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Abstract: In this paper we prove a fixed point theorem in a complete 2-normed Spaces. We define a norm 

derived from 2-norm. To get the theorem proved we first study some convergent and Cauchy sequences, 
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1. Introduction 

A normed space is a vector space equipped with a function called norm. Geometrically, a norm is a tool to 

measure length of a vector.  

Definition 1. [5] Let 𝑋 be a vector space with dim(𝑋) ≥ 2. A mapping || ⋅ || ∶ 𝑋 → ℝ that satisfies 

(1). ‖𝑥‖ ≥ 0, for all 𝑥 ∈ 𝑋; 

 ‖𝑥‖ = 0 if and only if 𝑥 = 0, 

(2). ‖𝛼 𝑥‖ = |𝛼|‖𝑥‖; for all 𝛼 ∈ ℝ and 𝑥 ∈ 𝑋, 

(3). ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖, for all 𝑥, 𝑦 ∈ 𝑋 

Is called a norm. A pair of (𝑋, ‖⋅,⋅‖) is called a normed space. 

 

In 1960’s Gahler introduced a concept of 𝑛-normed spaces as a generalization of a concept of normed 

spaces. This space is equipped by an 𝑛-norm. The n-normed is used to measure volume of a parallelepiped 

spaned by 𝑛 vectors. Especially for 𝑛 = 2, the 2-norm is a tool to measure an area spaned by 2 vectors. Te 

concept of 2-normed space was studied further by many researchers, for instance see [1,4,6]. Now, we 

present some basic definition and properties of 2-normed spaces. 

 

Definition 2. [2] Let 𝑋 be a vector space with dim(𝑋) ≥ 2. A mapping || ⋅,⋅ || ∶ 𝑋 → ℝ that satisfies 

(N1). ‖𝑥, 𝑦‖ ≥ 0, for all 𝑥, 𝑦 ∈ 𝑋; 

   ‖𝑥, 𝑦‖ = 0 if and only if 𝑥, 𝑦 linearly dependent, 

(N2). ‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖; for all 𝑥, 𝑦 ∈ 𝑋, 

(N3). ‖𝛼 𝑥, 𝑦‖ = |𝛼|‖𝑥, 𝑦‖; for all 𝛼 ∈ ℝ and 𝑥, 𝑦 ∈ 𝑋, 

(N4). ‖𝑥 + 𝑧, 𝑦‖ ≤ ‖𝑥, 𝑦‖ + ‖𝑧, 𝑦‖, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 

Is called a 2-norm. A pair of (𝑋, ‖⋅,⋅‖) is called a 2-normed space. 

Note that in 2-normed space(𝑋, ‖⋅,⋅‖)  we have  

‖𝑥1, 𝑥2‖ = ‖𝑥1, 𝑥2 + 𝛼𝑥1‖, 

For all 𝛼 ∈ ℝ and 𝑥1, 𝑥2 ∈ 𝑋. 
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Definition 3. [2] A sequence {𝑥𝑘} in a 2-normed space (𝑋, ‖⋅,⋅‖) is said to be convergent if there is an 

𝑥 ∈ 𝑋 such that lim𝑘→∞‖𝑥𝑘 − 𝑥, 𝑧‖ = 0 for all 𝑧 ∈ 𝑋. 

If {𝑥𝑘} converges to 𝑥 the we denote it by 𝑥𝑘 → 𝑥 as 𝑘 → ∞. The point 𝑥 is called limit point of 𝑥𝑘. 

 

Definition 4. [2] A sequence {𝑥𝑘} in a 2-normed space (𝑋, ‖⋅,⋅‖) is said to be a Cauchy sequence if there 

is an 𝑥 ∈ 𝑋 such that lim𝑘,𝑙→∞‖𝑥𝑘 − 𝑥𝑙 , 𝑧‖ = 0 for all 𝑧 ∈ 𝑋. 

 

Lemma 5. If A sequence {𝑥𝑘} in a 2-normed space (𝑋, ‖⋅,⋅‖) is convergent, then {𝑥𝑘} is a Cauchy 

sequence. 

 

Definition 6. A 2-normed space is called complete if every Cauchy sequence is convergent. 

