can check the more information on [2] 

and [10]. 

Septyanto & Sugeng considered to localize some properties of the strong rainbow connection. Instead of 

considering every pair of vertices connected by a rainbow path, they considered only pair of vertices that has distance 

up to 𝑑, for a positive integer 𝑑. The 𝑑-local strong rainbow coloring is an edge coloring so that any two vertices with a 

maximum distance 𝑑 are connected by a rainbow geodesic. The 𝑑-local strong rainbow connection number of a 

connected graph 𝐺, 𝑙𝑠𝑟𝑐𝑑(𝐺), is the smallest number of colors which is needed in the 𝑑-local strong rainbow coloring 

of this graph [11]. Furthermore, Septyanto & Sugeng determined the value of 𝑙𝑠𝑟𝑐𝑑 for cycle graphs (𝐶𝑛). Nugroho & 

Sugeng [12] explored and found the value of 𝑙𝑠𝑟𝑐𝑑 for a prism graph. The prism graph can be defined as the Cartesian 

product 𝑃2 × 𝐶𝑛, where 𝑃2 is a path with two vertices and 𝐶𝑛 is a cycle with 𝑛 vertices. Thus, a prism graph has order 

2𝑛 and size 3𝑛 [13]. 

The previous result raise a question on what is the value of 𝒍𝒔𝒓𝒄𝒅 would be if the prism graph is generalized to  

𝑃𝑚 × 𝐶𝑛 . The generalized prism graph is the Cartesian product between path 𝑃𝑚 and cycle 𝐶𝑛, that is 𝑃𝑚 × 𝐶𝑛 [14]. The 

research is then extended to generalized antiprims graph which constructed by adding an edge diagonally for each cycle 

subgraph 𝐶4 in the graph [15]. 

 

 

2. Known Result 

There are several studies that discuss local strong rainbow coloring and its relation to 𝒍𝒔𝒓𝒄𝒅. In a previous study, 

Septyanto and Sugeng [2] determined the 𝒅-local strong rainbow connection number for circle graphs. Darmawan and 

Dafik [16] determined the value of 𝒓𝒄 and 𝒔𝒓𝒄 of generalized prism. 

Theorem 1 [2] 

For any graph 𝐺 and a positive integer 𝑑,  

𝑙𝑟𝑐𝑑(𝐺) ≤ 𝑙𝑟𝑐𝑑+1(𝐺) and 𝑙𝑠𝑟𝑐𝑑(𝐺) ≤ 𝑙𝑠𝑟𝑐𝑑+1(𝐺). 

Theorem 2 [11] 

If 𝑛 ≥ 3 and 𝑑 ≤ 𝑛/2, then  𝑙𝑠𝑟𝑐𝑑(𝐶𝑛) = ⌈
𝑛

⌊𝑛/𝑑⌋
⌉ . 

Theorem 3 [12] 

If 𝑚 ≥ 3, then 𝑙𝑠𝑟𝑐𝑑(𝑃𝑚) = 𝑑. 

Theorem 4 [12] 

For 𝑛 ≥ 3, 𝑑 ≤
𝑛

2
 , 𝑙𝑠𝑟𝑐𝑑(𝑃2 × 𝐶𝑛) = ⌈

𝑛

⌊𝑛/𝑑⌋
⌉. 

Theorem 5 [16] 

Let 𝐺 = 𝑃𝑚 × 𝐶𝑛 be prism graphs, for 𝑚 ≥ 3 and 𝑛 ≥ 1, 𝑟𝑐(𝐺) = 𝑠𝑟𝑐(𝐺) = {
𝑚;                       𝑓𝑜𝑟 𝑛 = 3,

⌈
𝑛

2
⌉ + (𝑚 − 1); 𝑓𝑜𝑟 𝑛 ≥ 4

.  
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3. Results And Discussion 

It will be shown that there exists a rainbow coloring such that every pair of edges of maximum distance 𝑑 is 

connected by a rainbow geodesic. In the following theorems, we determined the value of 𝑙𝑠𝑟𝑐𝑑 for generalized prism 

graphs and generalized antiprism graph, for 𝑑 = 2, 𝑑 = 3 and 𝑑 = 4.  

 
Theorem 6 

For  𝑛 ≥ 4, 𝑙𝑠𝑟𝑐2(𝑃𝑚 × 𝐶𝑛) = {
2; 𝑛 𝑒𝑣𝑒𝑛,
3; 𝑛 𝑜𝑑𝑑.  

 

Proof. 

Let 𝐺 = 𝑃𝑚 × 𝐶𝑛, where 𝑉(𝐺) = {𝑣𝑖
(𝑗)|𝑖 = 1,2,3,… , 𝑛; 𝑗 = 1,2,3,… ,𝑚} and 

𝐸(𝐺) = {𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗) |𝑖 = 1,2,3,… , 𝑛; 𝑗 = 1,2,3,… ,𝑚} ∪ {𝑣𝑖

(𝑗)
𝑣𝑖
(𝑗+1)|𝑖 = 1,2,3, … , 𝑛; 𝑗 = 1,2,3,… ,𝑚 − 1}. 

Consider 2 cases based on the values of  𝑛. 

