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Abstract: In this paper, topological data analysis (TDA) techniques have been explored, with a focus on the 

selection of the Witness Complex and Persistent Homology of some nested families of Lazy Witness Complex 

as approximations for analyzing complex datasets. The Witness Complex was chosen for its efficiency and 

scalability, as it constructs a simplicial complex using landmark points, reducing computational load 

compared to methods like the Vietoris-Rips and C ech complexes. This makes it suitable for large, high-

dimensional datasets, accurately representing the dataset's intrinsic geometry even with varying data 

densities. Persistent Homology was then reviewed with the aim of calculating it on some nested families of 

the Witness Complex. Subsequently, the nested families of the Lazy Witness Complex were introduced 

mathematically, with an example of the entire construction process for a well-known point cloud dataset. For 

this purpose, 50 points were generated randomly from a circle, and persistent diagrams of the point cloud 

data were analyzed to understand and compare the behavior among the approximations of the Witness 

Complex after choosing 10 landmarks using the Maxmin method. Since the families are nested, the filtration 

process became faster for each successive family, thus reducing computational complexity. For all three cases 

𝑣 = 0,1,2, the persistent barcodes indicated the same shape as the dataset. This study may help in choosing 

the suitable family of the Witness Complex over Persistent Homology to balance computational feasibility 

with topological accuracy, enabling efficient handling of large datasets while preserving important 

topological features. This approach allows for extracting meaningful insights from complex data while 

effectively managing computational resources. 

 
2020 Mathematical Subject Classification: 55-08, 68-04 
Keywords: Landmark Points, Persistent Homology, Simplicial Complex, Witness Complex.  

 
 

1. Introduction 

  In the ever-changing world of data analysis, the search for methods that can accurately grasp the intricate 

structures and patterns hidden within complex datasets is crucial. Topological data analysis (TDA) is one such 

method that stands out for its ability to reveal the underlying geometric and topological features of data, 

going beyond traditional statistical approaches. Central to TDA is the idea of simplicial complexes, which 

represent how data points are connected in a geometrically meaningful way. However, simplicial complexes 

mailto:mbshiraj@gmail.com
https://doi.org/10.30598/tensorvol5iss2pp79-92
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may not work well with datasets that are high-dimensional or noisy. 

  In response to these challenges, witness complexes emerge as a promising alternative, offering a robust 

and efficient approach to capturing the topological essence of complex data. Witness complexes, a concept 

pioneered by Vin de Silva and Gunnar Carlsson [9], provide a means to construct simplicial complexes based 

not only on the original data points but also on additional "witness points" strategically placed within the 

data domain. This augmentation serves to enhance the fidelity of the resulting complex, enabling a more 

comprehensive representation of the underlying topology. 

Witness complexes are defined for data sets in any metric space, not necessarily in Euclidean space. 

Witness complex helps in simplifying the data while still preserving its essential topological features. By 

considering the interaction between data points and landmark points, it provides a more computationally 

tractable representation of the data for persistent homology calculations. This simplification is useful of 

understanding the persistent homology of large and complex data sets. 

In [9] researchers construct a simplicial complex named Witness complex which is smaller and provides 

better pictures of the homology with less noise than the other complexes. Researchers gives a reconstruction 

algorithm that the restricted Delaunay triangulation can be replaced by the Witness complex which is 

applicable in any metric space in [14]. The structural properties of the geodesic Witness complex and analog 

of the usual Witness complex in the intrinsic metric are discussed in [12]. The Witness simplicial Variational 

auto-encodes (VAEs) as an extension of the simplicial auto-encoder to the variational setup using a Witness 

complex for computing the simplicial regularization is proposed in [19]. Witness complex is also used in [5] 

for dynamical analysis of time series. In the meantime, Persistent homology is used in complex network 

science [4], nuclear collision [15], and analysis of brain transcriptome data in autism [21]. It is also used in 

natural language processing on linguistic data such as text corpora or speech signals [22].  