  

Moreover, the complete 2-normed space is called a 2-Banach space. 

 

Definition 7. Let (𝑋, ‖⋅,⋅‖) be a 2-normed space. A set 𝐾 ⊂ 𝑋 is said to be closed if the limit point of 

every convergent sequence in 𝐾 is also in 𝐾. 

 

 

1. Main Results  

In this section, we define a normed derived from 2-norm and use this norm to prove a fixed point 

theorem in 2-normed space. We begin with defining the norm. 

Let (𝑋, ‖⋅,⋅‖) be a 2-normed space and 𝑌 = {𝑦1, 𝑦2} be a linearly independent set in X, we define a 

function in 𝑋 by 

‖𝑥‖ = ‖𝑥, 𝑦1‖ + ‖𝑥, 𝑦2‖                          (1) 
 

One can see that the function ‖⋅‖: 𝑋 → ℝ defines in (1) defines a norm in 𝑋. 

Theorem 8. (𝑋, ‖⋅‖) is a norm space, with ‖⋅‖ is a norm defined in (1). 

Proof. We just need to prove that normed defined in (1) as a norm in 𝑋. 

(1). By using (N1), one can see that for every 𝑥 ∈ 𝑋 we have  

‖𝑥‖ = ‖𝑥, 𝑦1‖ + ‖𝑥, 𝑦2‖ ≥ 0, 

 because each term on the above equation will greater or equals 0. 

 If 𝑥 = 0, from then (N1) we have ‖𝑥, 𝑦1‖ = 0 and ‖𝑥, 𝑦2‖ = 0, which means ‖𝑥‖ = 0.  

If ‖𝑥‖ = 0  then ‖𝑥, 𝑦1‖ + ‖𝑥, 𝑦2‖ = 0 . Because each term is nonnegative then we shoud have 

‖𝑥, 𝑦1‖ = 0 and ‖𝑥, 𝑦2‖ = 0. This means 𝑥 is a vector that dependent only to 𝑦1 and also dependent 

only to 𝑦2. The vector 𝑥 must be 0. 

(2). For any 𝑥 ∈ 𝑋 and 𝛼 ∈ ℝ, ‖𝛼 𝑥‖ = ‖𝛼 𝑥, 𝑦1‖ + ‖𝛼 𝑥, 𝑦2‖.  

By using (N3) we have ‖𝛼 𝑥, 𝑦1‖ + ‖𝛼 𝑥, 𝑦2‖ = |𝛼| (‖𝑥, 𝑦1‖ + ‖𝑥, 𝑦2‖) = |𝛼| ‖𝑥‖. Then we have 

‖𝛼 𝑥‖ = |𝛼|‖𝑥‖; for all 𝛼 ∈ ℝ and 𝑥 ∈ 𝑋. 

(3). For any 𝑥, 𝑦 ∈ 𝑋 we have ‖𝑥 + 𝑦‖ = ‖𝑥 + 𝑦, 𝑦1‖ + ‖𝑥 + 𝑦, 𝑦2‖. By using (N4) we also have  

‖𝑥 + 𝑦, 𝑦1‖ + ‖𝑥 + 𝑦, 𝑦2‖ ≤ ‖𝑥, 𝑦1‖ + ‖𝑦, 𝑦1‖ + ‖𝑥, 𝑦2‖ + ‖𝑦, 𝑦2‖. 

 This means ‖𝑥 + 𝑦, 𝑦1‖ + ‖𝑥 + 𝑦, 𝑦2‖ ≤ ‖𝑥, 𝑦1‖ + ‖𝑥, 𝑦2‖ + ‖𝑦, 𝑦1‖ + ‖𝑦, 𝑦2‖ = ‖𝑥‖ + ‖𝑦‖. Hence,  

‖𝑥 + 𝑦‖ =  ‖𝑥‖ + ‖𝑦‖.            

We proved that the norm defined in (1) is a norm as desired then A pair of (𝑋, ‖⋅‖) is a normed space.    
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For simplicity, from now on we call the norm defined in (1) ‘derived norm’. We will using this norm to 

prove a fixed point theorem in 2-normed space. Before that, we show in this following proposition a 

convergent sequence with respect to 2-norm also convergent with respect to derived norm. 