Case 1:  𝑛 even 

To prove that 𝑙𝑠𝑟𝑐2(𝑃𝑚 × 𝐶𝑛) = 2, we define an edge coloring 𝑐1 ∶ 𝐸(𝐺) → {1,2} as follows:  

i. 𝑐1 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 even,
2, 𝑖 𝑜𝑑𝑑,

         

𝑖 = 1,2,3,… , 𝑛 − 1 and 𝑗 = 1,2,3,… ,𝑚. 

ii. 𝑐1 (𝑣𝑖
(𝑗)
𝑣1
(𝑗)
) = 2,  𝑖 = 𝑛 and 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑐1 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
1, 𝑖 odd;  𝑗 odd,                
2, 𝑖 odd;  𝑗 even.            

      

iv. 𝑐1 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
2, 𝑖 even;  𝑗 odd,
1, 𝑖 even; 𝑗 odd.  

       

Case 2: 𝑛 odd 

To prove that 𝑙𝑠𝑟𝑐2(𝑃𝑚 × 𝐶𝑛) = 3, we define an edge coloring 𝑐2 ∶ 𝐸(𝐺) → {1,2,3} as follows:  

i. 𝑐2 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 even,
2, 𝑖 odd,

   

 𝑖 = 1,2,3,… , 𝑛 − 1 and 𝑗 = 1,2,3,… ,𝑚. 

ii. 𝑐2 (𝑣𝑛
(𝑗)
𝑣1
(𝑗)
) = 3, 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑐2 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
1, 𝑖 odd;  𝑗 odd,
2, 𝑖 odd;  𝑗 even.

       

iv. 𝑐2 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
2,    𝑖 even;  𝑗 odd,
3, 𝑖 even;  𝑗 even,

       

v. 𝑐2 (𝑣𝑛
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
3,   𝑗 odd,
1, 𝑗 even,

      𝑗 = 1,2,3,… ,𝑚. 

By looking of all possibilities of every geodesic path should be rainbow for distance two we cannot have less colors, 

then we can conclude that for  𝑛 ≥ 4, 𝑙𝑠𝑟𝑐2(𝑃𝑚 × 𝐶𝑛) = {
2; 𝑛 even,
3; 𝑛 odd.  

 ∎ 

 

Figure 1. shows the example of the local strong rainbow coloring of generalized prism for 𝑑 = 2. 
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Figure 1. Example of 2-local strong rainbow coloring on prism graph 𝑃5 × 𝐶5  

 

Theorem 7 

For 𝑛 ≥ 6, 𝑙𝑠𝑟𝑐3(𝑃𝑚 × 𝐶𝑛) = {
3;𝑚 = 3,4; 3|𝑛
4;𝑚 > 4; 3|𝑛   
4; 3 ∤ 𝑛             

   

Proof. 

Case 1: 3|𝑛   

For 𝑛 = 6, 9, 12,… it will be shown that 𝑙𝑠𝑟𝑐3(𝑃𝑚 × 𝐶𝑛) = 3. Define the edge coloring 𝑐3 ∶ 𝐸(𝐺) → {1,2,3,4} as 

follows:  

i. 𝑐3 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 = 1 mod 3,
2, 𝑖 = 2 mod 3,
3, 𝑖 = 0 mod 3,

    

𝑖 = 1, 2, 3, 4, 5, 6, … , 𝑛 − 1 and 𝑗 = 1,2,3,… ,𝑚.  

ii. 𝑐3 (𝑣𝑛
(𝑗)
𝑣1
(𝑗)
) = 3, 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑐3 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) =

{
 
 

 
 
3, 𝑗 = 1 mod 4, and 𝑖 = 1 mod 3,
2, 𝑗 = 2 mod 4, and 𝑖 = 1 mod 3,
1, 𝑗 = 3 mod 4, and 𝑖 = 1 mod 3,
4, 𝑗 = 0 mod 4, and 𝑖 = 1 mod 3.

 

       

iv. 𝑐3 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

1, 𝑗 = 1 mod 4, and 𝑖 = 2 mod 3,
3,   𝑗 = 2 mod 4, and 𝑖 = 2 mod 3,
2, 𝑗 = 3 mod 4, and 𝑖 = 2 mod 3,
4, 𝑗 = 4 mod 4, and 𝑖 = 2 mod 3.

 

v. 𝑐3 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

2,   𝑗 = 1 mod 4, and 𝑖 = 0 mod 3,
1,   𝑗 = 2 mod 4, and 𝑖 = 0 mod 3,
3,   𝑗 = 3 mod 4, and 𝑖 = 0 mod 3,
4,   𝑗 = 4 mod 4, and 𝑖 = 0 mod 3.

 

Case 2: 3 ∤ 𝑛  

The edge coloring of 𝑃𝑚 × 𝐶𝑛 in general for 3 ∤ 𝑛 can be shown using 𝑛 = 7. Define the edge coloring 𝑐4: 𝐸(𝐺) →
{1,2,3,4} as follows: 

i. 𝑐4 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 = 1, 4,
2, 𝑖 = 2,5,
3, 𝑖 = 3,6,

    

𝑗 = 1,2,3, … ,𝑚. 

ii. 𝑐4 (𝑣𝑖
(𝑗)
𝑣1
(𝑗)
) = 4,  𝑖 = 7 and 𝑗 = 1,2,3,… ,𝑚. 
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iii. 𝑐4 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

1, 𝑖 = 1,4; 𝑗 = 1,               
2,   𝑖 = 1,4; 𝑗 = 2 mod 3,
3,   𝑖 = 1,4; 𝑗 = 0 mod 3,
4,   𝑖 = 1,4; 𝑗 = 1 mod 3.