The computation of Persistent homology is an open area with numerous important and fascinating 

challenges. The field of Persistent homology captures the emergence and disappearance of topological traits 

throughout a filtration constructed from a dataset [13], succinctly summarizing data's topological features 

through persistent diagrams or barcodes. This summarization is pivotal for tracking changes and facilitating 

the analysis of data across multiple scales, although it presents challenges due to the complex nature of the 

data structure associated with topological features, complicating learning tasks. These persistent diagrams 

are subsequently transformed into metric spaces with additional structure conducive to machine learning 

endeavors [2]. With the remarkable success of deep learning in computer vision tasks [18], deep networks 

capable of handling barcodes have emerged [16]. In [6], persistent diagrams were integrated with neural 

network classifiers for graph classification tasks. Moreover, persistent barcodes were employed for 

classifying brain activation patterns in rs-fMRI video frames [10,11]. The topological and geometric 

structures underlying data are often represented as point clouds, with recent discussions focusing on 

multiclass classification of point cloud datasets [17]. 

  Simplicial complexes such as C ech, Rips, or 𝛼-shapes are standard tools for approximating the topological 

features of an underlying space. These complexes typically use a vertex set that is as large as the original point 

cloud data, leading to constructions that are sometimes manageable but often highly inefficient. This 

inefficiency arises because the homotopy types of the underlying structures can usually be represented with 

significantly fewer vertices, as noted by [9]. The challenge becomes especially pronounced with Rips and C ech 

complexes, which are notorious for their rapid growth in size. For instance, a Rips complex formed from 

𝑛 points in ℝ𝑑 can generate Ω(𝑛𝑑) simplices [7], leading to an overwhelming number of simplices as the 

data size increases. To put this in perspective, when constructing a Rips or C ech complex from even a few 

thousand points, the resulting structure may contain millions of triangles, rendering it impractical for 

computation or analysis. This issue is particularly acute in lower dimensions, such as three, where the 
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complexity of the resulting simplicial complexes quickly escalates beyond what can be handled efficiently. 

  To address these challenges, the witness complex presents a more scalable alternative. Instead of using the 

entire dataset, the witness complex employs a subsampling technique by selecting a strategically chosen 

subset of "landmark" points. These landmark points serve as a representative sample of the original data, and 

the complex is then built around them, significantly reducing the number of vertices and simplices involved 

(see Fig. 1). This approach is inspired by the Delaunay complex in Euclidean space, where the focus is on 

capturing the essential topological features with a much smaller, more manageable structure. By doing so, 

the witness complex not only retains the critical topological information but also makes the computational 

process more efficient and feasible for large-scale data sets. This method represents a significant 

advancement in the practical application of simplicial complexes for topological data analysis, enabling the 

study of larger and more complex data sets that would otherwise be intractable.     

  Since Witness complex provides more robust calculation for homology than any other methods like 

Vietoris-Rips complex and C ech complex (see example 3.1 in [9]), so by using Witness complex computing 

persistent homology of big data will be easy. In this study, the computation of families of Lazy Witness 

Complexes has been reviewed, and the efficiency of the Lazy Witness Complex has been demonstrated by 

using 50 random data points from a circle as a representative of large-scale data.  

2. Mathematical Background 

 Simplicial complex 

  Definition: A set of simplices constitutes what is known as a simplicial complex 𝒦 such that, 

(a) If 𝒦 contains a simplex 𝜎, then it contains every face of 𝜎. 

(b) If two simplices in 𝒦 intersects, then their intersection is either empty or a face of each of them [20]. 

 

     Fig. 1. An example of a Simplicial Complex. 

 

Simplicial complexes (Fig. 1) are fundamental structures in topological data analysis, used to represent the 

shape of data in a combinatorial way. 

 

 Vietoris-Rips Complex 

Definition: Consider a metric space 𝑋 and a subset 𝑆 ⊆ 𝑋, where the vertex set is represented by 𝑆. Let's 

select a scale parameter 𝑟 ≥ 0.  Then, the Rips complex, denoted as Rips(𝑆, 𝑟)  is an abstract simplicial 

complex defined as follows: 

      Rips(𝑆, 𝑟) = {finite 𝜎 ⊆ 𝑆|Diam(𝜎) ≤ 𝑟} 

  Here, Diam(𝜎) denotes the diameter of the set 𝜎. 