 

Proposition 9. Let (𝑋, ‖⋅,⋅‖) be a 2-normed space and 𝑌 = {𝑦1, 𝑦2} be a linearly independent set. If 𝑥𝑘 

converges to an 𝑥 ∈ 𝑋 in the 2-norm, then 𝑥𝑘 also converges to 𝑥 in derived norm. 

Proof. If 𝑥𝑘 converges to an 𝑥 ∈ 𝑋 in the 2-norm then lim𝑘→∞‖𝑥𝑘 − 𝑥, 𝑧‖ = 0 for all 𝑧 ∈ 𝑋. We can write  

lim𝑘→∞‖𝑥𝑘 − 𝑥, 𝑦𝑖‖ = 0 for 𝑖 = 1,2. Hence lim𝑘→∞‖𝑥𝑘 − 𝑥‖ = lim𝑘→∞(‖𝑥𝑘 − 𝑥, 𝑦1‖ + ‖𝑥𝑘 − 𝑥, 𝑦2‖) = 0. 

 

Recall the standard case for 2-normed space. Let 𝑋 be a real inner product space with dim(𝑋) ≥ 2. We 

equipped 𝑋 with standard 2-norm  

‖𝑥1, 𝑥2‖𝑠 ≔ |
〈𝑥1, 𝑥1〉 〈𝑥1, 𝑥2〉

〈𝑥2, 𝑥1〉 〈𝑥2, 𝑥2〉
|

1
2

= (‖𝑥1‖𝑋‖𝑥1, 𝑥2‖𝑋 − 〈𝑥1, 𝑥2〉2)
1
2 

With 〈⋅,⋅〉 denotes an inner product in 𝑋. One can see that the norm ‖⋅‖𝑋 is an induced norm, where 

‖𝑥‖𝑋 = 〈𝑥, 𝑥〉
1

2 and ‖𝑥1, 𝑥2‖𝑠 is the area spanned by 𝑥1 and 𝑥2. 

Moreover, let𝑒1, 𝑒2 be two orthonormal vectors, then derived norm in (1) can be rewritten as 

‖𝑥‖𝑑 = ‖𝑥, 𝑒1‖ + ‖𝑥, 𝑒2‖.                          (2) 
Next, we have this following proposition.                

 

Proposition 10. Let (𝑋, ‖⋅,⋅‖) be a 2-normed space and 𝑌 = {𝑦1, 𝑦2} be a linearly independent set. If 𝑥𝑘 

converges to an 𝑥 ∈ 𝑋 in the 2-norm, then 𝑥𝑘 also converges to 𝑥 in derived norm. 

Proof. The proof is similar with proof of Proposition 9. 

 

Corollary 11. Let (𝑋, ‖⋅,⋅‖) be a 2-normed space and 𝑌 = {𝑦1, 𝑦2} be a linearly independent set. If 𝑋 is 

complete with respect to ‖⋅,⋅‖, then 𝑋 is also complete with respect to derived norm. 

 

Proposition 12. Standard 2-norm is equivalent with derived norm defined on (2). Pricesely, we have 

1

2
‖𝑥‖𝑑 ≤ ‖𝑥‖𝑋 ≤ √2 ‖𝑥‖𝑑 . 

Proof. Let 𝑥 ∈ 𝑋  For 𝑖 = 1,2, we write 𝑒𝑖 = 𝑒𝑖
′ + 𝑒𝑖

⊥ , with 𝑒𝑖
′ ∈ span{𝑥} and 𝑒𝑖

⊥ ⊥ span{𝑥}.  Then for 

𝑖 = 1,2, we have 

‖𝑥, 𝑒𝑖‖     = ‖𝑥, 𝑒𝑖
⊥‖  

  = |
〈𝑥, 𝑥〉 0

0 〈𝑒1
⊥, 𝑒1

⊥〉
|

1

2

 

  ≤ ‖𝑥‖𝑋 

Hence we have 
1

2
‖𝑥‖𝑑 ≤ ‖𝑥‖𝑋.  