   

iv. 𝑐4 (𝑣2
(𝑗)
𝑣2
(𝑗+1)

) = {

2,              𝑗 = 1,
3, 𝑗 = 2 mod 3,
1, 𝑗 = 0 mod 3,
4, 𝑗 = 1 mod 3.

 

v. 𝑐4 (𝑣3
(𝑗)
𝑣3
(𝑗+1)

) = {

3,              𝑗 = 1,
1, 𝑗 = 2 mod 3,
2, 𝑗 = 0 mod 3,
4, 𝑗 = 1 mod 3.

 

vi. 𝑐4 (𝑣5
(𝑗)
𝑣5
(𝑗+1)

) = {

2,              𝑗 = 1,
3, 𝑗 = 2 mod 3,
4, 𝑗 = 0 mod 3,
1, 𝑗 = 1 mod 3.

  

vii. 𝑐4 (𝑣6
(𝑗)
𝑣6
(𝑗+1)

) = {

3,              𝑗 = 1,
4, 𝑗 = 2 mod 3,
1, 𝑗 = 0 mod 3,
2, 𝑗 = 1 mod 3.

 

viii. 𝑐4 (𝑣7
(𝑗)
𝑣7
(𝑗+1)

) = {

4,              𝑗 = 1,
1, 𝑗 = 2 mod 3,
2, 𝑗 = 0 mod 3,
3, 𝑗 = 1 mod 3.

 

By looking of all possibilities of every geodesic path should be rainbow for distance two we cannot have less colors, 

then we can conclude that for 𝑛 ≥ 6, 𝑙𝑠𝑟𝑐3(𝑃𝑚 × 𝐶𝑛) = {
3;𝑚 = 3,4; 3|𝑛,
4;𝑚 > 4; 3|𝑛,   
4; 3 ∤ 𝑛.             

  ∎ 

Figure 2 shows the example of the local strong rainbow coloring of generalized prism for 𝑑 = 3. 

 

 

Figure 2. Example of 3-local strong rainbow coloring on prism graph 𝑃6 × 𝐶6  

 

Theorem 8 

For 𝑛 ≥ 8, 𝑙𝑠𝑟𝑐4(𝑃𝑚 × 𝐶𝑛) = {
4;𝑚 = 3,4; 4|𝑛,
5;𝑚 > 4; 4|𝑛,   
5;  4 ∤ 𝑛.             

   

Proof: 

Consider the following cases.  
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Case 1: 𝑛 = 8, 𝑚 ≤ 4 

For the case which 𝑚 = 3 dan 𝑚 = 4, it will be shown that 𝑙𝑟𝑠𝑐4(𝑃4 × 𝐶8) = 4. Define the edge coloring 𝑐5: 𝐸(𝐺) →
{1,2,3,4} as follows: 

i. 𝑐5 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 = 1, 5,
2, 𝑖 = 2,6,
3, 𝑖 = 3,7,
4, 𝑖 = 4,   

   

𝑗 = 1, 2, 3,4. 

ii. 𝑐5 (𝑣8
(𝑗)
𝑣1
(𝑗)
) = 4, 𝑗 = 1,2,3,4. 

iii. 𝑐5 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

2, 𝑖 = 1,5; 𝑗 = 1,
3, 𝑖 = 1,5; 𝑗 = 2,
4, 𝑖 = 1,5; 𝑗 = 3.

       

iv. 𝑐5 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

3, 𝑖 = 2,6; 𝑗 = 1,
4, 𝑖 = 2,6; 𝑗 = 2,
1, 𝑖 = 2,6; 𝑗 = 3.

 

v. 𝑐5 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

4, 𝑖 = 3,7; 𝑗 = 1,
1, 𝑖 = 3,7; 𝑗 = 2,
2, 𝑖 = 3,7; 𝑗 = 3.

 

vi. 𝑐5 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

1, 𝑖 = 4,8; 𝑗 = 1,
2, 𝑖 = 4,8; 𝑗 = 2,
3, 𝑖 = 4,8; 𝑗 = 3.

 

Case 2: 𝑛 = 8, 𝑚 > 4 

To show that 𝑙𝑟𝑠𝑐4(𝑃5 × 𝐶8) = 5, define the edge coloring 𝑐6: 𝐸(𝐺) → {1,2,3,4,5}, as follows: 

i. 𝑐6 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 = 1, 5,
2, 𝑖 = 2,6,
3, 𝑖 = 3,7,
4, 𝑖 = 4.   

   

𝑗 = 1, 2, 3,4,5 

ii. 𝑐6 (𝑣8
(𝑗)
𝑣1
(𝑗)
) = 4,  𝑗 = 1, 2, 3,4,5. 

iii. 𝑐6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

2, 𝑖 = 1,5; 𝑗 = 1,
3, 𝑖 = 1,5; 𝑗 = 2,
4, 𝑖 = 1,5; 𝑗 = 3,
 5, 𝑖 = 1,5; 𝑗 = 4.

       

iv. 𝑐6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

3, 𝑖 = 2,6; 𝑗 = 1,
4, 𝑖 = 2,6; 𝑗 = 2,
1, 𝑖 = 2,6; 𝑗 = 3,
5, 𝑖 = 2,6; 𝑗 = 4.

