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Abstract: This paper deals with the modular irregularity strength of a graph of 𝑛  vertices, a new graph 

invariant, modified from the well-known irregularity strength, by changing the condition of the vertex-weight 

set associate to the irregular labeling from 𝑛 distinct positive integer to 𝑍𝑛-the group of integer modulo 𝑛. 

Investigating the triangular book graph 𝐵𝑚
(3)

, we first find the irregularity strength of triangular book graph 

𝑠 (𝐵𝑚
(3)
), which is also the lower bound for the modular irregularity strength, and then construct a modular 

irregular 𝑠 (𝐵𝑚
(3)
)-labeling. The result shows that triangular book graph admit a modular irregular labeling 

and its modular irregularity strength and irregularity strength are equal, except for a small case. 
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1. Introduction 

For a simple graph 𝐺 of order 𝑛 ≥ 2, it is impossible to have 𝑛 distinct vertex degree. By adding multiple 

edges to 𝐺, each vertex can have distinct degree. It means that multigraph can have that property. A graph is 

irregular if its vertices have distinct degrees. Replacing multiple edges joining each pair of vertices by its 

number, Chartrand, Jacobson, Lehel, Oellermann, Ruiz, and Saba in [8] introduced the well-known labeling of 

𝐺, called the irregular assignment, that is an edge 𝑘-labeling of the edge-set 𝑓: 𝐸(𝐺) → {1, 2,⋯ , 𝑘} such that 

the vertex-weights are all distinct, where the weight of a vertex 𝑢  in 𝐺  is the sum of all labels of edges 

incident to 𝑢, wrote 𝑤𝑓(𝑢) = ∑ 𝑓(𝑢𝑣)𝑢𝑣∈𝐸(𝐺) . Irregular assignment is also called a vertex irregular edge 𝑘-

labeling. The minimum value 𝑘 for which 𝐺 has a vertex irregular edge 𝑘-labeling is called the irregularity 

strength of 𝐺 , denoted by 𝑠(𝐺) . If 𝐺  has no such labeling, 𝑠(𝐺) = ∞ . 𝑠(𝐺)  is finite for only graph that 

contain no component of order at most 2.  

The lower bound of 𝑠(𝐺) is given in [8] as follow. 

𝑠(𝐺) ≥ max
1≤𝑖≤Δ

{
𝑛𝑖 + 𝑖 − 1

𝑖
} , (1) 

where 𝑛𝑖  denotes the number of vertices of degree 𝑖 and Δ is the maximum degree of 𝐺. For 𝑟-regular 
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graphs of order 𝑛, the lower bound [8] is 𝑠(𝐺) ≥
𝑛+𝑟−1

𝑟
. 

In [9], Faudree and Lehel provided the upper bound for 𝑟-regular graphs of order 𝑛, 𝑟 ≥ 2, as 𝑠(𝐺) ≤

⌈
𝑛

2
⌉ + 9, and conjectured that 𝑠(𝐺) ≤

𝑛

𝑑
+ 𝑐 for any graph. For even 𝑟, Faudree, Schelp, Jacobson, and Lehel 

in [10] proved that 𝑠(𝐺) ≤ ⌈
𝑛

2
⌉ + 2. In [14], Nierhoff gave a tight bound for general graph of order 𝑛 with no 

component of order at most 2, as 𝑠(𝐺) ≤ 𝑛 − 1. Kalkowski, Karonski, and Pfender [12] also improved the 

bound of 𝑠(𝐺). The exact values of the irregularity strength of graphs are known only for few family of graphs, 

such as paths and complete graphs [8], cycles and Turan graphs [10], circulant graphs [1], trees [7], corona 

product of path and complete graphs, and corona product of cycle and complete graphs for small cases [13], 

fan graphs [3], wheel graphs [6].  

Difficulties of finding the irregularity strength for any graph or even for graphs with simple structure have 

brought out many modifications of such labeling that one can find in [2], [4], [15], and [11]. The recent one is 

a modular irregular labeling of a graph introduced by Baca, Muthugurupackiam, Kathiresan, and Ramya in 

[5], which is obtained by modifying the condition of the vertex-weight set associate to the irregular labeling 

from 𝑛 distinct positive integer to 𝑍𝑛-the group of integer modulo 𝑛. 

