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1. Introduction and Statement of The Main Result

Let 1 <p <o and 0 <A< n. Afunction f € Lfoc(IR") is said to be an element of the Morrey spaces
LPA(R™) if

S

lfllpa = sup (r"lj( )If(y)l”dy> < .
B(x,r

XER™,r>0
For more information regarding to the Morrey spaces LP*(R™), see [1]. Now, for every f € LP*(R™), we set
1

M;(r) = sup (r"lf If)IP dy>p-
XERM B(x,r)

The function f belongs to the vanishing Morrey spaces VLP*(R™) if

li_r}r(l) M (r) = 0.
The vanishing Morrey spaces were introduced in [2] and have some applications in elliptic partial differential
equations, operator theory, and approximation in Morrey spaces [3, 4, 5].

It is clear from the definitions above that VLPA(R") is a subset of LPA(R™). In [4], it stated that this
inclusion is proper without giving an explicit function which belongs to LP**(R™) but notin VLPA(R™). In
this paper, by using the idea of the proper inclusion between the bounded Stummel modulus classes and the
Stummel classes [6] (see also to be published [7] and [8]), we will give an example of that function. Although
there are some inclusion relations between the Morrey spaces and the Stummel classes for some appropriate
parameters [6, 9], but in general these relations may fail (submitted for publication [10]).
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Our main result is stated in the following theorem.
Theorem 1. The vanishing Morrey spaces contain the Morrey spaces properly.
The proof of this theorem will be given in the next section.

2. Proof Of The Main Result

To prove the Theorem 1, we need to give an explicit function belongs to the Morrey spaces but not in the
vanishing Morrey spaces. The positive constant € = C(n, 1), which means depending only on n and 4,
appears in this paper may be vary from line to line.

Let n beaninteger numbersuchthat n =2, 0 <41 <n,and 1 < p < o.Foreveryinteger k > 3, setting
xx = (27%,0,..,0) € R® and

8(n=Mk:y € B(x;, 87"
fie) = {0 :f; ¢ B((xl,z,S"‘)).

We define a function f: R™ — R which its formula is given by
1

i P
o) = (Z fk(y)> . M
k=3

We claim that this function is an element of the Morrey spaces and is not an element of the vanishing
Morrey spaces. We need the following lemmas to prove this claim. In the rest of this paper, the notation of the
function f definedin (1).

Lemmal. f € L} (R™M).

Proof. Let x € R™ and r > 0. Note that

[ roway=3 | Fay <Y 8 [ty e <o
B k=3 7 BOerINB(x187) k=3 B(x,87F) k=3

The lemma is proved. m
Lemma 2. Let k > 3 beaninteger, x € R% and r > 0.If |x — x| < 2(47%), then
| £ dy < Cu, D).
B(x,r)NB(x,87k)

Proof. We have two cases: (i) 2(87%) < |x — x| < 2(47%) or (ii) |x — x| < 2(87%). For the case (i),

we obtain
2 ) < x —xp| < |x—yl+ |y —xx| <7+ 8% =11 <8k

for every y € B(x,1) N B(xx,87%). Hence
fedy =174 f 8=k gy < C(n)8kgn-Pkg=nk = C(n).

-t f
B(x,7)NB(x,87k) B(x,7)NB(x,87k)

For the case (ii), it is easy to show that B(x,,87%) € B (x 3(8"‘)), which implies

| feydy =17 | Bk gy < gk [ = Y1 dy
B(x,r)nB(xk,S_k) B(x,r)nB(xk,S_k) B(x,r)nB(xk'B_k)
< 8(11_1)1{[ |x — yl—/l dy = C(n, /1)8(n—/1)k8(n—/1)(—k) =C(n,A).
B(x3(87%))

Combining the two cases results above, the lemma is proved. m
Using the Lemma 1 and the Lemma 2, we will show that the function f belongs to the Morrey spaces
LPA(R™M).
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Lemma 3. f € LPA(R™).

Proof. From Lemma 1, f € LI;OC(]R{n). Now, let x € R™ and r > 0. There are two cases: (i) x €&

B\ x,2(4" or ever =>3,or (ii) x € B(x;,2(4~ or some j = 3. Assume the case (i) holds. For
2(47%)) fi y k=3 ]2( ky) f j=3.A h (i) hold

every y € B(x,7) N B(x,87%), we have
207 < |x—xp| S lx—yl+ |y — x| <r+8F<r+47F

This means r~* < 4% and

r f IfFO)IP dy = Z roAgn Ak f 1dy
B(x,r) =3 B

(x,)NB(xy,87K)
<) Z 4Akgn=Dkgnk — ¢ (n) z 2 < oo, )
k=3 k=3

Assume the case (ii) holds. Then there is only one j >3 such that x € B(xj,2(4'j)) and since
{B (xk, 2(4"‘))} is a disjoint collection. We also obtain x ¢ B (xk, 2(4"‘)) for every k =3 with k #j.
k=3

By virtue to Lemma 2 and the calculation of (2), we conclude

| ifeardy =y | FeG) dy
B(x,1) =3 /B, INB(x;,87F)

fi () dy +r7* fi(¥) dy
/ kzz?, L(x,r)nB(xk,S—k) ¢

k#j

= T_A f
B(x,r)nB(xj,S‘f)

(o8]

< Cn, ) + C(n) Z 277 < oo, 3)

k=3
k+j

Therefore,

ST

Ifllp2 =
X

sup (r-ﬁ [ oo dy) <Cnap) <o,
ER™,r>0 B(x,1)
in view of (2) and (3). This completes the proof. m

Lemma 4. f ¢ VLPA(R™).

Proof. Let x € R" and 0 < r < 1. Choose an integer k such that 87% < r. Then

() = [ yoray= | foydyz [ seay
B(xg,1) B(xy,87%) B(xx,87%)
> C(n)8™ 8" = C(n) > 0.

Hence Mj(r) bounded away from zero as r tends to zero. m

Proof of The Theorem 1. Let f be defined by (1). According to the Lemma 3 and the Lemma 4, we have

f € LPA(R™)\VLPA(R™). Hence VLPA(R™) is a proper subset of LPA(R™). m
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