 

v. 𝑐6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

4, 𝑖 = 3,7; 𝑗 = 1,
1, 𝑖 = 3,7; 𝑗 = 2,
2, 𝑖 = 3,7; 𝑗 = 3,
5, 𝑖 = 3,7; 𝑗 = 4.

 

vi. 𝑐6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

1, 𝑖 = 4,8; 𝑗 = 1,
2, 𝑖 = 4,8; 𝑗 = 2,
3, 𝑖 = 4,8; 𝑗 = 3,
5, 𝑖 = 4,8; 𝑗 = 4.

 

Case 3: 4 ∤ 𝑛 

In this case, we use 𝑛 = 9 as it is the smallest value in which the concept applies. To show that 𝑙𝑟𝑠𝑐4(𝑃𝑚 × 𝐶8) = 5, we 

define the edge coloring 𝑐7: 𝐸(𝐺) → {1,2,3,4,5}, as follows: 

i. 𝑐7 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 = 1, 5,
2, 𝑖 = 2,6,
3, 𝑖 = 3,7,
4, 𝑖 = 4,8.  

   

 𝑗 = 1, 2, 3,… ,𝑚. 

ii. 𝑐7 (𝑣9
(𝑗)
𝑣1
(𝑗)
) = 5, 𝑗 = 1,2,3,… ,𝑚. 
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iii. 𝑐7 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

2, 𝑖 = 1,5; 𝑗 = 1 mod 4,
3, 𝑖 = 1,5; 𝑗 = 2 mod 4,
4, 𝑖 = 1,5; 𝑗 = 3 mod 4,
 5, 𝑖 = 1,5; 𝑗 = 0 mod 4.  

       

iv. 𝑐7 (𝑣2
(𝑗)
𝑣2
(𝑗+1)

) = {

3, 𝑗 = 1 mod 4,
4, 𝑗 = 2 mod 4,
1, 𝑗 = 3 mod 4,
5, 𝑗 = 0 mod 4.

 

v. 𝑐7 (𝑣3
(𝑗)
𝑣3
(𝑗+1)

) = {

4, 𝑗 = 1 mod 4,
1, 𝑗 = 2 mod 4,
2, 𝑗 = 3 mod 4,
5, 𝑗 = 0 mod 4.

 

vi. 𝑐7 (𝑣4
(𝑗)
𝑣4
(𝑗+1)

) = {

1, 𝑗 = 1 mod 4,
2, 𝑗 = 2 mod 4,
3, 𝑗 = 3 mod 4,
5, 𝑗 = 0 mod 4.

 

vii. 𝑐7 (𝑣6
(𝑗)
𝑣6
(𝑗+1)

) = {

3, 𝑗 = 1 mod 4,
4, 𝑗 = 2 mod 4,
5, 𝑗 = 3 mod 4,
1, 𝑗 = 0 mod 4.

 

viii. 𝑐7 (𝑣7
(𝑗)
𝑣7
(𝑗+1)

) = {

4, 𝑗 = 1 mod 4,
5, 𝑗 = 2 mod 4,
1, 𝑗 = 3 mod 4,
2, 𝑗 = 0 mod 4.

 

ix. 𝑐7 (𝑣8
(𝑗)
𝑣8
(𝑗+1)

) = {

5, 𝑗 = 1 mod 4,
1, 𝑗 = 2 mod 4,
2, 𝑗 = 3 mod 4,
3, 𝑗 = 0 mod 4.

 

x. 𝑐7 (𝑣9
(𝑗)
𝑣9
(𝑗+1)

) = {

1, 𝑗 = 1 mod 4,
2, 𝑗 = 2 mod 4,
3, 𝑗 = 3 mod 4,
4, 𝑗 = 0 mod 4.

 

 

By looking of all possibilities of every geodesic path should be rainbow for distance two, we cannot have less colors. 

Thus, we can conclude that for 𝑛 ≥ 8, 𝑙𝑠𝑟𝑐4(𝑃𝑚 × 𝐶𝑛) = {
4;𝑚 = 3,4; 4|𝑛,
5;𝑚 > 4; 4|𝑛,   
5;  4 ∤ 𝑛.             

  ∎ 

Figure 3 shows the example of the local strong rainbow coloring of generalized prism for 𝑑 = 4. 
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Figure 3. Example of 4-local strong rainbow coloring on prism graph 𝑃6 × 𝐶8  

 

The next theorems are considering the generalized antiprism. Looking at the construction, generalized antiprism 

can be constructed from generalized prism by adding one edge so that all vertices have degree four. However, the 

coloring is not that obvious.  

 

Theorem 9 

For 𝑛 ≥ 4 and 𝑚 ≥ 2, 𝑙𝑠𝑟𝑐2(𝐴𝑛
(𝑚)
) = {

2,𝑚 ≤ 3; 𝑛 𝑒𝑣𝑒𝑛,
3,𝑚 ≥ 4; 𝑛 𝑒𝑣𝑒𝑛
3,                𝑛 𝑜𝑑𝑑.

, 

Proof 

Let 𝐺 = 𝐴𝑛
(𝑚)

, where 𝑉(𝐺) = {𝑣𝑖
(𝑗)|𝑖 = 1,2,3,… , 𝑛; 𝑗 = 1,2,3,… ,𝑚}  

𝐸(𝐺) = {𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗) |𝑖 = 1,2,3,… , 𝑛; 𝑗 = 1,2,3,… ,𝑚} ∪ {𝑣𝑖

(𝑗)
𝑣𝑖
(𝑗+1)|𝑖 = 1,2,3,… , 𝑛; 𝑗 = 1,2,3,… ,𝑚 − 1} ∪

{𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)|𝑖 = 1,2,3,… , 𝑛 − 1; 𝑗 = 1,2,3,… ,𝑚 − 1}. 