Let 𝐺 = (𝑉, 𝐸)  be a graph of order 𝑛  with no component of order at most 2. An edge 𝑘 -labeling 

𝑓: 𝐸(𝐺) → {1, 2,⋯ , 𝑘} is called a modular irregular 𝑘-labeling of 𝐺 if there exists a bijective weight function 

𝑤𝑓: 𝑉(𝐺) → 𝑍𝑛 defined by  

𝑤𝑓(𝑥) =∑𝑓(𝑥𝑦) 

called modular weight of the vertex 𝑥, where 𝑍𝑛 is the group of integers modulo 𝑛 and the sum is over all 

vertices 𝑦  adjacent to 𝑥 . The minimum value 𝑘  for which 𝐺  admits a modular irregular 𝑘 -labeling is 

called the modular irregularity strength of 𝐺  and denoted by 𝑚𝑠(𝐺) . If a graph 𝐺  admits no modular 

irregular 𝑘-labeling, then 𝑚𝑠(𝐺) = ∞. 

The lower bound of the modular irregularity strength of a graph is given in [5] as follow. 

𝑚𝑠(𝐺) ≤ 𝑠(𝐺). (2) 

And for any graph of order 𝑛, the infinity condition is given in Theorem A. 

Theorem A ([5]). If 𝐺 is a graph of order 𝑛, 𝑛 ≡ 2 (mod 4), then 𝐺 has no modular irregular labeling i.e., 

𝑚𝑠(𝐺) = ∞. 

A condition for an irregular assignment of a graph 𝐺 is also its modular irregular labeling is given in Lemma 

B. 

Lemma B ([5]). Let 𝐺  be a graph with no component of order ≤ 2 , and let 𝑠(𝐺) = 𝑘 . If there exists an 

irregular assignment of 𝐺 with edge labels of at most 𝑘, where the weights of vertices constitute a set of 

constitute integer, then 

𝑠(𝐺) = 𝑚𝑠(𝐺) = 𝑘. 

They [5] also determined the exact values of the modular irregularity strength of five family of graphs, such 

as paths, stars, triangular graphs, cycles, and gear graphs. Later in [3], Baca, Kimakova, Lascsakova, and 

Semanicova-Fenovcikova determined the modular irregularity strength of fan graphs, and in [6], Baca, Imran, 

and Semanicova-Fenovcikova determined the modular irregularity strength of wheel graphs. They ([3] and 

[6]) proposed the following problem. 

Problem 1 ([6]). Is there another family of graphs, besides wheels and fan graphs, for which the irregularity 

strength and the modular irregularity strength are the same? 

The triangular book graph 𝐵𝑛
(3)

 , 𝑛 ≥ 1 , is a planar undirected graph of order 𝑛 + 2  and size 2𝑛 + 1 

constructed by 𝑛 cycles of order 3 sharing a common edge. 

In the next section, we discuss the irregularity strength and the modular irregularity strength of triangular 
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book graphs, in order to provide small answer to the problem. 

2. Main Results 

The first result gives the exact value of 𝑠 (𝐵𝑛
(3)
), 𝑛 ≥ 1. 

 The Irregularity Strength of Triangular Book Graphs 

Theorem 1. Let 𝐵𝑛
(3)

, 𝑛 ≥ 1, be a triangular book graph of order 𝑛 + 2 and size 2𝑛 + 1 . Then 

𝑠 (𝐵𝑛
(3)
) = { 

 3,             for 𝑛 = 1

⌈
𝑛 + 1

2
⌉ , for 𝑛 ≥ 2

. 

 

Proof. Let 𝐵𝑛
(3)

, 𝑛 ≥ 1, be a triangular book graph with the vertex set 𝑉 (𝐵𝑛
(3)
) = {𝑎, 𝑏, 𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛} and the 

edge set 𝐸 (𝐵𝑛
(3)
) = {𝑎𝑏, 𝑎𝑐𝑖 , 𝑏𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛}. We divide the proof into 2 cases as follow. 

Case 1. For 𝑛 = 1 . It is clear that 𝐵1
(3)

  isomorphic to a cycle 𝐶3 , then 𝐵1
(3)

  admits a vertex irregular 3 -

labeling with edge labels 1, 2, 3, and the induced vertex weights 3, 4, 5, and 𝑠 (𝐵1
(3)
) = 3. 