Vietoris-Rips complexes, also known as Rips complexes. In this context, the condition Diam(𝜎) ≤ 𝑟 

implies that the distance from one vertex to another within 𝜎  does not exceed 𝑟 . The C ech complex, 

applicable to any finite metric space, finds an approximation through the Vietoris-Rips complex. While 

computing it for extensive point datasets can be resource-intensive, it's generally more manageable 

compared to the C ech complex which can be cleared in Fig. 2(a). Here, three balls intersect pairwise without 
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a common intersection, forming a 2-simplex in the Rips complex [𝑎𝑏𝑐].  

 

 Čech Complex 

Definition: Let 𝑋 = {𝑣1, 𝑣2, … , 𝑣𝑛} ⊆ ℝ𝑛 and 𝑟1 > 0 . The C ech complex, denoted as C ech(𝑋, 𝑟1) , is a 

simplicial complex abstractly constructed with the vertex set {𝑣1, 𝑣2, … , 𝑣𝑛} . In this complex, a subset 

{𝑣𝑖1 , 𝑣𝑖2 , … , 𝑣𝑖𝑘} belongs to C ech(𝑋, 𝑟1), if and only if the intersection 𝐵(𝑣𝑖1 , 𝑟1) ∩ 𝐵(𝑣𝑖2 , 𝑟1) ∩ …∩ 𝐵(𝑣𝑖𝑘 , 𝑟1) ≠

∅. 

 

Fig. 2. Examples of (a) Vietoris-Rips and (b) C ech complex. 

 

The C ech complex constructs simplices by considering the intersection of balls centered at points within a 

given radius in the metric space. Whenever this intersection contains at least one point, a simplex is formed. 

In simpler terms, a simplex in the C ech complex represents a group of points that are all within a set distance 

of each other. In the Fig. 2(b) provided, there are three balls intersecting pairwise, sharing a common 

intersection. This configuration forms a 2-simplex [𝑎𝑏𝑐] within the C ech complex. 

 

 Filtration of Simplicial Complex  

Definition [23]: Consider 𝐾 as a simplicial complex. A discrete filtration (Fig. 3) of 𝐾 refers to a sequence 

of successive subcomplexes 

       𝐾1 ≤ 𝐾2 ≤ ⋯ ≤ 𝐾𝑚 = 𝐾. 

 
       Fig. 3. Filtration of a complex. 

 

 Persistent Homology 

Definition [23]: Suppose 𝐾 forms a simplicial complex, 𝔽 denotes a field, and 𝑞 ∈ ℤ+. Given a filtration  

        𝐾1 ≤ 𝐾2 ≤ ⋯ ≤ 𝐾𝑚 = 𝐾 

of 𝐾 , the associated 𝑞 -dimensional persistent homology groups with coefficients in 𝔽   represent the 

images of the maps 

(𝑖𝑠,𝑡)∗: 𝐻𝑞(𝐾𝑠; 𝔽) → 𝐻𝑞(𝐾𝑡; 𝔽), for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑚. 

  For a filtered complex, each 𝑖-th complex 𝐾𝑖 is associated with boundary operators 𝛿𝑘
𝑖 , matrices 𝑀𝑘

𝑖 , and 

(a) (b) 
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groups 𝐶𝑘
𝑖 , 𝑍𝑘

𝑖 , 𝐵𝑘
𝑖 , and 𝐻𝑘

𝑖  ∀𝑖 & 𝑘 ≥ 0. The 𝑝-persistent 𝑘th homology group of 𝐾𝑖 is given by: 

         𝐻𝑘
𝑖,𝑝

=
𝑍𝑘

𝑖

𝐵𝑘
𝑖+𝑝

∩𝑍𝑘
𝑖
. 

3. Witness Complex 

 Definition of W(D) 

  According to [9], let 𝐷 be an 𝑛 × 𝑁 matrix where each entry contains a non-negative value representing 

the distance between 𝑛 landmark points and 𝑁 data points in a given dataset. The (strict) witness complex, 

denoted as 𝑊∞(𝐷), is constructed with a vertex set {1,2,… , 𝑛}, following these specific rules: 

 

  Edges: An edge 𝜎 = [𝑎𝑏]  is included in 𝑊∞(𝐷)  if and only if there exists a data point, indexed by 𝑖 

(where 1 ≤ 𝑖 ≤ 𝑁 ), such that the distances 𝐷(𝑎, 𝑖)  and 𝐷(𝑏, 𝑖)  are the two smallest values in the 𝑖 -th 

column of 𝐷, regardless of their order. 

