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ABSTRACT1 

Article History This study aimed to analyze the effect of risk factors on blood sugar levels in patients with diabetes mellitus using 
ordinal logistic regression analysis. Risk factors used as independent variables are age, gender, Body Mass 
Index (BMI), blood pressure, Cholesterol Level (TC), Low-Density Lipoprotein (LDL), High-Density Lipoprotein 
(HDL), Thyrocalcitonin Hormone (TCH) and Loss Triglyceride (LTG). The data used in this study were obtained 
from https://hastie.su.domains/Papers/LARS/diabetes.data. The number of samples taken was 100 respondents 
who had been diagnosed with diabetes mellitus. The results showed that risk factors such as age, Body Mass 
Index (BMI), Cholesterol Level (TC), Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL), and serum 
Thyrocalcitonin Hormone (TCH) type had a significant effect on blood sugar levels in patients with diabetes 
mellitus. The best logit model for ordinal logistic regression is Logit 1, namely 𝒈(𝒙𝟏) =  −𝟐. 𝟕𝟐𝟏 −
𝟎. 𝟎𝟕𝟗 𝑿𝟏 + 𝟐. 𝟖𝟏𝟑 𝑿𝟑 + 𝟎. 𝟏𝟎𝟎 𝑿𝟓 − 𝟎. 𝟎𝟗𝟗 𝑿𝟔 − 𝟎. 𝟏𝟏𝟗 𝑿𝟕 − 𝟎. 𝟗𝟖𝟗 𝑿𝟖 and Logit 2 is 𝒈(𝒙𝟐) =
 −𝟖. 𝟓𝟕𝟏 − 𝟎. 𝟎𝟕𝟗 𝑿𝟏 + 𝟐. 𝟖𝟏𝟑 𝑿𝟑 + 𝟎. 𝟏𝟎𝟎 𝑿𝟓 − 𝟎. 𝟎𝟗𝟗 𝑿𝟔 − 𝟎. 𝟏𝟏𝟗 𝑿𝟕 − 𝟎. 𝟗𝟖𝟗 𝑿𝟖. It is 
concluded that ordinal logistic regression analysis can be used to identify factors that influence blood sugar levels 
in patients with diabetes mellitus and help develop more effective management and intervention strategies. 
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1. Introduction 

Diabetes mellitus (DM) is a chronic disease affecting millions of people's health worldwide. One health problem 

that often occurs in people with DM is an uncontrolled increase in blood sugar levels. Uncontrolled blood sugar levels 

can cause serious complications, such as organ damage and death [1]. 

The International Diabetes Federation (IFD) organization [2] estimates that the number of people with diabetes 

will continue to increase and reach more than 700 million by 2045. It shows the importance of handling and controlling 

diabetes mellitus as a global health problem. In Indonesia, people with diabetes mellitus are increasing from year to 

year. According to data from the Ministry of Health [3], the number of people with diabetes in Indonesia reached more 

than 10.6 million in 2020. It indicates that diabetes mellitus is a health problem that needs serious attention from the 

government, medical personnel, and the wider community. 

Diabetes mellitus also has risk factors or precipitating factors that contribute to the incidence of the disease. Risk 

factors that are considered to affect people with diabetes mellitus are age, gender, body mass index, blood pressure, 

glucose levels, and cholesterol levels. Age is a major risk factor in the occurrence of diabetes mellitus. As age increases, 

the risk of developing diabetes mellitus increases. In addition, gender also affects the occurrence of diabetes mellitus. 

Women have a higher risk than men of developing diabetes mellitus. Body mass index (BMI) also affects the occurrence 

of diabetes mellitus. A person with a high BMI or overweight has a higher risk of developing diabetes mellitus. High 

blood pressure or hypertension also contributes to diabetes mellitus [4]. 

High blood glucose and cholesterol levels are also important risk factors for diabetes mellitus. High glucose 

levels in the blood can damage blood vessels and nerves and increase the risk of organ complications. High cholesterol 

levels in the blood can also increase the risk of heart disease and stroke in people with diabetes mellitus [4]. These 

factors can be used as independent variables in ordinal logistic regression analysis to analyze their effect on the 

dependent variable, namely blood sugar levels in diabetes mellitus [5]. 