Further, take a unit vector 𝑒 = 𝛼1𝑒1 + 𝛼2𝑒2 such that 𝑒 ∈ span{𝑥}. By using (N3) and (N4) we have  

‖𝑥‖𝑋        = ‖𝑥, 𝑒‖  

  ≤ |𝛼1|‖𝑥, 𝑒1‖ + |𝛼2|‖𝑥, 𝑒2‖ 

  ≤ (|𝛼1| + |𝛼2|)‖𝑥‖𝑑 

Using Cauchy-Schwarz inequality we have 

|𝛼1| +|𝛼2| ≤ (1 + 1 )
1
2(𝛼1

2 + 𝛼2
2)

1
2 = √𝑛. 
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Hence we obtain  

‖𝑥‖𝑋 ≤ √2 ‖𝑥‖𝑑. 

This completes the proof.                     

 

Next, we define a closed set in 2-normed space with respect to derived norm. 

Definition 13. Let (𝑋, ‖⋅,⋅‖) be a 2-normed space and 𝑌 = {𝑦1, 𝑦2} be a linearly independent set. A set 

𝐾 ⊂ 𝑋 is said to be bounded if there is an 𝑀 > 0 such that for all 𝑥 ∈ 𝐾 we have 

‖𝑥‖𝑑 ≤ 𝑀. 

 

Recall that Harikrishnan and Ravindran [3] defined contractive mappings in 2-normed space as following  

Definition 14. Let (𝑋, ‖⋅,⋅‖) be a 2-normed space. Then the mapping 𝑓: 𝑋 → 𝑋 is said to be a contractive 

mapping if there exist a 𝐶 ∈ (0,1) such that  

‖𝑓(𝑥) − 𝑓(𝑦), 𝑧‖ ≤ 𝐶‖𝑥 − 𝑦, 𝑧‖, 

For all 𝑥, 𝑦, 𝑥 ∈ 𝑋.  

 

Now we define contractive mappings with respect to derived norm in 2-normed space as following  

Definition 15. Let (𝑋, ‖⋅,⋅‖) be a 2-normed space, 𝑌 = {𝑦1, 𝑦2} be a linearly independent set, and ‖⋅‖ be 

a derived norm. Then the mapping 𝑓: 𝑋 → 𝑋 is said to be a contractive mapping with respect to derived 

norm if there exist a 𝐶 ∈ (0,1) such that  

‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝐶‖𝑥 − 𝑦, 𝑧‖ , 

For all 𝑥, 𝑦, 𝑥 ∈ 𝑋.  

We will prove a fixed point theorem of a contractive mapping in a complete 2-normed spaces with 

respect to the derived norm. To prove this theorem, we recall Picard Iteration. For any 𝑥0 ∈ 𝑋, the sequence 

{𝑥𝑘} in 𝑋 given by 

𝑥𝑘 = 𝑓(𝑥𝑘−1) = 𝑓𝑘(𝑥0), 𝑘 = 1,2, … 

is called a sequence of successive approximation with initial value 𝑥0. Next is a fixed point theorem ini 

2-normed space. 

 

Theorem 16. Let Let (𝑋, ‖⋅,⋅‖) be a complete 2-normed space, 𝐾 ⊂ 𝑋 be a closed and bounded set, 

𝑌 = {𝑦1, 𝑦2} be a linearly independent set, and ‖⋅‖ be a derived norm. If 𝑓: 𝐾 → 𝐾 be a contractive 

mapping then 𝐾 has a unique fixed point. 

Proof. Let 𝑥0 ∈ 𝐾 and {𝑥𝑘} is a sequence in 𝐾 such that 

𝑥𝑘 = 𝑓(𝑥𝑘−1) = 𝑓𝑘(𝑥0), 𝑛 = 1,2, … 

For 𝑥0, 𝑥1 ∈ 𝐾 we have 

‖𝑓2(𝑥0) − 𝑓2(𝑥1)‖ = ‖𝑓(𝑓(𝑥0)) − 𝑓(𝑓(𝑥1))‖, 

𝑓 contractive, so there is a 𝐶 ∈ (0,1) such that 

‖𝑓2(𝑥0) − 𝑓2(𝑥1)‖ = 𝐶‖𝑓(𝑥0) − 𝑓(𝑥1)‖. 