  Simplices: By extending this concept through induction on 𝑝, suppose all the faces of a 𝑝-simplex 𝜎 =

[𝑎0𝑎1 ⋯𝑎𝑝] are already present in 𝑊∞(𝐷). The simplex 𝜎 itself is included in 𝑊∞(𝐷) if and only if there 

exists a data point indexed by 𝑖  (where 1 ≤ 𝑖 ≤ 𝑁 ) such that the entries 𝐷(𝑎0, 𝑖), 𝐷(𝑎1, 𝑖), . . . , 𝐷(𝑎𝑝, 𝑖) 

correspond to the smallest 𝑝 + 1 values in the 𝑖-th column of 𝐷, ordered in some manner. 

In both of these scenarios, the index 𝑖 acts as a witness, confirming the existence of the simplex 𝜎 within 

the complex.  

  Example: Consider the 3 × 6 matrix: 

[

𝐷(𝑣1, 𝑣1) 𝐷(𝑣1, 𝑣2) 𝐷(𝑣1, 𝑣3) 𝐷(𝑣1, 𝑣4) 𝐷(𝑣1, 𝑣5) 𝐷(𝑣1, 𝑣6)
𝐷(𝑣2, 𝑣1) 𝐷(𝑣2, 𝑣2) 𝐷(𝑣2, 𝑣3) 𝐷(𝑣2, 𝑣4) 𝐷(𝑣2, 𝑣5) 𝐷(𝑣2, 𝑣6)
𝐷(𝑣3, 𝑣1) 𝐷(𝑣3, 𝑣2) 𝐷(𝑣3, 𝑣3) 𝐷(𝑣3, 𝑣4) 𝐷(𝑣3, 𝑣5) 𝐷(𝑣3, 𝑣6)

] 

If we consider 𝑣1 and 𝑣2, they are the smallest entries compared to 𝑣3 with respect to the witness 𝑣5. 

Therefore, the simplex [𝑣1𝑣2] will be formed. 

  Again, consider the 4 × 6 matrix: 

[
 
 
 
𝐷(𝑣1, 𝑣1) 𝐷(𝑣1, 𝑣2) 𝐷(𝑣1, 𝑣3) 𝐷(𝑣1, 𝑣4) 𝐷(𝑣1, 𝑣5) 𝐷(𝑣1, 𝑣6)

𝐷(𝑣2, 𝑣1) 𝐷(𝑣2, 𝑣2) 𝐷(𝑣2, 𝑣3) 𝐷(𝑣2, 𝑣4) 𝐷(𝑣2, 𝑣5) 𝐷(𝑣2, 𝑣6)

𝐷(𝑣3, 𝑣1) 𝐷(𝑣3, 𝑣2) 𝐷(𝑣3, 𝑣3) 𝐷(𝑣3, 𝑣4) 𝐷(𝑣3, 𝑣5) 𝐷(𝑣3, 𝑣6)

𝐷(𝑣4, 𝑣1) 𝐷(𝑣4, 𝑣2) 𝐷(𝑣4, 𝑣3) 𝐷(𝑣4, 𝑣4) 𝐷(𝑣4, 𝑣5) 𝐷(𝑣4, 𝑣6) ]
 
 
 
 

If we consider 𝑣1, 𝑣2 and 𝑣3 , they are the smallest entries compared to 𝑣6 with respect to the witness 

𝑣5. Therefore, the simplex [𝑣1𝑣2𝑣3] will be formed. 

 Weak and Strong Witness  

Definition [8]: Let 𝐿 ∈ ℝ𝑑   be a finite collection of points, and 𝑙0, 𝑙1,⋯ , 𝑙𝑝 ∈ 𝐿 . Then a simplex 𝜎 =

[𝑙0𝑙1 ⋯𝑙𝑝]  is weakly-witnessed by 𝑥 ∈ ℝ𝑑   if 𝑑(𝑥, 𝑝) ≤ 𝑑(𝑥, 𝑞)  for every 𝑝 ∈ {𝑙0, 𝑙1,⋯ , 𝑙𝑝}  and 𝑞 ∈ 𝐿 ∖

{𝑙0, 𝑙1,⋯ , 𝑙𝑝} . Equivalently, 𝑥 ∈ ℝ𝑑  serves as a weak-witness for 𝜎  concerning 𝐿  if and only if 𝑑(𝑥, 𝑝) ≤

𝑑(𝑥, 𝑞) . In simpler terms, the 𝑝 + 1  nearest neighbors of 𝑥  in 𝐿  are 𝑙0, 𝑙1,⋯ , 𝑙𝑝 . 𝑥  is considered as a 

strong-witness if and only if 𝑑(𝑥, 𝑙0) = ⋯ = 𝑑(𝑥, 𝑙𝑝).        