In this study, factors that are thought to affect blood sugar levels in patients with diabetes mellitus were analyzed 

using the ordinal logistic regression method. The purpose of this study was to obtain clearer information about the factors 

affecting blood sugar levels in patients with diabetes mellitus and provide useful information for the development of 

interventions to control blood sugar levels in patients with diabetes mellitus. 

 

1.1 Ordinal Logistic Regression 

Ordinal logistic regression is an analytical technique used to analyze the relationship between ordinal or 

polychotomous dependent variables and one or more independent variables. This technique uses a logistic regression 

model to predict the possibility of an event occurring in each category of the dependent variable. The ordinal logistic 

regression model has the same principle as the binary logistic regression model, which uses a logit function to relate the 

dependent variable to the independent variable. However, in ordinal logistic regression, the dependent variable has more 

than two categories, so the logit function is applied to each category of the dependent variable. This study uses ordinal 

logistic regression with a dependent variable that has an ordinal scale with three categories that can provide more detailed 

information about the relationship between the independent variable and the dependent variable compared to binary 

logistic regression, which can only predict the occurrence or non-occurrence of an event [6] [7]. 

In trichotomous logistic regression, the dependent variable with an ordinal scale with three categories can be 

coded into 0, 1, and 2 to simplify the analysis. However, before starting the analysis, it is necessary to determine which 

outcome category is used as the reference category to compare other outcome categories. Once the reference category 

is determined, the dependent variable Y in trichotomous logistic regression is parameterized into two logit functions. 

Therefore, in forming the logit function, Y = 1 and Y = 2 are compared against Y = 0. The logistic regression model for 

the dependent variable Y with p predictor variables can be written as follows: 

𝜋(𝑥) =
𝑒(𝛽0+𝛽𝑖𝑥1+⋯+𝛽𝑝𝑥𝑝)

1+𝑒(𝛽0+𝛽𝑖𝑥1+⋯+𝛽𝑝𝑥𝑝)                  (1) 

By using logit transformation, two logit functions were obtained. The first logit function 𝑔1(𝑥) is the transformation of 

the ratio between the probability of occurrence in the outcome category Y = 1 and the probability of occurrence in the 

comparison outcome category Y = 0. This logit function can be calculated as follows: 

𝑔1(𝑥) = ln (
𝑃(𝑌 = 1|𝑥)

𝑃(𝑌 = 0|𝑥)
) = 𝛽10 + 𝛽11𝑥1 + ⋯ + 𝛽1𝑝𝑥𝑝 = 𝑥′𝛽1             (2) 

The second logit function 𝑔2(𝑥) is the transformation of the ratio between the probability of occurrence in the 

outcome category Y = 2 and the probability of occurrence in the comparison outcome category Y = 0. This logit function 

can be calculated as follows: 

𝑔2(𝑥) = ln (
𝑃(𝑌 = 2|𝑥)

𝑃(𝑌 = 0|𝑥)
) = 𝛽20 + 𝛽22𝑥1 + ⋯ + 𝛽2𝑝𝑥𝑝 = 𝑥′𝛽2              (3) 
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Based on the two logit functions, the trichotomous logistic regression model can be written as follows: 

𝑃(𝑌 = 0|𝑥) =
1

1+𝑒𝑔1(𝑥)+𝑒𝑔2(𝑥)                  (4) 

𝑃(𝑌 = 1|𝑥) =
𝑒𝑔1(𝑥)

1+𝑒𝛽1(𝑥)+𝑒𝛽2(𝑥)                  (5) 

and 

𝑃(𝑌 = 2|𝑥) =
𝑒𝑔2(𝑥)

1+𝑒𝛽1(𝑥)+𝑒𝛽2(𝑥)                  (6) 

Thus, the trichotomous logistic regression model can predict the probability of occurrence in each outcome 

category based on the given values of the predictor variables. 