Again, because 𝑓 is a contractive mapping then we have  

‖𝑓2(𝑥0) − 𝑓2(𝑥1)‖ = 𝐶2‖𝑥0 − 𝑥1‖. 

By using Induction we obtain  

‖𝑓𝑘(𝑥0) − 𝑓𝑘(𝑥1)‖ = 𝐶𝑘‖𝑥0 − 𝑥1‖. 

Next, we show that the sequence 𝑥𝑘 is a Cauchy sequence. Let 𝑘, 𝑙 ∈ ℕ without loss of generality we 

assume that 𝑙 > 𝑘 and 𝑙 = 𝑘 + 𝑝, with 𝑝 ∈ ℕ. By using triangle inequality, we have 

‖𝑥𝑘 − 𝑥𝑙‖ = ‖𝑥𝑘 − 𝑥𝑘+𝑝 ‖ ≤ ‖𝑥𝑘 − 𝑥𝑘+1‖ + ⋯ + ‖𝑥𝑘+𝑝−1 − 𝑥𝑘+𝑝‖. 

Using the above properties of sequence {𝑥𝑘}and fact that 𝑓 is a contractive mappings, we obtain 
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‖𝑥𝑘 − 𝑥𝑙‖ ≤ ‖𝑓𝑘(𝑥0) − 𝑓𝑘(𝑥1)‖ + ⋯ + ‖𝑓𝑘+𝑝−1(𝑥0) − 𝑓𝑘+𝑝−1(𝑥1)‖  

   ≤ (𝐶𝑘 + ⋯ + 𝐶𝑘+𝑝−1)‖𝑥0 − 𝑥1‖ 

Since 𝐾 is bounded and 𝑥0, 𝑥1 ∈ 𝐾, then there is an 𝑀 > 0 such that ‖𝑥0 − 𝑥1‖ ≤ 𝑀. We have 

‖𝑥𝑘 − 𝑥𝑙‖ ≤ (𝐶𝑘 + ⋯ + 𝐶𝑘+𝑝−1)𝑀, 

Or we can write 

‖𝑥𝑘 − 𝑥𝑙‖ ≤ (𝐶𝑘 + ⋯ + 𝐶𝑙−1)𝑀. 

Because 𝐶 ∈ (0,1) then  

lim
𝑘,𝑙→∞

‖𝑥𝑘 − 𝑥𝑙‖ ≤ lim
𝑘,𝑙→∞

(𝐶𝑘 + ⋯ + 𝐶𝑙−1)𝑀 = 0. 

This means {𝑥𝑘} is a Cauchy sequence. Moreover, since (𝑋, ‖⋅,⋅‖) is a complete space then from Corollary 

11, we have (𝑋, ‖⋅‖) is also a complete space. Consequently {𝑥𝑘} is a convergent sequence.  Let 𝑥𝑘 → 𝑥, 

since {𝑥𝑘} ⊂ 𝐾and 𝐾 is a closed set, then 𝑥 ∈ 𝐾. Furthermore, 𝑓 is a contractive mapping, by using 

properties of sequence {𝑥𝑘} we have 

𝑓(𝑥) = lim
𝑥→∞

𝑓(𝑥𝑘) = lim
𝑥→∞

𝑥𝑘+1 = 𝑥. 

Therefore, 𝑓 has one fixed point in 𝐾. Next we show that the fixed point is unique. Assume that there is 

another fixed point of 𝑓 in 𝐾, namely 𝑥′. The mapping 𝑓 is a contractive mapping so there is a 𝐶 ∈ (0,1) 

such that 

‖𝑥 − 𝑥′‖ = ‖𝑓(𝑥) − 𝑓(𝑥′)‖ ≤ 𝐶‖𝑥 − 𝑥′‖. 

This condition is satisfied if and only if ‖𝑥 − 𝑥′‖ = 0 (If ‖𝑥 − 𝑥′‖ ≠ 0, then 𝐶 = 0 or 𝐶 = 1). We obtain, 

𝑥 = 𝑥′, which means the fixed point is unique.                
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