Consider the following cases. 

Case 1: 𝑛 even, 𝑚 ≤ 3 

To show that 𝑙𝑠𝑟𝑐2(𝐴𝑛
(𝑚)
) = 2, define the edge coloring 𝑓1 ∶ 𝐸(𝐺) → {1,2,3}, as follows:  

i. 𝑓1 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 1, 𝑖 odd and 𝑗 = 1,2,3, … ,𝑚. 

ii. 𝑓1 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 2, 𝑖 ∈ {2,4,6,… , 𝑛 − 2} and 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑓1 (𝑣𝑛
(𝑗)
𝑣1
(𝑗)
) = 2, 𝑗 = 1,2,3,… ,𝑚. 

iv. 𝑓1 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
2,   𝑖 odd and 𝑗 odd,
1, 𝑖 odd and 𝑗 even.

 

v. 𝑓1 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
1, 𝑖 even and 𝑗 odd,
2, 𝑖 even and 𝑗 even.

 

vi. 𝑓1 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = {
1, 𝑖 odd, 𝑗 ∈ {1,2}⋃{2𝑝|𝑝 ≥ 2},

3, 𝑖 odd,     𝑗 ∈ {2𝑝 + 1|𝑝 ≥ 1}.
  

vii. 𝑓1 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = {
2, 𝑖 even, 𝑗 ∈ {1,2}⋃{2𝑝|𝑝 ≥ 2},

3, 𝑖 even,    𝑗 ∈ {2𝑝 + 1|𝑝 ≥ 1}.
 

viii. 𝑓1 (𝑣𝑛
(𝑗)
𝑣1
(𝑗+1)

) = {
2, 𝑗 ∈ {1,2}⋃{2𝑝|𝑝 ≥ 2},

3,     𝑗 ∈ {2𝑝 + 1|𝑝 ≥ 1}.
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Case 2: 𝑛 even, 𝑚 ≥ 4 

To show that 𝑙𝑠𝑟𝑐2(𝐴𝑛
(𝑚)
) = 3, define the edge coloring 𝑓2 ∶ 𝐸(𝐺) → {1,2,3}, as follows:  

i. 𝑓2 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 1,  𝑖 ∈ {1,3,5,… , 𝑛 − 2} and 𝑗 = 1,2,3,… ,𝑚. 

ii. 𝑓2 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 2, 𝑖 even and 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑓2 (𝑣𝑛
(𝑗)
𝑣1
(𝑗)
) = 3, 𝑗 = 1,2,3, … ,𝑚. 

iv. 𝑓2 (𝑣1
(𝑗)
𝑣1
(𝑗+1)

) = {
1,    𝑗 odd,
2, 𝑗 even.

 

v. 𝑓2 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
1, 𝑗 odd
3, 𝑗 even

 , where 𝑖 ∈ {3,5,… , 𝑛 − 2}. 

vi. 𝑓2 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗)
) = {

2, 𝑖 even and 𝑗 odd,
3, 𝑖 even and 𝑗 even.

 

vii. 𝑓2 (𝑣𝑛
(𝑗)
𝑣𝑛
(𝑗)
) = {

3, 𝑗 odd,
1, 𝑗 even.

 

viii. 𝑓2 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 1, 𝑖 odd and 𝑗 = 1,2,3,… ,𝑚. 

ix. 𝑓2 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 2, 𝑖 even and 𝑗 = 1,2,3,… ,𝑚. 

x. 𝑓2 (𝑣𝑛
(𝑗)
𝑣1
(𝑗+1)

) = 3, 𝑗 = 1,2,3, … ,𝑚. 

 

Case 3: 𝑛 odd 

To show that 𝑙𝑠𝑟𝑐2(𝐴𝑛
(𝑚)
) = 3, define the edge coloring 𝑓4 ∶ 𝐸(𝐺) → {1,2,3}, as follows:  

i. 𝑓4 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 1, 𝑖 ∈ {1,3,5,… , 𝑛 − 2} and 𝑗 = 1,2,3,… ,𝑚. 

ii. 𝑓4 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 2, 𝑖 even and 𝑗 = 1,2,3,… ,𝑚 and 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑓4 (𝑣𝑛
(𝑗)
𝑣1
(𝑗)
) = 3, 𝑗 = 1,2,3, … ,𝑚. 

iv. 𝑓4 (𝑣1
(𝑗)
𝑣1
(𝑗+1)

) = {
1,   𝑗 odd,
2, 𝑗 even.

 

v. 𝑓4 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {
1, 𝑗 odd
3, 𝑗 even

 , where 𝑖 ∈ {3,5,… , 𝑛 − 2}. 

vi. 𝑓4 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗)
) = {

2, 𝑖 even and 𝑗 odd,
3, 𝑖 even and 𝑗 even.

 

vii. 𝑓4 (𝑣𝑛
(𝑗)
𝑣𝑛
(𝑗)
) = {

3, 𝑗 odd,
1, 𝑗 even.