Case 2. For 𝑛 ≥ 2 . By equation (1), we have that since 𝐵𝑛
(3)

  is a bicenter graph with 𝛿 = 2 , then   

𝑠 (𝐵𝑛
(3)
) ≥ ⌈

𝑛+1

2
⌉. The sufficient condition to complete the proof is by constructing a vertex irregular edge 

⌈
𝑛+1

2
⌉-labeling. Define a vertex irregular edge ⌈

𝑛+1

2
⌉-labeling 𝑓: 𝐸 (𝐵𝑛

(3)
) → {1, 2,⋯ , ⌈

𝑛+1

2
⌉} as follow. 

𝑓(𝑎𝑏) = { 
 2, for 𝑛 = 2;
 1, for 𝑛 ≥ 3;

  

𝑓(𝑎𝑐𝑖) = { 

𝑖+1

2
, for odd 𝑖;

𝑖

2
,    for even 𝑖;

  

𝑓(𝑏𝑐𝑖) = { 

𝑖+1

2
,     for odd 𝑖;  

𝑖

2
+ 1, for even 𝑖.

  

It is clearly to see that the maximum label is ⌈
𝑛+1

2
⌉, hence, 𝑓 is an edge ⌈

𝑛+1

2
⌉-labeling. Next, we evaluate the 

vertex-weights as follow. 

For 𝑛 = 2, we have 𝑤𝑓(𝑐1) = 2, 𝑤𝑓(𝑐2) = 3, 𝑤𝑓(𝑎) = 4, and 𝑤𝑓(𝑏) = 5.  

For odd 𝑛 ≥ 3, we have  

𝑤𝑓(𝑐𝑖) = 𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑛; 

𝑤𝑓(𝑎) =
1

4
(𝑛2 + 2𝑛 + 5); 

𝑤𝑓(𝑏) =
1

4
(𝑛2 + 4𝑛 + 3); 

For even 𝑛 ≥ 4, we have 

𝑤𝑓(𝑐𝑖) = 𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑛; 

𝑤𝑓(𝑎) =
1

4
(𝑛2 + 2𝑛 + 4); 

𝑤𝑓(𝑏) =
1

4
(𝑛2 + 4𝑛 + 4). 

The labeling 𝑓 is optimal and the vertex weights are all distinct, with 𝑤𝑓(𝑐𝑖) < 𝑤𝑓(𝑎) < 𝑤𝑓(𝑏), hence, 𝑓 is 

a vertex irregular edge ⌈
𝑛+1

2
⌉-labeling.  Then, it can be concluded that 𝐵𝑛

(3)
 admits a vertex irregular ⌈

𝑛+1

2
⌉-
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labeling and the irregularity strength 𝑠 (𝐵𝑛
(3)
) = ⌈

𝑛+1

2
⌉.∎ 

 

 

 The Modular Irregularity Strength of Triangular Book Graphs 

Theorem 2. Let 𝐵𝑛
(3)

, 𝑛 ≥ 1, be a triangular book graph of order 𝑛 + 2 and size 2𝑛 + 1 . Then 

𝑚𝑠 (𝐵𝑛
(3)
) =

{
 
 

 
 
 3,              for 𝑛 = 1;                  
4,              for 𝑛 = 5;                  
∞,             for 𝑛 ≡ 0 (mod 4); 

⌈
𝑛 + 1

2
⌉ , otherwise                  

 

 

Proof. Let 𝐵𝑛
(3)

, 𝑛 ≥ 1, be a triangular book graph with the vertex set 𝑉 (𝐵𝑛
(3)
) = {𝑎, 𝑏, 𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛} and the 

edge set 𝐸 (𝐵𝑛
(3)
) = {𝑎𝑏, 𝑎𝑐𝑖 , 𝑏𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛}. We divide the proof into 4 cases as follow. 

Case 1. For 𝑛 = 1. It follows from Theorem 1 and Lemma A that 𝑚𝑠 (𝐵1
(3)
) = 3. 