Following the rules of the binary logistic model, it was assumed that 𝑃(𝑌 = 𝑗|𝑥) = 𝜋𝑗(𝑥) for 𝑗 = 0, 1, 2 for each 

function of the vector 2(𝑝 + 1) with parameters 𝛽𝑇 = (𝛽1
𝑇𝛽2

𝑇). The general statement for the conditional probability in 

the three-category model is: 

𝑃(𝑌 = 𝑗|𝑥) =
𝑒

𝑔𝑗(𝑥)

∑ 𝑒𝑔𝑘(𝑥)2
𝑘=0

, 𝑗 = 0,1,2                (7) 

with vector 𝛽0 = 0 so that 𝑔0(𝑥) = 0. 

In Equation (7), one of the categories (in this case, category 0) was used as a reference or comparison base to measure 

the effect of the other categories on the dependent variable. In trichotomous ordinal logistic regression, category 0 was 

used as the reference category and as the basis for comparing the effect of category one and category two on the 

dependent variable. Therefore, in the given trichotomous logistic regression model equation, the value of 𝛽0
(1)

 was set 

as 0 for the reference category (i.e., Y = 0), and 𝛽1
(1)

 and 𝛽2
(1)

 denoted the effect of the predictor variables on the 

respective logit functions (i.e., 𝑔1(𝑥) and 𝑔2(𝑥)) compared to the reference category. 
 

1.2 Parameter Estimation 

[8] suggests that model parameter testing is carried out to examine the role of independent variables in the model. 

Parameter testing was done partially and overall. The partial test aimed to determine the effect of each independent 

variable on the dependent variable separately. In contrast, the overall test was used to evaluate the effect of the 

independent variables on the dependent variable and the feasibility of the regression model. 

In a logistic regression model, the conditional likelihood function for a sample of n observations can be expressed 

as the product of the probabilities of each individual in the sample, i.e.: 

𝑙(𝛽) = ∏ [𝜋0(𝑥𝑖)
𝑦0𝑖𝜋1(𝑥𝑖)𝑦1𝑖𝜋0(𝑥𝑖)

𝑦0𝑖]𝑛
𝑖=1                 (8) 

The log-likelihood function of the logistic regression model for a sample of n observations with predictor variable x and 

response variable y can be written as follows: 

𝐿(𝛽) = ∑ 𝑦𝑖𝑔1(𝑥𝑖) + 𝑦2𝑖𝑔2(𝑥𝑖)
 𝑛
𝑖=1 − ln(1 + 𝑒𝑔1(𝑥𝑖) + 𝑒𝑔2(𝑥𝑖))              (9) 

To get the value 𝛽 that maximizes 𝐿(𝛽), differentiation was performed on 𝐿(𝛽), with the condition that 
𝜕𝐿

𝜕𝛽
= 0 and 

𝜕2𝐿

𝜕2𝛽
< 0. 

 

1.3 Model goodness-of-fit test 

It is necessary to conduct a model fit test to find out whether the model with the dependent variable is a suitable 

model. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are information criteria 

measurement methods used to evaluate the goodness of the model. Both methods consider the likelihood value, the 

number of parameters used in the model, and the data obtained. The lower the AIC or BIC value, the better the model 

built [9] [10] [11] [12]. 

The goodness of fit test in logistic regression was conducted using the Pearson test statistic, which was used to 

test the difference between the distribution of observations and model predictions. The hypothesis tested in the goodness 

of fit test is as follows: 

H0 : The logistic regression model is appropriate (there is no significant difference between the observations and the 

model predictions).  

H1 : The logistic regression model does not fit (there is a significant difference between the observations and the model 

predictions). 
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Suppose the Pearson test value exceeds the critical value at the specified significance level. In that case, the null 

hypothesis is rejected, so it can be concluded that the model is unsuitable. Conversely, if the Pearson test value is smaller 

than the critical value, the null hypothesis is accepted, so it can be concluded that the model is appropriate. 

