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Abstract: Combination of the total irregular vertex and the total irregular edge labeling referred to as the 
total irregular total labeling of 𝐺 is a function 𝑓: 𝑉 ∪  𝐸 →  {1,2,3,⋯ , 𝑘} such that for every two different 
vertices in 𝑉(𝐺) and every two different edges in 𝐸(𝐺), their weights are different. Adding a condition 
where there is no intersection of the vertex-weight set and the edge-weight set, the labeling is called the 
total disjoint irregular total labeling. In this research, we examined the total irregular total labeling of 
double star and triple star graphs, which is a class of caterpillar graphs and obtained the exact values of the 
total disjoint irregularity strength of those graphs corresponding to the lower bound for the total 
irregularity strength of graph 𝐺 (𝑡𝑠(𝐺)). 
 
2010 Mathematical Subject Classification: 05C78. 
Keywords: double star graph, total disjoint irregular total labeling, triple star graph.  

 
 

1. Introduction 

 
In everyday life, there are various simple problems that requires solutions resulting in science and 

technology experiencing many developments. In Mathematics, one of the topics that can solve these 
problems is graph theory. Graph theory was first used to solve the Konigsberg bridge problem by Leonhard 
Euler in 1736. One of the interesting topics of graph theory is graph labeling. Graph labeling is a function 
that maps a vertex set or edge set or both to an integer set, hereinafter referred to as edge labeling, vertex 
labeling, and total labeling. Edge irregular total labeling and vertex irregular total labeling were introduced 
by Bača, et al. in 2002 [1].  

In [1], Bača et al. have provided a lower bound for the total edge irregularity strength (𝑡𝑒𝑠(𝐺)) and the 
total vertex irregularity strength (𝑡𝑣𝑠(𝐺)) of any graph 𝐺 and determined the exact value for certain classes 
of graphs. Many studies were then developed to obtain these exact values in a wider class of graphs or even 
any graph in general. Marzuki et al. [2] then combined the two labels and define a new label, namely totally 
irregular total labeling. Totally irregular total 𝑘-labeling 𝜆 ∶  𝑉 ∪  𝐸 →  {1, 2, ⋯ , 𝑘} of a graph 𝐺 is a total 
labeling such that 𝐺 has a vertex irregular total labeling and an edge irregular total labeling at the same 
time. The minimum integer 𝑘 for 𝐺 to have a totally irregular total 𝑘-labeling is called the total irregular 
total strength of 𝐺, denoted by 𝑡𝑠(𝐺). Many research that obtains the result about the exact value of 𝑡𝑠(𝐺) 
obtained for certain classes of graphs shows that this theory is quite developed. In addition, if the value of 
𝑡𝑠(𝐺) is found, it can be used to answer the problems of the upper limit of both 𝑡𝑒𝑠(𝐺) and 𝑡𝑣𝑠(𝐺).  

Determining the exact value of 𝑡𝑒𝑠(𝐺), 𝑡𝑣𝑠(𝐺), and  𝑡𝑠(𝐺) for any graph or class of simpler graphs can be 
quite difficult [3]-[11]. Tilukay et al. [12] provided a new labeling whose parameter is the upper limit of the 

https://doi.org/10.30598/tensorvol5iss2pp105-110
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parameters of the labels above. A total disjoint irregular total labeling of a graph 𝐺 =  (𝑉, 𝐸), with the edge 
weight set 𝑊(𝐸) and the vertex weight set 𝑊(𝑉) on 𝐺 is a totally irregular total labeling for which 𝑊(𝐸) ∩
 𝑊(𝑉) = ∅. Its parameter is called the total disjoint irregularity strength of 𝐺, denoted by 𝑑𝑠(𝐺). They [12] 
have given a lower bound on values 𝑑𝑠(𝐺) and has assigned the exact value 𝑑𝑠(𝐺) for path graphs, cycle 
graphs, star graphs, and complete graphs.  