 Lazy Witness Complex 

Definition: Similar to the Rips complex, there exists a "lazy" version of the witness complex. We formally 

define 𝑊1(𝐷)  containing 𝑊∞(𝐷)  as follows: 𝑊1(𝐷)  shares the same 1-skeleton as 𝑊∞(𝐷) . A 𝑝 -simplex 

𝜎 = [𝑎0𝑎1 ⋯𝑎𝑝] is part of 𝑊1(𝐷) if and only if all its edges are in 𝑊1(𝐷). 

In simpler terms, 𝑊1(𝐷) is the largest simplicial complex that has the same vertices and edges as 𝑊∞(𝐷). 

In practical applications, 𝑊∞(𝐷)  is rarely used due to its more complicated computation, and we denote 



Mst Zinia Afroz Liza et. al. | Exploring the Lazy Witness Complex… 84 

W(𝐷) to mean 𝑊1(𝐷). 

 

 

3.3.1. Filtration of Lazy Witness Complex 

  The filtration of a Lazy Witness Complex involves incrementally adding simplices based on the "lazy" 

construction principle, where new simplices are only added if they contribute to the connectivity of the 

complex. It utilizes a set of landmarks to define neighborhoods and builds simplices based on the pairwise 

distances between these landmarks and data points (see Fig. 4). This incremental approach allows for 

efficient construction of a simplicial complex that captures the topological features of the underlying data. 

 

 
Fig. 4. Filtration of Lazy Witness complex using [3]. 

 

 Landmark Selection [9] 

We suggest acquiring the landmark set through the Maxmin method: 

Define 𝑍 as the set of data points. Initially, select 𝑙1 randomly from 𝑍. Subsequently, choose 𝑙𝑘 such that 

𝑚𝑎𝑥{𝑚𝑖𝑛{𝐷(𝑙1, 𝑣), 𝐷(𝑙2, 𝑣),⋯ ,𝐷(𝑙𝑘−1, 𝑣)}}, for all 𝑣 ∈ 𝑍 ∖ {𝑙1, 𝑙2, … . . , 𝑙𝑘−1}. 

Maxmin generally results in more evenly spaced landmarks, though it often selects points at the extremes, 

as demonstrated in Fig. 5. 

The number of landmarks should be determined by establishing a minimum ratio of 𝑁/𝑛. While we don't 

have a precise rule for this lower limit, a ratio of 𝑁/𝑛 ≥  20 tends to work well for data sampled from a two-

dimensional surface. 
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 Fig. 5. Selection of Landmark points using Maxmin method. 

4. Methods 

  According to [9], consider a matrix 𝐷  of dimensions 𝑛 × 𝑁,  where each element 𝐷(𝑎, 𝑖)  represents a 
non-negative distance between 𝑛 landmark points {1,2,… , 𝑛} and 𝑁 data points. The matrix serves as the 
foundation for constructing a series of nested simplicial complexes, denoted by 𝑊(𝐷;𝑅, 𝑣) , where 𝑅  is a 
filtration parameter that varies over the interval [0,∞] . The parameter 𝑣  is a non-negative integer that 
controls the selection of simplices within the complex. The cases where 𝑣 = 0,1,2 are particularly significant 
because they represent different levels of strictness in the selection process, impacting the complexity and 
granularity of the resulting simplicial complexes. 
 
  The construction of the complex 𝑊(𝐷;𝑅, 𝑣) follows these rules: 
 
  Vertex Set: The vertex set of the simplicial complex 𝑊(𝐷;𝑅, 𝑣) is defined as {1,2,… , 𝑛}, representing the 
landmark points. 
   