 

1.4 Coefficient of Determination 

The coefficient of determination (R-Square) in logistic regression models is indicated by several metrics, 

including McFadden's R-Square, Cox and Snell's R-Square, and Nagelkerke's R-Square. The three metrics estimate how 

much variation in the blood sugar level data of people with diabetes mellitus can be explained by the regression model 

built. According to [13], a model is said to be good if the Nagelkerke coefficient is more than 70%, which means that 

the independent variable created by the model affects 70% of the dependent variable. 

 

1.5 Odd Ratio 

According to [8], the Odds Ratio (OR) measures the strength of association between dependent and independent 

variables in a logistic regression model. Alternatively, it indicates how much of a risk or protective factor an independent 

variable provides to the dependent variable. An OR value > 1 indicates that the probability of the event measured by the 

dependent variable increases when the independent variable increases. Conversely, an OR value < 1 indicates that the 

likelihood of the event decreases as the independent variable increases. 

 

 
2. Research Methods 

The method used was ordinal logistic regression analysis. This method allows to evaluate of the relationship 

between an ordinal dependent variable (in this case, blood sugar level) and one or more independent variables (e.g., age, 

gender, Body Mass Index (BMI), blood pressure, Cholesterol Level (TC), Low-Density Lipoprotein (LDL), High-

Density Lipoprotein (HDL), Thyrocalcitonin Hormone (TCH) and Loss Triglyceride (LTG)) [4] [14]. Independent and 

dependent variables can be seen in Table 1. 

Table 1. Independent and Dependent Variables 

Variables Variable Name 
Measurement 

Scale 
Description 

Dependent Blood Sugar Level (Y) Ordinal 1 = Low (<100 mg/dl) 

2 = Normal (100-140 

mg/dl) 

3 = High (>140 mg/dl) 

Independent Age (X )1  Ratio Scale - 

Gender (X )2 Ordinal 1 = Male 

2 = Female 

Body Mass Index (X )3 Ordinal 1 = Skinny (<18.5) 

2 = Ideal (18.5 - 24.9) 

3 = Fat (>24.9) 

Blood Pressure (X )4 Ordinal 1 = Low (<100 mmHg) 

2 = Normal (100-120 

mmHg) 

3 = High (>120 mmHg)  

Cholesterol Level (X )5 Ratio Scale - 

Low Density Lipoprotein (X )6 Ratio Scale - 

High Density Lipoprotein (X )7 Ratio Scale - 

Thyrocalcitonin Hormone (X )8 Ratio Scale - 

Triglyceride Loss (X )9 Ratio Scale - 

Data were obtained from Stanford University research on patients with diabetes mellitus 

(https://hastie.su.domains/Papers/LARS/diabetes.data). In this study, the data were grouped according to the specified 

categories by taking a sample of 100 patients to be analyzed using ordinal logistic regression. 

According to [15], the steps of testing multinomial logistic regression analysis with ordinal data-dependent 

variables are as follows: 

a. The dependent variable is categorized into 1, 2, and 3, namely low, normal, and high blood sugar levels. 

b. Conduct a Multicollinearity Test to determine whether it contains multicollinearity by looking at the amount of 

intercorrelation among independent variables. It can be seen from the amount of Tolerance Value and Variance 

Inflation Factor (VIF) by looking at the Tolerance Value ≥ 0.10 or the same as the VIF value ≤ 10. 

c. Conduct a likelihood ratio or simultaneous test to test the entire model using all independent variables. This 

simultaneous test aims to determine whether the independent variable significantly affects the dependent variable 

https://hastie.su.domains/Papers/LARS/diabetes.data
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as a whole. From the equation 𝑔(𝑥𝑖) =  𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑘𝑋𝑖𝑘 it is obtained the hypothesis to be tested as 

follows: 

𝐻0 ∶  𝛽0 = 𝛽1 = ⋯ = 𝛽0 = 0, which means there is no significant influence between the independent and 

dependent variables simultaneously. 

𝐻1 ∶  ∃𝛽𝑗 ≠ 0 means that at least one independent variable significantly affects the model. 