 
Theorem A [12]. Let 𝐺 = (𝑉, 𝐸) be a connected graph. Let 𝑣 be a pendant vertex and 𝑛𝑖(𝑖 = 1,2) be the 

number of vertices of degree 𝑖. Then  

𝑑𝑠(𝐺) ≥

{
 
 

 
 max {𝑛1, ⌈

|𝐸|+𝑛1 + 𝑛2+ 1
3

⌉} ,    if 𝑣 ∈ 𝑉;    

             ⌈
|𝐸|+𝑛1 +𝑛2 + 2

3
⌉ ,           otherwise. 

 

Theorem B [12]. Let 𝑃𝑛 be a path graph with 𝑛 vertices, 𝑛 ≥ 1, then 

𝑑𝑠(𝑃𝑛) = {
3,          for 𝑛 = 3;

⌈
2𝑛

3
⌉ ,     otherwise.

 

In investigating a totally disjoint irregular total labeling of tree, as posted as an open problem given in 
[12], we obtained some results for a class of caterpillar. Caterpillar is a tree with the property that the 
removal of its endpoints leaves a path. 

2. Results and Discussion 

2.1. Double Star Graph 

Double star graph 𝑆𝑚,𝑛 is a caterpillar with the center path of order two. Each of both center vertices 

adjacent to 𝑚 and 𝑛 vertices, respectively. 

 
Lemma 1. For positive integer 𝑚 and 𝑛, 𝑆𝑚,𝑛 is a double star graph with 𝑚+ 𝑛 pendant vertices. Then 

𝑑𝑠(𝑆𝑚,𝑛) = {
  3,              for 𝑚 = 𝑛 = 1;
𝑚 + 𝑛,     otherwise.      

 

 
Proof:  
We divide the proof into two cases as follows. 
Case 1. For 𝑚 = 𝑛 = 1, we have 𝑆1,1 ≅ 𝑃4, hence, from Theorem B, it can be concluded that 𝑑𝑠(𝑆1,1) = 3.  

Case 2. For 𝑚 ≠ 𝑛 ≠ 1,  
Next, for let 𝑉(𝑆𝑚,𝑛) = {𝑎𝑖, 𝑏𝑗|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤  𝑛} ∪ {𝑎, 𝑏}, where 𝑎 is a vertex of degree 𝑚 and 𝑏 is a 

vertex of degree 𝑛. Since 𝑆𝑚,𝑛 has 𝑚+ 𝑛 vertices of degree 1, by Theorem A, it can be obtained that 

𝑑𝑠(𝑆𝑚,𝑛) ≥ 𝑚 + 𝑛. Next, to prove that 𝑑𝑠(𝑆𝑚,𝑛) ≤ 𝑚+ 𝑛, we divide into 2 subcases as follows: 

Subcase 1. If 𝑚 = 𝑛. 
 

We construct a labeling 𝑓1 ∶ 𝑉 ∪  𝐸 →  {1, 2,⋯ ,2𝑛} from 𝑆𝑛,𝑛 as follows: 

𝑓1(𝑎)    = 𝑓(𝑏) = 2𝑛; 

𝑓1(𝑎𝑖)   = {
𝑖,
2,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑓1(𝑏𝑖)   = {
𝑛 + 𝑖,
𝑛 + 1,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑓1(𝑎𝑏)  = 4; 

𝑓1(𝑎𝑎𝑖) = {
1,       
 𝑛 − 1,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑓1(𝑏𝑏𝑖) = {
1,
𝑛,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛.                