Case 2. For 𝑛 = 5 . By Theorem 1 and equation (2), we have 𝑚𝑠 (𝐵5
(3)
) ≥ 3 . Suppose that 𝐵5

(3)
  admits a 

modular irregular 3-labeling 𝑓 and 𝑚𝑠 (𝐵5
(3)
) = 3. Since the degree of 𝑐𝑖 , 1 ≤ 𝑖 ≤ 5, is 2 then the vertex 

weight under labeling 𝑓 is at least 2 and at most 6. Then the modular weight 0 and 1, must be realizable 

on both centers 𝑎  and 𝑏 . Moreover, when we set the vertex weights 2, 3,⋯ , 6 , we obtained that the 

minimum weight of vertex 𝑎  and 𝑏  is 1 + 1 + 1 + 1 + 2 + 3 = 9 , and the maximum one is 3 + 1 + 2 +

3 + 3 + 3 = 15. Since, 14 ≡ 0(mod 7) and 15 ≡ 1(mod 7), then we need to have the weight of vertices 𝑎 

and 𝑏 equal to 14 and 15, respectively. Assume that 𝑤𝑡(𝑏) = 𝑓(𝑎𝑏) + 𝑓(𝑏𝑐1) + 𝑓(𝑏𝑐2) + ⋯+ 𝑓(𝑏𝑐5) = 15, 

then the only solution for the weight of vertex 𝑎 is 𝑤𝑡(𝑎) = 𝑓(𝑎𝑏) + 𝑓(𝑎𝑐1) + 𝑓(𝑎𝑐2) + ⋯+ 𝑓(𝑎𝑐5) = 3 +

1 + 1 + 1 + 2 + 3 = 11 ≡ 4 (mod 7) equals to one of modular weight we have set, which is a contradiction. 

Thus, 𝑚𝑠 (𝐵5
(3)
) ≥ 4. Let the edge labels listed as 𝑓(𝑎𝑏) = 1, 𝑓(𝑎𝑐1) = 1, 𝑓(𝑎𝑐2) = 1, 𝑓(𝑎𝑐3) = 1, 𝑓(𝑎𝑐4) =

2, 𝑓(𝑎𝑐5) = 2, 𝑓(𝑏𝑐1) = 1, 𝑓(𝑏𝑐2) = 2, 𝑓(𝑏𝑐3) = 3, 𝑓(𝑏𝑐4) = 3, 𝑓(𝑏𝑐5) = 4 be the construction of a modular 

irregular 4 -labeling of 𝐵5
(3)

  such that the modular weights obtained are 𝑤𝑓(𝑐𝑖) = 𝑖 + 1 , 1 ≤ 𝑖 ≤ 5 , 

𝑤𝑓(𝑎) = 8 ≡ 1 (mod 7), and 𝑤𝑓(𝑏) = 14 ≡ 0 (mod 7).  

Case 3. For 𝑛 ≡ 0 (mod 4), it follows from Theorem A that 𝑚𝑠 (𝐵𝑛
(3)
) = ∞.  

Case 4. For 𝑛 ≠ 1, 5 and 𝑛 ≢ 0 (mod 4), by Theorem 1 and equation (2), we have 𝑚𝑠 (𝐵𝑛
(3)
) ≥ ⌈

𝑛+1

2
⌉. Next, 

we construct a vertex irregular edge ⌈
𝑛+1

2
⌉ -labeling. Define a vertex irregular edge ⌈

𝑛+1

2
⌉ -labeling 

𝑓: 𝐸 (𝐵𝑛
(3)
) → {1, 2,⋯ , ⌈

𝑛+1

2
⌉} as follow. 

For 𝑛 ≡ 1 (mod 8), 

𝑓(𝑎𝑏) = 1;  

𝑓(𝑎𝑐𝑖) =

{
 
 

 
 1,               for  1 ≤ 𝑖 ≤

𝑛−1

2
;  

𝑛−1

8
+ 2,    for 𝑖 =

𝑛+1

2
;            

2𝑖−𝑛+1

2
,     for  

𝑛+3

2
≤ 𝑖 ≤ 𝑛;  
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𝑓(𝑏𝑐𝑖) =

{
 
 

 
 𝑖,          for  1 ≤ 𝑖 ≤

𝑛−1

2
;   

3𝑛−3

8
,    for 𝑖 =

𝑛+1

2
;              

𝑛+1

2
,    for  

𝑛+3

2
≤ 𝑖 ≤ 𝑛.  

  

For 𝑛 ≡ 5 (mod 8), 

𝑓(𝑎𝑏) = 1;  

𝑓(𝑎𝑐𝑖) =

{
 
 

 
 1,               for  1 ≤ 𝑖 ≤

𝑛−1

2
;

𝑛+1

2
,           for 𝑖 =

𝑛+1

2
;         

𝑛+35

8
,         for  𝑖 =

𝑛+3

2
;        

2𝑖−𝑛+1

2
,     for 

𝑛+5

2
≤ 𝑖 ≤ 𝑛;

 

  

𝑓(𝑏𝑐𝑖) =

{
 
 

 
 𝑖,               for  1 ≤ 𝑖 ≤

𝑛−1

2
;

1,               for 𝑖 =
𝑛+1

2
;          

3𝑛−15

8
,       for  

𝑛+3

2
;               

2𝑖−𝑛+1

2
,     for 

𝑛+5

2
≤ 𝑖 ≤ 𝑛.