If 𝐻0 is rejected, then at least one independent variable significantly affects the dependent variable. 

d. Conduct a model parameter test using a partial test (Wald test) to test each independent variable on the dependent 

variable. This partial test aimed to determine the role of each independent variable in the model individually. The 

hypothesis used is: 

𝐻0: 𝛽𝑗 = 0 means no influence between the jth independent and dependent variables. 

𝐻1: ∃𝛽𝑗 ≠ 0 means an influence between the jth independent variable and the dependent variable. 

If 𝐻0 is rejected, there is a significant influence between the jth independent and dependent variables. 

e. The logistic regression model goodness test is carried out to test whether the resulting model is feasible. The 

hypothesis used is: 

𝐻0 : There is no significant difference between the observations and the possible results or predictions of the 

model (model fit) 

𝐻1 : There is a significant difference between the observations and the possible results or predictions of the model 

(the model does not fit). 

If 𝐻0 is accepted, then the model is appropriate. 

f. The odd ratio is a measure to determine the risk of the tendency of one category to another. 

g. Opportunity model of logistic regression equation 

𝜋(𝑥) =
exp (𝛽0+𝛽1𝑋𝑖1+⋯+𝛽𝑘𝑋𝑖𝑘)

1+exp(𝛽0+𝛽1𝑋𝑖1+⋯+𝛽𝑘𝑋𝑖𝑘)
                 (10) 

With the logit transformation model for the model: 

𝑔(𝑥) =  
[ln 𝜋(𝑥)]

[1−𝜋(𝑥)]
= 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑘𝑋𝑖𝑘                (11) 

 

 
3. Results And Discussion 

3.1 Multicollinearity Test 

The results of the multicollinearity test can be seen in Table 2. 

Table 2. Multicollinearity Testing 

Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) 2.859 1.045  2.737 .008   

Age 7.216E-5 .004 .002 .019 .985 .589 1.697 

Gender -.013 .083 -.010 -.157 .876 .838 1.193 

IMT .093 .142 .075 .658 .512 .283 3.531 

BP .015 .066 .015 .230 .819 .803 1.246 

TC .000 .002 -.019 -.183 .855 .336 2.977 

LDL .000 .002 .019 .180 .858 .336 2.974 

HDL .002 .004 .034 .422 .674 .568 1.762 

TCH .009 .048 .016 .181 .857 .464 2.154 

LTG -.007 .099 -.005 -.068 .946 .697 1.434 

a. Dependent Variable: Glu 

 

To identify the presence of multicollinearity, the Tolerance value and Variance Inflation Factor (VIF) of each 

independent variable can be tested. The tolerance value is the opposite of VIF. It is used to evaluate how much variation 

in one independent variable cannot be explained by other independent variables in the model. A low Tolerance value 

(<0.1) and a high VIF (>10) indicate multicollinearity. The test results in Table 2 shows that all independent variables 

in the study have a Tolerance value ≥ 0.10 and a VIF value ≤ 10. It can be concluded that there is no multicollinearity 

in the regression model. 
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3.2 Parameter Estimation 

The results of parameter estimation using the Maximum Likelihood Estimation method are presented in Table 3. 

Table 3. Parameter Estimation Results 

Parameter Estimates 

 Estimate 
Std. 

Error 
Wald df Sig. 

Threshold [Glu=1] 2.721 4.948 .303 1 .582 

[Glu=2] 8.571 5.140 2.781 1 .095 

Location Age .079 .027 8.522 1 .004 

TC -.100 .025 15.537 1 .000 

LDL .099 .028 12.886 1 .000 

HDL .119 .040 8.878 1 .003 

TCH .989 .435 5.179 1 .023 

 LTG 1.021 .890 1.318 1 .251 

[Gender=1] -.248 .634 .153 1 .695 

[Gender=2] 0a . . 0 . 

[IMT=2] -2.813 .798 12.413 1 .000 

[IMT=3] 0a . . 0 . 

[BP=1] -1.895 1.294 2.144 1 .143 

[BP=2] -2.403 1.365 3.101 1 .078 

[BP=3] 0a . . 0 . 