 

viii. 𝑓4 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 1, 𝑖 odd and 𝑗 = 1,2,3,… ,𝑚. 

ix. 𝑓4 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 2, 𝑖 even and 𝑗 = 1,2,3,… ,𝑚. 

x. 𝑓4 (𝑣𝑛
(𝑗)
𝑣1
(𝑗+1)

) = 3, 𝑗 = 1,2,3, … ,𝑚. 

By looking of all possibilities of every geodesic path should be rainbow for distance two we cannot have less 

colors, then we can conclude that for ≥ 4 and 𝑚 ≥ 2, 𝑙𝑠𝑟𝑐2(𝐴𝑛
(𝑚)
) = {

2,𝑚 ≤ 3; 𝑛 even,
3,𝑚 ≥ 4; 𝑛 even
3,                𝑛 odd.

, ∎ 

Figure 4 shows the example of the local strong rainbow coloring of generalized antiprism for 𝑑 = 2. 
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Figure 4. Example of 2-local strong rainbow coloring on antiprism graph 𝐴5

(5)
 

 

Theorem 10 

For 𝑛 ≥ 6 and 𝑚 ≥ 2, 𝑙𝑠𝑟𝑐3(𝐴𝑛
(𝑚)
) = {

3,    𝑚 ≤ 4; 3|𝑛,
4,    𝑚 > 4; 3|𝑛,
4,𝑚 ≥ 2;  3 ∤ 𝑛.

  

Proof 

Consider the following cases. 

Case 1: 3|𝑛 

To show that 𝑙𝑠𝑟𝑐3(𝐴6
(𝑚)
) = {

3,𝑚 ≤ 4
4,𝑚 > 4

, define the edge coloring 𝑓5 ∶ 𝐸(𝐺) → {1,2,3}, as follows:  

i. 𝑓5 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 1, 𝑖 = 1 mod 3 and 𝑗 = 1,2,3,… ,𝑚. 

ii. 𝑓5 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 2, 𝑖 = 2 mod 3 and 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑓5 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 3, 𝑖 = 0 mod 3 and 𝑗 = 1,2,3,… ,𝑚. 

iv. 𝑓5 (𝑣6
(𝑗)
𝑣1
(𝑗)
) = 3, 𝑗 = 1,2,3, … ,𝑚. 

v. 𝑓5 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

3, 𝑖 = 1 mod 3  and 𝑗 = 1,                         
2, 𝑖 = 1 mod 3  and 𝑗 = 2 mod 3,            
1, 𝑖 = 1 mod 3  and 𝑗 = 0 mod 3,            
4, 𝑖 = 1 mod 3  and 𝑗 = 1 mod 3, 𝑗 ≠ 1.

  

vi. 𝑓5 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

1, 𝑖 = 2 mod 3 and 𝑗 = 1,                         
3, 𝑖 = 2 mod 3 and 𝑗 = 2 mod 3,            
2, 𝑖 = 2 mod 3 and 𝑗 = 0 mod 3,            
4, 𝑖 = 2 mod 3 and 𝑗 = 1 mod 3, 𝑗 ≠ 1.

 

vii. 𝑓5 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

2, 𝑖 = 0 mod 3 and 𝑗 = 1,                         
1, 𝑖 = 0 mod 3 and 𝑗 = 2 mod 3,           
3, 𝑖 = 0 mod 3 and 𝑗 = 0 mod 3,            
4, 𝑖 = 0 mod 3 and 𝑗 = 1 mod 3, 𝑗 ≠ 1.

 

viii. 𝑓5 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 1, 𝑖 = 1,4 and 𝑗 = 1,2,3,… ,𝑚. 

ix. 𝑓5 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 2,  𝑖 = 2,5 and 𝑗 = 1,2,3,… ,𝑚.  

x. 𝑓5 (𝑣3
(𝑗)
𝑣4
(𝑗+1)

) = 3,  𝑗 = 1,2,3,… ,𝑚. 

xi. 𝑓5 (𝑣6
(𝑗)
𝑣1
(𝑗+1)

) = 3,  𝑗 = 1,2,3,… ,𝑚. 
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Case 2: 3 ∤ 𝑛 

To show that 𝑙𝑠𝑟𝑐3(𝐴𝑛
(𝑚)
) = 4, we construct 𝑓6 ∶ 𝐸(𝐺) → {1,2,3,4}, as follows:  

i. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 1, 𝑖 = 1 mod 3, 𝑖 ≠ 𝑛 and 𝑗 = 1,2,3,… ,𝑚. 

ii. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 2,  𝑖 = 2 mod 3 and 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = 3,  𝑖 = 0 mod 3 and 𝑗 = 1,2,3,… ,𝑚. 

iv. 𝑓6 (𝑣𝑛
(𝑗)
𝑣1
(𝑗)
) = 4, 𝑗 = 1,2,3, … ,𝑚. 

v. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

1, 𝑖 = 1 mod 3, 𝑖 ≠ 𝑛 and  𝑗 = 1,                         
2, 𝑖 = 1 mod 3, 𝑖 ≠ 𝑛 and  𝑗 = 2 mod 3,            
3, 𝑖 = 1 mod 3, 𝑖 ≠ 𝑛 and  𝑗 = 0 mod 3,            
4, 𝑖 = 1 mod 3, 𝑖 ≠ 𝑛 and   𝑗 = 1 mod 3, 𝑗 ≠ 1.