  Case 𝑣 = 0: In this scenario, the value 𝑚𝑖 for each data point 𝑖 (ranging from 1 to 𝑁) is set to 0. This 
implies that no additional flexibility is allowed when determining whether simplices should be included in 
the complex, leading to a more rigid structure where only the most immediate connections (those with the 
smallest distances) are considered. 
 
  Case 𝑣 > 0 : Here, 𝑚𝑖   is defined as the 𝑣 -th smallest value in the 𝑖 -th column of 𝐷 . This allows for a 
broader inclusion of simplices, as it introduces a level of tolerance by considering not just the smallest 
distances but the 𝑣-th smallest ones, enabling the complex to capture more intricate relationships between 
data points. 
 
  Edges: An edge 𝜎 = [𝑎𝑏] is included in the complex 𝑊(𝐷; 𝑅, 𝑣) if there exists a data point 𝑖 (acting as a 
witness) such that the maximum distance between the landmark points 𝑎 and 𝑏 and this data point 𝑖 does 
not exceed the sum of the filtration parameter 𝑅 and the tolerance value 𝑚𝑖 . Mathematically, this condition 
is expressed as Max(𝐷(𝑎, 𝑖), 𝐷(𝑏, 𝑖)) ≤ 𝑅 + 𝑚𝑖 . 
 
  Higher-Dimensional Simplices: A 𝑝 − simplex 𝜎 = [𝑎0𝑎1 …𝑎𝑝]  is included in the complex if all of its 

edges satisfy the condition outlined for edges. This implies that there must be a witness 𝑖  such that the 
maximum distance between any vertex of the simplex and the witness is within the allowed range, 

Max (𝐷(𝑎0, 𝑖),𝐷(𝑎1, 𝑖),… , 𝐷(𝑎𝑝, 𝑖)) ≤ 𝑅 + 𝑚𝑖. 

  This inductive condition ensures that higher-dimensional features in the data are only included in the 
complex if their constituent lower-dimensional features are also present. 
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  Computation of Persistent Homology 
 
  To analyze the evolution of the topological features of the data as the filtration parameter 𝑅  changes, 
persistent homology is computed over the interval 𝑅 ∈ [0, 𝑟]. The goal is to identify and track the birth and 
death of topological features, such as connected components, loops, and voids, across different levels of the 
filtration. This process is algorithmically implemented as follows: 
 

i. Matrix Construction: Start by computing an 𝑛 × 𝑛  matrix 𝐸 , where each off-diagonal element 
𝐸(𝑖, 𝑗) records the time 𝑅[𝑖𝑗] at which the edge [𝑖𝑗] first appears in the complex. This matrix serves 

as a crucial tool for determining the inclusion of higher-dimensional simplices. 
 

ii. Simplex List Generation: Generate a list of simplices that appear at or before a specified filtration 
value 𝑟 . This list includes all vertices, edges, and higher-dimensional simplices that meet the 
inclusion criteria for the given 𝑅. 

 
iii. Appearance Time Calculation: For each simplex 𝜎 , determine its appearance time 𝑅𝜎  as the 

maximum of the appearance times of its edges. This ensures that the complex respects the nested 
structure, where a simplex can only be included if all of its lower-dimensional faces are already 
present. 

iv. Tracking Topological Features: By tracking the birth and death of these simplices as 𝑅 increases, 
one can construct the persistent homology of the data. This captures the robustness of topological 
features across scales, distinguishing between features that persist across a wide range of 𝑅 
(indicating significant structure) and those that appear only briefly (often corresponding to noise). 

 
  This method of constructing and analyzing the simplicial complex 𝑊(𝐷; 𝑅, 𝑣)  provides a powerful 
framework for understanding the underlying topological structure of the data, with applications ranging from 
data analysis to machine learning and beyond. The flexibility of the parameter 𝑣 allows researchers to tailor 
the analysis to different levels of granularity, making this approach widely applicable to various types of data. 
  This can be cleared in Fig. 6. 
 

 
 

   Fig. 6. Time of appearance. 

  
 Here 𝑅[5,1,10] = 𝑚𝑎𝑥{𝑅𝜏: 𝜏 is an edge of [5,1,10]} 

       = 𝑅[5,10] 

       = 𝑧 
 

5. Results 

We first randomly selected 50 points from a 2D circle in the point cloud and then identified 10 landmark 

points using the Maxmin method (see Fig. 7). Next, we constructed the Lazy Witness Complex and calculated 

its persistence to visualize its barcode, thereby identifying its topological features. 
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  Fig. 7. Persistence barcodes in the case of 𝑣 = 0. 