Link function: Logit. 

a. This parameter is set to zero because it is redundant. 

Based on Table 3, with a significance level of 𝛼 = 0,05, it is obtained that the independent variables that 

affect the dependent variable are variables whose Sig. Value is less than 𝛼. The influential variables are age, Body 

Mass Index (BMI), Cholesterol Level (TC), Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL), 

and serum Thyrocalcitonin Hormone (TCH). Thus, logit one and logit two functions can be formed as follows: 

𝑔(𝑥1) =  −2.721 − 0.079 𝑋1 + 2.813 𝑋3 + 0.100 𝑋5 − 0.099 𝑋6 − 0.119 𝑋7 − 0.989 𝑋8             (12) 

𝑔(𝑥2) =  −8.571 − 0.079 𝑋1 + 2.813 𝑋3 + 0.100 𝑋5 − 0.099 𝑋6 − 0.119 𝑋7 − 0.989 𝑋8       (13) 

 

3.3 Parameter Testing 

In this parameter test, two tests were used, namely the simultaneous test or overall test (G test) and the partial test. 

The parameter test results are as follows. 

a. Simultaneous Test 

Simultaneous Test Results can be seen in Table 4. 

Table 4. Simultaneous Test Results 

Model Fitting Information 

Model -2 Log Likelihood Chi-Square df Sig. 

Intercept Only 183.119    

Final 81.173 101.946 10 .000 

Link function: Logit. 

Table 4 shows that the significance value is less than 𝛼 = 0,05, so it can be concluded that the model is significant, 

and the next test can be done, namely the Partial test. 

 

b. Partial Test 

A partial test is used to determine whether there is an influence of each independent variable on the dependent 

variable. Partial Test Results can be seen in Table 5. 
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Table 5. Partial Test Results for All Variables 

Effect 

Model Fitting Criteria 

-2 log Likelihood of 

Reduced Model 

Likelihood Ratio Tests 

Chi 

Square 
df Sig. Sig 

Intercept 71.646 11.580 2 0.003 Reject 𝐻0 

Age 64.686 4.620 2 0.099 Accept 𝐻0 

Gender 61.223 1.156 2 0.561 Accept 𝐻0 

IMT 67.942 7.875 2 0.019 Reject 𝐻0 

BP 60.983 0.916 2 0.632 Accept 𝐻0 

TC 92.770 32.704 2 0.000 Reject 𝐻0 

LDL 85.497 25.430 2 0.000 Reject 𝐻0 

HDL 69.395 9.329 2 0.009 Reject 𝐻0 

TCH 70.987 10.921 2 0.004 Reject 𝐻0 

LTG 60.107 0.040 2 0.980 Accept 𝐻0 

The Likelihood ratio test value in Table 5 compares whether the model created with certain independent variables 

better explains the data than a model that only uses a constant as an independent variable. In this study, the test results 

show that the independent variables of BMI, TC, serum type of LDL, HDL, and serum type of TCH have a significance 

of less than α=0.05, which means that these variables have a significant influence in forming a logistic regression model 

and are better used than using only constants as independent variables. 

The partial test of the five influential factors was carried out again, and the results were obtained as in Table 6. 

Table 6. Partial Test Results for Affected Variables 

Effect 

Model Fitting Criteria 

-2 log Likelihood of 

Reduced Model 

Likelihood Ratio Tests 

Chi-Square df Sig. Conclusion 

Intercept 100.146 21.995 2 0.000 Reject 𝐻0 

IMT 92.704 14.552 2 0.001 Reject 𝐻0 

TC 115.975 37.824 2 0.000 Reject 𝐻0 

LDL 111.479 33.327 2 0.000 Reject 𝐻0 

HDL 92.501 14.349 2 0.001 Reject 𝐻0 

TCH 88.830 10.679 2 0.000 Reject 𝐻0 

It shows that all the independent variables in the logistic regression model affect the dependent variable 

significantly, and no variable can be removed without reducing the model prediction quality. Therefore, using all 

independent variables in the model is still important and relevant to form the best model. 