  

 

From the construction of 𝑓1, it can be seen that the largest label is 𝑓1 (𝑎) = 𝑓1 (𝑏) = 2𝑛. Next, we evaluate 

the vertex and edge weights of 𝑆𝑚,𝑛, as follows: 
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𝑊1(𝑎)    = 4𝑛 + 2; 

𝑊1(𝑏)    = 4𝑛 + 3; 

𝑊1(𝑎𝑖)   = 𝑖 + 1, for 1 ≤ 𝑖 ≤ 𝑛;  

𝑊1(𝑏𝑖)   = 𝑛 + 𝑖 + 1, for 1 ≤ 𝑖 ≤ 𝑛; 

𝑊1(𝑎𝑏)  = 4𝑛 + 4; 

𝑊1(𝑎𝑎𝑖) = 2𝑛 + 𝑖 + 1, for 1 ≤ 𝑖 ≤ 𝑛; 

𝑊1(𝑏𝑏𝑖) = 3𝑛 + 𝑖 + 1, for 1 ≤ 𝑖 ≤ 𝑛. 

 

The vertex-weight set  𝑊1(𝑉(𝑆𝑛,𝑛)) = {𝑊1(𝑎𝑖),𝑊1(𝑏𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑊1(𝑎),𝑊1(𝑏)} = {2,3,⋯ ,2𝑛 + 1} ∪

{4𝑛 + 2,4𝑛 + 3} and the edge-weight set 𝑊1(𝑉(𝑆𝑛,𝑛)) = {𝑊1(𝑎𝑎𝑖),𝑊1(𝑏𝑏𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑊1(𝑎𝑏)} = {2𝑛 +

2,2𝑛 + 3, . . . ,4𝑛 + 4} ∪ {4𝑛 + 4} show that there are no two vertices that have the same weight, no two 

edges have the same weight, and 𝑊1(𝑉) ∩𝑊1(𝐸) = ∅.  

 
 
Subcase 2. If 𝑚 ≠ 𝑛. 

 

Without loss generality, hereinafter we arrange 𝑚 < 𝑛 . We construct the labeling 𝑓2: 𝑉 ∪ 𝐸 →

{1, 2,⋯ ,𝑚 + 𝑛} from 𝑆𝑚,𝑛 as follows: 

𝑓2(𝑎)    = 𝑓2(𝑏) = 𝑚+ 𝑛; 

𝑓2(𝑎𝑖)   = {
𝑖,
2,

 for 1 ≤ 𝑖 ≤ 𝑚 − 1;
for 𝑖 = 𝑚;               

  

𝑓2(𝑏𝑗)   = {
𝑚 + 𝑗,
𝑛 + 1,

 
 for 1 ≤ 𝑗 ≤ 𝑛 − 1;
for 𝑗 = 𝑛;               

  

𝑓2(𝑎𝑏)  = 𝑚 + 𝑛;  

𝑓2(𝑎𝑎𝑖) = {
1,

𝑚 − 1,
 
 for 1 ≤ 𝑖 ≤ 𝑚 − 1;
for 𝑖 = 𝑚;               

  

𝑓2(𝑏𝑏𝑖) = {
1,
𝑚,

 for 1 ≤ 𝑗 ≤ 𝑛 − 1;
for 𝑗 = 𝑛.               

  

From the construction of 𝑓2, it can be seen that the largest label is 𝑓2(𝑎) = 𝑓2(𝑏) = 𝑚 + 𝑛. Next, the vertex 

weights and edge weights are obtained as follows: 

𝑊2(𝑎)    = 3(𝑚 + 𝑛) − 𝑛 +𝑚 − 2; 

𝑊2(𝑏)    = 3(𝑚 + 𝑛) − 1; 

𝑊2(𝑎𝑖)   = 𝑖 + 1,  for 1 ≤ 𝑖 ≤ 𝑚; 

𝑊2(𝑏𝑗)   = 𝑚 + 𝑗 + 1, for 1 ≤ 𝑗 ≤ 𝑛; 

𝑊2(𝑎𝑏)  = 3(𝑚 + 𝑛); 

𝑊2(𝑎𝑎𝑖) = 𝑚 + 𝑛 + 𝑖 + 1, for 1 ≤ 𝑖 ≤ 𝑚; 

𝑊2(𝑏𝑏𝑗) = 2𝑚 + 𝑛 + 𝑗 + 1, for 1 ≤ 𝑗 ≤ 𝑛. 