 

  We constructed Lazy Witness Complexes using [1]. Here are the 50 values forming the lazy witness 

complexes for 𝑣 = 0,1,2 as shown in the Figs. 8-10. 

 

 

   

 

Fig. 8. Lazy Witness Complex for ν = 0: (a) when R = 0.36, (b) when R = 1.03, and (c) when R = 1.08. 

 

 

 

   
 

Fig. 9. Lazy Witness Complex for ν = 1: (a) when R = 0.12, (b) when R = 0.69, and (c) when R = 0.72. 

(a) (b) (c) 

(b) (a) (c) 
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Fig. 10. Lazy Witness Complex for ν = 2: (a) when R = 0.0, (b) when R = 0.61, and (c) when R = 0.64. 

 

The resultant persistence barcodes for 𝑣 = 0,1 and 2 have been shown in Fig.11. 

 

  

 
 

    Fig. 11. Persistence barcodes in the case of (a) 𝑣 = 0, (b) 𝑣 = 1 and (c) 𝑣 = 2. 

 

(b) (c) (a) 

(a) (b) 

(c) 
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  The number of simplices when 𝑣 = 0  is 175. From the persistent barcode for 𝑣 = 0  in Fig. 11(a), we 
observe that in dimension zero, the persistence intervals are [0.0, 0.24), [0.0, 0.24), [0.0, 0.24), [0.0, 0.24), 
 [0.0, 0.36), [0.0, 0.36), [0.0, 0.36), [0.0, 0.36), [0.0, 0.36),  and [0.0,∞) . In dimension one, there is a single 
persistence interval [0.36, 1.08). As illustrated in Fig. 8, when 𝑅 = 0.36 (see Fig. 8(a)), a loop is born in the 
complex. This loop persists until 𝑅 = 1.08 (see Fig. 8(c)), indicating its lifespan within this range. Between 
these values, at intermediate stages such as 𝑅 = 1.03  (see Fig. 8(b)), the witness complex evolves but the 
loop remains present until it eventually dies at 𝑅 = 1.08. From these observations, we conclude for 𝑣 = 0  
that there is one connected component that persists indefinitely and one loop that is born at 𝑅 = 0.36 and 
dies at 𝑅 = 1.08. 
 
  Examining the persistent barcode for 𝑣 = 1 in Fig. 11(b), we find that for dimension zero, the persistence 
intervals are [0.0, 0.12) , [0.0, 0.12) , and [0.0,∞) . In dimension one, there is a single persistence interval 
[0.12, 0.72). As depicted in Fig. 9, a loop emerges in the complex at 𝑅 = 0.12 (see Fig. 9(a)), and it persists 
until 𝑅 = 0.72 (see Fig. 9(c)), marking its duration. At intermediate stages, such as 𝑅 = 0.69 (illustrated in 
Fig. 9(b)), the witness complex undergoes transformations, yet the loop remains until it eventually 
disappears at 𝑅 = 0.72 . From this analysis, we conclude that for 𝑣 = 1 , the complex has one connected 
component that persists indefinitely, and one loop that forms at 𝑅 = 0.12  and dissolves at 𝑅 = 0.72 . 
Similarly, a similar pattern occurs for 𝑣 = 2, as shown in Fig. 10. From that figure, we observe that there is one 
connected component, and a loop is born at 𝑅 = 0.00 at the start of the filtration and disappears at 𝑅 = 0.64. 

 

  In Fig. 11, for 𝑣 = 0, we observe that there are more connected components, and they persist for a longer 

duration, but they are ultimately regarded as noise. For 𝑣 = 1, the amount of noise is less when considering 

connected components compared to 𝑣 = 0. For 𝑣 = 2, we see that there is no noise, with only one connected 

component emerging at the very start of the filtration. When examining loops (𝛽1), we see that for 𝑣 = 0, 

𝑣 = 1, and 𝑣 = 2, there is only one loop. However, this loop forms later for 𝑣 = 0 than for 𝑣 = 1 and 𝑣 = 2, 

with the loop appearing at the beginning of the filtration in the case of 𝑣 = 2. From this example, we can 

conclude that the case 𝑣 = 2 yields much better results than 𝑣 = 0 or 𝑣 = 1. 