 

3.4 Model goodness-of-fit test 

To find out whether all independent variables have an influence on the dependent variable, it is necessary to test 

the goodness of fit with the Pearson Test, and the results can be seen in Table 7. 

Table 7. Model goodness-of-fit test results 

Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 102.140 188 1.000 

Deviance 81.173 188 1.000 

Link function: Logit. 

Based on Table 7, it is known that the p-value of Pearson is greater than 1.000 𝛼 = 0,05, so 𝐻0 is accepted, 

and the model is feasible to use, or the model is suitable. 

3.5 Coefficient of Determination 

The coefficient of determination can be determined from the Mc Fadden, Cox and Snell, and Nagelkerke values as 

in Table 8. 

Table 8. Results of the Coefficient of Determination 

Pseudo R-Square 

Cox and Snell .639 

Nagelkerke .761 

McFadden .557 

Link function: Logit. 

Based on Table 8, the Nagelkerke coefficient of determination of 0.761 indicates that the logistic regression model 

built can explain variations in the dependent variable (blood sugar levels) by 76.1%. It indicates that the independent 
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variables used in the model significantly influence blood sugar levels in patients with diabetes mellitus. The factors that 

have a significant effect are tested again, and the results are shown in Table 9. 

Table 9. Results of the Coefficient of Determination Test for Influential Variables 

Pseudo R-Square 

Cox and Snell 0.650 

Nagelkerke 0.774 

McFadden 0.573 

Link function: Logit. 

From Table 9, the Nagelkerke R-Square value obtained shows that the regression model built can explain 77.4% 

of the variation in the dependent variable with the independent variables used. The Cox and Snell R-Square and 

McFadden R-Square values also show good model performance, although with slightly different values. Thus, the 

regression model built in this study is good enough to explain the relationship between the independent variable and 

the dependent variable. Based on Table 8 and Table 9, using all variables provided a greater coefficient of 

determination than using only the influential variables. 

 

3.6 Modeling Blood Sugar Levels with Ordinal Logistic Regression 

After conducting these tests, the best logit model of ordinal logistic regression in diabetes mellitus cases was 

formed. Logit 1 is the log of the ratio between the chances of low and high blood sugar levels in diabetes mellitus. 

Similarly, Logit 2 compares the chances of normal and high blood sugar levels in diabetes mellitus. Therefore, the 

following interpretation is obtained. 

a. The regression output results show that the regression coefficient for the age variable is 0.079, with a significance 

level of p < 0.05. Each additional year of age will increase blood sugar levels by 0.079 mmHg if the other variables 

(BMI, TC, LDL, HDL, and TCH) are fixed. 

b. Every kilogram increase in Body Mass Index (BMI) will increase blood sugar levels by 0.697 mmHg if age, 

Cholesterol Level (TC), Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL), and serum 

Thyrocalcitonin Hormone (TCH) are fixed. 

c. Every additional one mmol/L of Cholesterol Level (TC) will reduce blood sugar levels by 0.100 mmol/L if age, 

Body Mass Index (BMI), Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL), and serum 

Thyrocalcitonin Hormone (TCH) types are fixed. 

d. Every additional one mmol/L of Low-Density Lipoprotein (LDL) will increase blood sugar levels by 0.099 mmHg 

if age, Body Mass Index (BMI), Cholesterol Level (TC), High-Density Lipoprotein (HDL), and serum 

Thyrocalcitonin Hormone (TCH) levels remain constant. 

e. Every additional one mmol/L of High-Density Lipoprotein (HDL) will increase blood sugar levels by 0.119 mmHg 

if age, Body Mass Index (BMI), Cholesterol Level (TC), Low-Density Lipoprotein (LDL), and serum 

Thyrocalcitonin Hormone (TCH) are fixed. 

f. Every additional one mmol/L of Thyrocalcitonin Hormone (TCH) will increase blood sugar levels by 0.989 mmHg 

if age, Body Mass Index (BMI), Cholesterol Level (TC), Low-Density Lipoprotein (LDL), and High-Density 

Lipoprotein (HDL) are fixed. 

g. If age, Body Mass Index (BMI), Cholesterol Level (TC), Low-Density Lipoprotein (LDL), High-Density 

Lipoprotein (HDL), and Thyrocalcitonin Hormone (TCH) are equal to 0, then a low blood sugar level of 2,271 

and a normal blood sugar level of 8,571 remain. 