 

vi. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

2, 𝑖 = 2 mod 3  and 𝑗 = 1,                         
3, 𝑖 = 2 mod 3  and 𝑗 = 2 mod 3,            
4, 𝑖 = 2 mod 3  and 𝑗 = 0 mod 3,            
1, 𝑖 = 2 mod 3 and  𝑗 = 1 mod 3, 𝑗 ≠ 1.

  

vii. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

3, 𝑖 = 0 mod 3  and 𝑗 = 1,                         
1, 𝑖 = 0 mod 3  and 𝑗 = 2 mod 3,            
4, 𝑖 = 0 mod 3  and 𝑗 = 0 mod 3,            
2, 𝑖 = 0 mod 3 and 𝑗 = 1 mod 3, 𝑗 ≠ 1.

 

viii. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

1, 𝑖 = 1 mod 3  and 𝑗 = 1,                         
2, 𝑖 = 1 mod 3  and 𝑗 = 2 mod 3,            
4, 𝑖 = 1 mod 3  and 𝑗 = 0 mod 3,            
3,   𝑖 = 1 mod 3  and 𝑗 = 1 mod 3, 𝑗 ≠ 1.

 

ix. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

3, 𝑖 = 0 mod 3  and 𝑗 = 1,                          
4, 𝑖 = 0 mod 3  and 𝑗 = 2 mod 3,             
1, 𝑖 = 0 mod 3  and  𝑗 = 0 mod 3,            
2, 𝑖 = 0 mod 3  and 𝑗 = 1 mod 3, 𝑗 ≠ 1.

 

x. 𝑓6 (𝑣𝑛
(𝑗)
𝑣𝑛
(𝑗+1)

) = {

4, 𝑗 = 1,                          
1, 𝑗 = 2 mod 3,             
2, 𝑗 = 0 mod 3,             
3,   𝑗 = 1 mod 3, 𝑗 ≠ 1.

 

xi. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 1,  𝑖 = 1 mod 3 and 𝑗 = 1,2,… ,𝑚. 

xii. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 2,  𝑖 = 2 mod 3 and 𝑗 = 1,2,… ,𝑚. 

xiii. 𝑓6 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = 3,  𝑖 = 0 mod 3 and 𝑗 = 1,2,… ,𝑚. 

xiv. 𝑓6 (𝑣7
(𝑗)
𝑣1
(𝑗+1)

) = 4, 𝑗 = 1,2, … ,𝑚. 

By looking of all possibilities of every geodesic path should be rainbow for distance two we cannot have less 

colors, then we can conclude that for 𝑛 ≥ 6 and 𝑚 ≥ 2, 𝑙𝑠𝑟𝑐3(𝐴𝑛
(𝑚)
) = {

3,    𝑚 ≤ 4; 3|𝑛,
4,    𝑚 > 4; 3|𝑛,
4,𝑚 ≥ 2;  3 ∤ 𝑛.

∎ 

Figure 5 shows the example of the local strong rainbow coloring of generalized prism for 𝑑 = 3. 
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Figure 5. Example of 3-local strong rainbow coloring on antiprism graph A7

(8)
 

 

Theorem 11 

For 𝑛 ≥ 3, 
𝑛

2
≥ 4 and 𝑚 ≥ 2, 𝑙𝑠𝑟𝑐4(𝐴𝑛

(𝑚)
) = {

4,    𝑚 ≤ 4; 4|𝑛,
5,    𝑚 > 4; 4|𝑛,
5,𝑚 ≥ 2;  4 ∤ 𝑛.

 

Proof 

Consider the following cases. 

Case 1: 4|𝑛 

We use the smallest number of 𝑛 which will lead us to the generalized form. To show that 𝑙𝑟𝑠𝑐4(𝐴8
(𝑚)
) = 4 define the 

edge coloring 𝑓7: 𝐸(𝐺) → {1,2,3,4,5}, as follows: 

i. 𝑓7 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 = 1, 5,
2, 𝑖 = 2,6,
3, 𝑖 = 3,7,
4, 𝑖 = 4,   

  where 𝑗 = 1, 2, 3,… ,𝑚. 

ii. 𝑓7 (𝑣8
(𝑗)
𝑣1
(𝑗)
) = 4,  𝑗 = 1,2,3, … ,𝑚, 

iii. 𝑓7 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

2, 𝑖 = 1,5; 𝑗 = 1 mod 4,
3, 𝑖 = 1,5; 𝑗 = 2 mod 4,
4, 𝑖 = 1,5; 𝑗 = 3 mod 4,
5, 𝑖 = 1,5; 𝑗 = 0 mod 4.

       

iv. 𝑓7 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

3, 𝑖 = 2,6; 𝑗 = 1 mod 4,   
4, 𝑖 = 2,6; 𝑗 = 2 mod 4,   
1, 𝑖 = 2,6; 𝑗 = 3 mod 4,   
 5, 𝑖 = 2,6; 𝑗 = 0 mod 4.   

 

v. 𝑓7 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

4, 𝑖 = 3,7; 𝑗 = 1 mod 4,
1, 𝑖 = 3,7; 𝑗 = 2 mod 4,
2, 𝑖 = 3,7; 𝑗 = 3 mod 4,
5, 𝑖 = 1,5; 𝑗 = 0 mod 4.