 

The vertex-weight set  𝑊2(𝑉(𝑆𝑚,𝑛)) = {𝑊2(𝑎𝑖),𝑊2(𝑏𝑗)|1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑊2(𝑎),𝑊(𝑏) = {2,3,⋯ ,𝑚 + 𝑛 + 1} ∪

{3(𝑚 + 𝑛) − 2, 3(𝑚 + 𝑛 + 1)} and the edge-weight set 𝑊2(𝐸(𝑆𝑛,𝑛)) = {𝑊2(𝑎𝑎𝑖),𝑊2(𝑏𝑏𝑖)|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤

𝑛} ∪ {𝑊2(𝑎𝑏) = {𝑚 + 𝑛 + 2,𝑚 + 𝑛 + 3,⋯ , 2𝑚 + 2𝑛 + 1} ∪ {3(𝑚+ 𝑛)} show that there are no two vertices 

that have the same weight, no two edges have the same weight, and 𝑊2(𝑉) ∩𝑊2(𝐸) = ∅.  

 

From Subcases 1 and 2, we have 𝑓1 and  𝑓2 are disjoint total irregular total labeling. Thus, 𝑑𝑠(𝑆𝑚,𝑛) = 𝑚 + 𝑛. 

It completes the proof. ■ 
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2.2. Triple Star Graph 

Triple star graph 𝑆𝑚,𝑛,𝑞 is a caterpillar with the center path of order three. Each of center vertices 

adjacent to 𝑚, 𝑛, and 𝑞 vertices, respectively. 

 
Lemma 2. For positive integer 𝑛, 𝑆𝑛,𝑛,𝑛 is a triple star graph with 3𝑛 pendant vertices. Then  

𝑑s(𝑆𝑛,𝑛,𝑛) = {
  4,     for 𝑛 = 1;
3𝑛,     otherwise.

 

 

Proof: 

Let 𝑉(𝑆𝑛,𝑛,𝑛) = {𝑎𝑖, 𝑏𝑖 , 𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑎, 𝑏, 𝑐} where 𝑎, 𝑏, and 𝑐 are vertices of degree 𝑛. By Theorem A, we 

have 𝑑𝑠(𝑆1,1,1) ≥ 4 and for 𝑛 > 1, since (𝑆𝑛,𝑛,𝑛) have 3𝑛 vertex of degree 1, 𝑑s(𝑆𝑛,𝑛,𝑛) ≥ 3𝑛. To prove the 

reverse inequality, we construct the labeling 𝑓3: 𝑉 ∪ 𝐸 → {1, 2,⋯ , 𝑛} from (𝑆𝑛,𝑛,𝑛) as follows: 

For 𝑛 = 1, 

𝑓3(𝑎)   = 𝑓3(𝑐) = 𝑓3(𝑎𝑏) 3;  

𝑓3(𝑏) = 𝑓3(𝑏𝑐) = 4; 

𝑓3(𝑎1)  = 𝑓3(𝑏1)  = 1𝑓3(𝑏𝑏𝑖)  = 1;  

𝑓3(𝑐1) = 𝑓3(𝑎𝑎𝑖) = 𝑓3(𝑐𝑐𝑖)  = 2.  

 

Based on the function defined above, it can be seen that the largest label is 𝑓3(𝑏) = 𝑓3(𝑏𝑐) = 4. Next, the 

vertex weights and edge weights are 𝑊3(𝑎) = 8, 𝑊3(𝑏) = 12, 𝑊3(𝑐) = 9, 𝑊3(𝑎1) = 3, 𝑊3(𝑏1) = 2, 𝑊3(𝑐1) =

4, 𝑊3(𝑎𝑏) = 10, 𝑊3(𝑏𝑐) = 11, 𝑊3(𝑎𝑎1) = 6, 𝑊3(𝑏𝑏1) = 5, and 𝑊3(𝑐𝑐1) = 7.  It can be seen that no two 

vertices have the same weight, no two edges have the same weight, and 𝑊3(𝑉) ∩𝑊3(𝐸) = ∅. 