3.7 Model Interpretation 

If the model has been tested and the model results are good, and the significance is real, the data can be interpreted 

using the odds ratio test, as shown in Table 10 below. 

Table 10. Odds Ratio Test Results 

Glucose Level Variables Sig Odds Ratio = Exp(β) 

Low IMT 0.001 0.183 

TC 0.019 1.330 

LDL 0.012 0.731 

HDL 0.155 0.783 

TCH 0.410 0.162 

Normal IMT 0.001 0.026 

TC 0.001 1.023 

LDL 0.005 0.911 

HDL 0.005 0.809 

TCH 0.007 0.092 
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The following is the interpretation results based on the Table 10, above. 

The odd ratio measures the association between two events, such as blood sugar levels and other risk factors 

(BMI, TC, LDL, HDL, TCH). The odd ratio is the ratio of the odds of a patient developing diabetes mellitus with 

certain risk factors compared to the odds of a patient not developing diabetes mellitus with the same risk factors. 

For BMI, the odds ratio shows that as body weight increases in patients with low blood sugar levels, the 

chance of having diabetes mellitus is 0.183 times smaller than in those with high blood sugar levels. Whereas in 

people with normal blood sugar levels, the chance of someone suffering from diabetes mellitus is smaller by 0.026 

times than in people with high blood sugar levels. It shows that BMI has an inverse relationship with the risk of 

developing diabetes mellitus. 

For TC, the odds ratio shows that the higher the TC level in people with low blood sugar levels, the greater 

the chance of someone suffering from diabetes mellitus by 1.330 times compared to people with high blood sugar 

levels. Whereas in people with normal blood sugar levels, the chance of someone suffering from diabetes mellitus 

is greater by 1.023 times than in people with high blood sugar levels. It shows that TC has a positive relationship 

with the risk of developing diabetes mellitus. 

For LDL and HDL, the odds ratio shows that the higher the LDL and HDL levels in people with low blood 

sugar levels, the less likely a person has diabetes mellitus than people with high blood sugar levels. Likewise, in 

patients with normal blood sugar levels, the chances of suffering from diabetes mellitus are smaller than in those 

with high blood sugar levels. It shows that LDL and HDL have an inverse relationship with the risk of developing 

diabetes mellitus. 

For TCH, the odds ratio shows that the higher the TCH level in patients with low blood sugar levels, the 

chance of someone suffering from diabetes mellitus is smaller by 0.162 times than those with high blood sugar 

levels. While in patients with normal blood sugar levels, the chance of someone suffering from diabetes mellitus is 

smaller by 0.251 times than in patients with high blood sugar levels. It shows that TCH has an inverse relationship 

with the risk of developing diabetes mellitus. 

 

 
4. Conclusions 

Based on the above discussion, the following conclusions can be drawn: 

a. Ordinal logistic regression analysis is a type of non-linear regression used not only for models with dependent 

variables in the form of ordinal-scale data.  

b. The influential independent variables are age, Body Mass Index (BMI), Cholesterol Level (TC), Low-Density 

Lipoprotein (LDL), High-Density Lipoprotein (HDL), and serum Thyrocalcitonin Hormone (TCH) type. 

c. The best logit model for ordinal logistic regression is 

Logit 1 

𝑔(𝑥1) =  2.721 + 0.079 𝑋1 − 2.813 𝑋3 − 0.100 𝑋5 + 0.099 𝑋6 + 0.119 𝑋7 + 0.989 𝑋8 

Logit 2 

𝑔(𝑥2) =  8.571 + 0.079 𝑋1 − 2.813 𝑋3 − 0.100 𝑋5 + 0.099 𝑋6 + 0.119 𝑋7 + 0.989 𝑋8 
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