6. Discussion 

Here, we offer a set of concise observations regarding the three distinct categories of persistent witness 

complexes corresponding to 𝑣 = 0,1,2: 

𝒗 = 𝟎: The complexes 𝑊(𝐷; 𝑅, 0) exhibit a strong relationship with the 𝑅𝑖𝑝𝑠(𝐿; 𝑅) complexes. Specifically, 

there exist the following inclusions: 

𝑊(𝐷; 𝑅, 0) ⊆ 𝑅𝑖𝑝𝑠(𝐿; 2𝑅) ⊆ 𝑊(𝐷; 2𝑅, 0) 

  This inclusion chain allows us to draw significant parallels between the persistent homology groups of the 

two families. In practical applications, we frequently observe that the interval graphs corresponding to 

𝑊(𝐷;𝑅, 0) and 𝑅𝑖𝑝𝑠(𝐿;𝑅) share similar structures, as depicted in Fig. 12. These similarities suggest that, 

under certain conditions, the 𝑊(𝐷; 𝑅, 0)complex can serve as a computationally efficient alternative to the 

Rips complex, without sacrificing the essential topological information. 

 

 
Fig. 12. Relation between Lazy Witness and Rips complex. 
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𝒗 = 𝟏:  Among the three categories, the 𝑣 = 1 family is perhaps the most theoretically grounded. It can 

be understood as arising from a sequence of coverings of the space 𝑋 , where each landmark point is 

surrounded by a Voronoi-like region. As the radius 𝑅 increases, these regions begin to overlap, leading to a 

more connected complex. The conceptual motivation here lies in capturing the gradual merging of local 

features into a coherent global structure, which is especially useful in applications where the underlying 

space has a well-defined geometric or topological character. This gradual overlap also helps in controlling the 

complexity of the resulting complexes, making them more manageable for computation while still preserving 

critical topological features. 

𝒗 = 𝟐:   The rationale behind the 𝑣 = 2 category is less intuitive compared to 𝑣 = 1, yet it leads to an 

intriguing identity when 𝑅 = 0: 

𝑊(𝐷; 0,2) = 𝑊(𝐷) 

  This identity implies that the complex is essentially accurate at 𝑅 = 0, or requires only a slight increase in 

𝑅 to capture the correct topological information. In practice, the 𝑣 = 2 complexes are observed to produce 

exceptionally clear persistent interval graphs, with minimal noise. This clarity suggests that the 𝑣 = 2 

complexes may be particularly well-suited for applications where reducing noise is critical, such as in data 

denoising or feature extraction tasks. The robustness of these complexes, even at minimal filtration levels, 

makes them a valuable tool in topological data analysis, where maintaining a balance between simplicity and 

accuracy is often challenging. 

  By understanding these different categories, we can better tailor the choice of witness complex to the 

specific needs of a given application, whether the goal is to reduce computational complexity, enhance clarity, 

or preserve topological accuracy. Each category offers unique advantages, making the witness complex a 

versatile tool in the study of complex data. 

7. Conclusion 

  Extracting information from large-scale data requires significant effort and time due to its unusually large 

size. In this study, the Lazy Witness Complex is demonstrated, as theory guarantees that selecting a sample 

of landmarks preserves the topological structure of the data. Families of Lazy Witness Complexes have been 

computed, and their efficiency has been evaluated based on the outcomes of persistent homology. The 

methodologies and insights presented here will aid in the continued development and application of TDA 

techniques, enabling more effective analysis and interpretation of complex datasets. 

 

  Moreover, the Lazy Witness complex has drawbacks also. The selection of landmarks can significantly 

impact the resulting complex. Poorly chosen landmarks may fail to capture important topological features. 

Also, it has computational complexity. While generally more efficient than full complexes, the Witness 

Complex can still be computationally intensive for large datasets, especially when determining the witness 

relationships and the approximation of the original data's topological features depends on the distribution 

and number of landmarks, potentially leading to less accurate representations. The computational method 

used in this study can be applied to more complex large-scale datasets to extract topological features, making 

it useful for feature selection or data classification. 
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