 

For 𝑛 > 1, 

𝑓3(𝑎)   = 𝑓3(𝑏) = 𝑓3(𝑐) = 3𝑛;  

𝑓3(𝑎𝑖)  = {
𝑖,

𝑛 + 1,
 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑓3(𝑏𝑖)  = {
𝑛 + 𝑖 − 1,
𝑛 + 1,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑓3(𝑐𝑖)  = {
2𝑛 + 𝑖 − 2,
𝑛 + 2,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑓3(𝑎𝑎𝑖) = 𝑓3(𝑐𝑐𝑖)  = {
1,

2𝑛 − 1,
 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑓3(𝑏𝑏𝑖)  = {
1,

2𝑛 − 2,
 
 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑓3(𝑎𝑏)  = 4;  

𝑓3(𝑏𝑐) = 5. 

 

Based on the function defined above, it can be seen that the largest label is 𝑓3(𝑎) = 𝑓3(𝑏) = 𝑓3(𝑐) = 3𝑛. 

Next, the vertex weights and edge weights are obtained as follows: 

𝑊3(𝑎) = 6𝑛 + 2;  

𝑊3(𝑏) = 6𝑛 + 6;  

𝑊3(𝑐) = 6𝑛 + 3;  

𝑊3(𝑎𝑖) = {
𝑖 + 1,
3𝑛,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               
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𝑊3(𝑏𝑖) = {
𝑛 + 𝑖,
3𝑛 − 1,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

  

𝑊3(𝑐𝑖) = {
2𝑛 + 𝑖 − 1,
3𝑛 + 1,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

   

𝑊3(𝑎𝑏) = 6𝑛 + 4;  

𝑊3(𝑏𝑐) = 6𝑛 + 5;  

𝑊3(𝑎𝑎𝑖) = {
3𝑛 + 𝑖 + 1,

6𝑛,
 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

    

𝑊3(𝑏𝑏𝑖) = {
4𝑛 + 𝑖,
6𝑛 − 1,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

   

𝑊3(𝑐𝑐𝑖) = {
5𝑛 + 𝑖 − 1,
6𝑛 + 1,

 for 1 ≤ 𝑖 ≤ 𝑛 − 1;
for 𝑖 = 𝑛;               

   

By evaluating the weights of the vertex and edges, we obtain as follows: 

𝑊3 (𝑉(𝑆𝑛,𝑛,𝑛)) = {𝑊3(𝑎𝑖),𝑊3(𝑏𝑖),𝑊3(𝑐𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑊3(𝑎),𝑊3(𝑏),𝑊3(𝑐)}  

= {2,3,⋯ ,3𝑛 + 1} ∪ {6𝑛 + 2, 6𝑛 + 6, 6𝑛 + 3}  

𝑊3 (𝐸(𝑆𝑛,𝑛,𝑛)) = 𝑊3(𝑎𝑎𝑖),𝑊3(𝑏𝑏𝑖),𝑊3(𝑐𝑐𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑊3(𝑎𝑏),𝑊(𝑏𝑐)}  

= {3𝑛 + 2, 3𝑛 + 3,⋯ , 6𝑛 + 1} ∪ {6𝑛 + 4, 6𝑛 + 5}  

It can be seen that no two vertices have the same weight, no two edges have the same weight, and 

𝑊3(𝑉) ∩𝑊3(𝐸) = ∅. Thus, 𝑓3 is a disjoint total irregular total labeling and 𝑑s(𝑆𝑛,𝑛,𝑛) = 3𝑛, for 𝑛 ≥ 1. ∎ 

 

3. Conclusion 

Based on the discussion of disjoint total irregular total labeling from double star graphs and triple star 
graphs, it can be concluded that their disjoint total irregularity strengths are equal to the lower bound. 
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