 

vi. 𝑓7 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

1, 𝑖 = 4,8; 𝑗 = 1 mod 4,
2, 𝑖 = 4,8; 𝑗 = 2 mod 4,
3, 𝑖 = 4,8; 𝑗 = 3 mod 4,
5, 𝑖 = 4,8; 𝑗 = 0 mod 4.

 

vii. 𝑓7 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗+1)

) = {

1, 𝑖 = 1, 5,
2, 𝑖 = 2,6,
3, 𝑖 = 3,7,
4, 𝑖 = 4,   

  where 𝑗 = 1, 2, 3,… ,𝑚. 

viii. 𝑓7 (𝑣8
(𝑗)
𝑣1
(𝑗+1)

) = 4,  𝑗 = 1,2,3,… ,𝑚 
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Case 2: 4 ∤ 𝑛 

To show that 𝑙𝑟𝑠𝑐4(𝑃𝑚 × 𝐶9) = 5, define the edge coloring 𝑓8: 𝐸(𝐺) → {1,2,3,4,5} as follows: 

i. 𝑓8 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 = 1, 5,
2, 𝑖 = 2,6,
3, 𝑖 = 3,7,
4, 𝑖 = 4,8,

  where 𝑗 = 1, 2, 3,… ,𝑚. 

ii. 𝑓8 (𝑣9
(𝑗)
𝑣1
(𝑗)
) = 5, 𝑗 = 1,2,3,… ,𝑚. 

iii. 𝑓8 (𝑣𝑖
(𝑗)
𝑣𝑖
(𝑗+1)

) = {

2, 𝑖 = 1,5; 𝑗 = 1 mod 4,
3, 𝑖 = 1,5; 𝑗 = 2 mod 4,
4, 𝑖 = 1,5; 𝑗 = 3 mod 4,
 5, 𝑖 = 1,5; 𝑗 = 0 mod 4.  

       

iv. 𝑓8 (𝑣2
(𝑗)
𝑣2
(𝑗+1)

) = {

3, 𝑗 = 1 mod 4,
4, 𝑗 = 2 mod 4,
1, 𝑗 = 3 mod 4,
5, 𝑗 = 0 mod 4.

 

v. 𝑓8 (𝑣3
(𝑗)
𝑣3
(𝑗+1)

) = {

4, 𝑗 = 1 mod 4,
1, 𝑗 = 2 mod 4,
2, 𝑗 = 3 mod 4,
5, 𝑗 = 0 mod 4.

 

vi. 𝑓8 (𝑣4
(𝑗)
𝑣4
(𝑗+1)

) = {

1, 𝑗 = 1 mod 4,
2, 𝑗 = 2 mod 4,
3, 𝑗 = 3 mod 4,
5, 𝑗 = 0 mod 4.

 

vii. 𝑓8 (𝑣6
(𝑗)
𝑣6
(𝑗+1)

) = {

3, 𝑗 = 1 mod 4,
4, 𝑗 = 2 mod 4,
5, 𝑗 = 3 mod 4,
1, 𝑗 = 0 mod 4.

 

viii. 𝑓8 (𝑣7
(𝑗)
𝑣7
(𝑗+1)

) = {

4, 𝑗 = 1 mod 4,
5, 𝑗 = 2 mod 4,
1, 𝑗 = 3 mod 4,
2, 𝑗 = 0 mod 4.

 

ix. 𝑓8 (𝑣8
(𝑗)
𝑣8
(𝑗+1)

) = {

5, 𝑗 = 1 mod 4,
1, 𝑗 = 2 mod 4,
2, 𝑗 = 3 mod 4,
3, 𝑗 = 0 mod 4.

 

x. 𝑓8 (𝑣9
(𝑗)
𝑣9
(𝑗+1)

) = {

1, 𝑗 = 1 mod 4,
2, 𝑗 = 2 mod 4,
3, 𝑗 = 3 mod 4,
4, 𝑗 = 0 mod 4.

 

xi. 𝑓8 (𝑣𝑖
(𝑗)
𝑣𝑖+1
(𝑗)
) = {

1, 𝑖 = 1, 5,
2, 𝑖 = 2,6,
3, 𝑖 = 3,7,
4, 𝑖 = 4,8,

  where 𝑗 = 1, 2, 3,… ,𝑚. 

xii. 𝑓8 (𝑣9
(𝑗)
𝑣1
(𝑗)
) = 5, 𝑗 = 1,2,3,… ,𝑚. 

By looking of all possibilities of every geodesic path should be rainbow for distance two, we cannot have less 

colors. Then we can conclude that for 𝑛 ≥ 3, 
𝑛

2
≥ 4 and 𝑚 ≥ 2, 𝑙𝑠𝑟𝑐4(𝐴𝑛

(𝑚)
) = {

4,    𝑚 ≤ 4; 4|𝑛,
5,    𝑚 > 4; 4|𝑛,
5, 𝑚 ≥ 2;  4 ∤ 𝑛.

∎ 

Figure 6 shows the example of the local strong rainbow coloring of generalized antiprism for 𝑑 = 4. 
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Figure 6. Example of 4-local strong rainbow coloring on antiprism graph 𝐴9

(6)
 

 

 

4. Conclusions 

In this paper, we have the 𝑙𝑠𝑟𝑐𝑑 for generalized prism graphs (𝑃𝑚 × 𝐶𝑛) and generalized antiprism graphs 𝐴𝑛
(𝑚)

, 

with 𝑑 = 2, 𝑑 = 3 and 𝑑 = 4. 
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