 

  

For 𝑛 ≡ 2 (mod 4), 𝑛 ≡ 3 (mod 4), and 1 ≤ 𝑖 ≤ 𝑛. 

𝑓(𝑎𝑏) = {
𝑛+6

4
,    for 𝑛 ≡ 2 (mod 4);

1,        for 𝑛 ≡ 3 (mod 4);
  

𝑓(𝑎𝑐𝑖) =

{
 
 

 
 
𝑖+1

2
,     for  odd 𝑖;                      

𝑖

2
+ 1,  for 𝑖 ≡ 0 (mod 4);      

𝑖

2
,          for 𝑖 ≡ 2 (mod 4);     

  

𝑓(𝑏𝑐𝑖) =

{
 
 

 
 
𝑖+1

2
,     for  odd 𝑖;                   

𝑖

2
,         for 𝑖 ≡ 0 (mod 4);   

𝑖

2
+ 1,  for 𝑖 ≡ 2 (mod 4).   

  

It can be checked that the maximum label given above is ⌈
𝑛+1

2
⌉, hence, 𝑓 is an edge ⌈

𝑛+1

2
⌉-labeling. Next, 

we evaluate the vertex-weights as follow. 

For 𝑛 ≡ 1 (mod 8) , we have 𝑤𝑡(𝑐𝑖) = 𝑖 + 1 , 1 ≤ 𝑖 ≤ 𝑛 ; 𝑤𝑡(𝑎) =
1

8
(𝑛 + 7)(𝑛 + 2) ≡ 0 (mod (𝑛 + 2)) ; and 

𝑤𝑡(𝑏) =
3

8
(𝑛 − 1)(𝑛 + 2) + 1 ≡ 1 (mod (𝑛 + 2)). 

For 𝑛 ≡ 5 (mod 8), we have 𝑤𝑡(𝑐𝑖) = 𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑛; 𝑤𝑡(𝑎) =
1

8
(𝑛 + 11)(𝑛 + 2) ≡ 0 (mod (𝑛 + 2)); and 

𝑤𝑡(𝑏) =
1

8
(3𝑛 − 7)(𝑛 + 2) + 1 ≡ 1 (mod (𝑛 + 2)). 

For 𝑛 ≡ 2 (mod 4) , we have 𝑤𝑡(𝑐𝑖) = 𝑖 + 1 , 1 ≤ 𝑖 ≤ 𝑛 ; 𝑤𝑡(𝑎) =
1

4
(𝑛 + 2)2 ≡ 0 (mod (𝑛 + 2)) ; and 

𝑤𝑡(𝑏) =
1

4
(𝑛 + 2)2 + 1 ≡ 1 (mod (𝑛 + 2)).  

For 𝑛 ≡ 3 (mod 4) , we have 𝑤𝑡(𝑐𝑖) = 𝑖 + 1 , 1 ≤ 𝑖 ≤ 𝑛 ; 𝑤𝑡(𝑎) =
1

4
(𝑛 + 1)(𝑛 + 2) ≡ 0 (mod (𝑛 + 2)) ; and 

𝑤𝑡(𝑏) =
1

4
(𝑛 + 1)(𝑛 + 2) + 1 ≡ 1 (mod (𝑛 + 2)).  

The labeling 𝑓 is optimal and forms the vertex weights set {0, 1, 2,⋯ , 𝑛 + 1}. It means that there exists a 

bijective weight function 𝑤𝑡: 𝑉 (𝐵𝑛
(3)
) → 𝑍𝑛+2, such that 𝑓 satisfy a modular irregular ⌈

𝑛+1

2
⌉-labeling. ∎ 
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3. Conclusion 

By Theorem 1 and Theorem 2, we have determined the exact values of irregularity strength and modular 

irregularity strength of triangular book graphs. We conclude that for 𝑛 ≠ 5  and 𝑛 ≢ 0 (mod 4) ,   

𝑠 (𝐵𝑛
(3)
) = 𝑚𝑠 (𝐵𝑛

(3)
).   
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