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Abstract: This paper deals with the totally irregular total labeling of the disjoin union of friendship graphs. 

The results shows that the disjoin union of 𝑚 copies of the friendship graph is a totally irregular total graph 

with the exact values of the total irregularity strength equals to its edge irregular total strength.  
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1. Introduction 

In [1], Baca, et al. introduced a vertex irregular total 𝑘- labeling and an edge irregular total 𝑘-labeling of 

a graph as a modification of the well-known irregular assignment given by Chartrand, et al. [2]. 

A vertex irregular total 𝑘-labeling of a graph 𝐺 is a function that map all the vertices and edges of 𝐺 to 

𝑘 positive integer 𝜆: 𝑉(𝐺) ∪ 𝐸(𝐺) → {1, 2, ⋯ , 𝑘} such that all the vertex weights are distinct, where 𝑤(𝑣) =

𝜆(𝑣) + ∑ 𝜆(𝑣𝑥)𝑣𝑥∈𝐸(𝐺) . The minimum value 𝑘 for which 𝐺 has a vertex irregular total 𝑘-labeling is called 

the total vertex irregularity strength of 𝐺, denoted by 𝑡𝑣𝑠(𝐺). The boundaries of 𝑡𝑣𝑠(𝐺) is given in [1] as 

follow. 

 

Theorem 1. [1] Let 𝐺 be a graph (𝑝, 𝑞) with minimum degree 𝛿 and maximum degree Δ. Then  

⌈
𝑝+𝑟

𝑟+1
⌉ ≤ 𝑡𝑣𝑠(𝐺) ≤ 𝑝 − 𝑟 + 1         (1) 

 

An edge irregular total 𝑘-labeling of a graph 𝐺 is a function that map all the vertices and edges of 𝐺 to 

𝑘 positive integer 𝜆: 𝑉(𝐺) ∪ 𝐸(𝐺) → {1, 2, ⋯ , 𝑘} such that all the edge weights are distinct, where 𝑤(𝑣𝑥) =

𝜆(𝑣) + 𝜆(𝑣𝑥) + 𝜆(𝑥). The minimum value 𝑘 for which 𝐺 has an edge irregular total 𝑘-labeling is called the 

mailto:meilinity@gmail.com
https://doi.org/10.30598/tensorvol3iss1pp43-48


44  M. I. Tilukay & H. Batkunde| The Total Irregularity Strength… 
 
 

total edge irregularity strength of 𝐺, denoted by 𝑡𝑒𝑠(𝐺). The lower bound of 𝑡𝑒𝑠(𝐺) is given in [1] as follow. 

Theorem 2. [1] Let 𝐺 = (𝑉, 𝐸) be any graph with maximum degree Δ. Then  

 

𝑡𝑒𝑠(𝐺) ≥ max  {⌈
|𝐸(𝐺)|+2

3
⌉ , ⌈

Δ(𝐺)+1

2
⌉}        (2) 

 

Later, many results given for improving the boundaries and the exact values of 𝑡𝑣𝑠(𝐺) and 𝑡𝑒𝑠(𝐺) of 

certain types of graphs are determined instead of finding the exact values of any graph. In [1], Baca, et al. have 

determined the 𝑡𝑣𝑠(𝐺)  of complete graph, cycle graph, star graph, and prism graph. Nurdin, et al [3], 

Simanjuntak, et al. [4], and Susilawati, et al. [5], focused on the boundaries and exact values of the total vertex 

irregularity strength of trees. For the disjoint union of friendship graph, Ahmad, et al. [6] have showed that 

its total vertex irregularity strength equals to the lower bound given in equation (1) and provided corollary 

for 𝑚 copies of friendship graph as follow. 

 

Corolarry 3. [6] Let 𝐹𝑛 be a friendship graph with 𝑛 triangles, 𝑛 ≥ 3, and let 𝑚𝐹𝑛 be the disjoint union of 

𝑚 copies of 𝐹𝑛, 𝑚 ≥ 2. Then 

𝑡𝑣𝑠(𝑚𝐹𝑛) = ⌈
2(𝑚𝑛+1)

3
⌉.         (3) 

Many results of the total edge irregularity strength of some certain class of graphs also be provided by 

several authors, namely Baca, et al. for path graph, cycle graph, star graph, wheel graph, and friendship graph 

in [1], Ivanco and Jendrol [7] for trees, and many others. In [6], Ahmad, et al, also provided the total edge 

irregularity strength of the disjoint union of friendship graph, and the following corollary, which is equal to 

the lower bound in equation (2). 

 

Corolarry 4. [6] Let 𝐹𝑛 be a friendship graph with 𝑛 triangles, 𝑛 ≥ 3, and let 𝑚𝐹𝑛 be the disjoint union of 

𝑚 copies of 𝐹𝑛, 𝑚 ≥ 2. Then 

𝑡𝑒𝑠(𝑚𝐹𝑛) = 𝑚𝑛 + 1         (4) 

 

Motivated by both labeling, Marzuki, et al. [8] introduced a totally irregular total 𝑘-labeling of a graph 

𝐺, as a total 𝑘-labeling such that for every two distinct vertices 𝑣 and 𝑥, their weights 𝑤(𝑣) and 𝑤(𝑥) are 

distinct, and for every two distinct edges 𝑣1𝑣2 and 𝑥1𝑥2, their weights 𝑤(𝑣1𝑣2) and 𝑤(𝑥1𝑥2) are distinct. 

The minimum 𝑘 for which 𝐺 has a totally irregular total 𝑘-labeling is called the total irregularity strength 

of 𝐺, denoted 𝑡𝑠(𝐺). 

They [8] provided the lower bound of 𝑡𝑠(𝐺) as follow. 

 

Observation 5. [8] For every graph 𝐺,  

𝑡𝑠(𝐺) ≥ max{𝑡𝑒𝑠(𝐺), 𝑡𝑣𝑠(𝐺)}         (5) 

 

They [8] proved that the lower bound is sharp for path graph of order 𝑛 ≠ 2, 5 and cycle graphs. Ramdani 

and Salman [9], Ramdani, et al [10], Tilukay, et al. [11-13], also confirmed the sharpness of the lower bound 

of the total irregularity of several types of graphs, including friendship graph 𝐹𝑛. More results can be seen in 

a survey provided by Galian in [14]. 

 

In this paper, we investigate the total irregularity strength of the disjoint union of 𝑚 copies of friendship 

graph. 
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2. The Total Irregularity Strength of 𝒎 Copies of the Friendship Graph 

The friendship graph 𝐹𝑛 is a set of 𝑛 copies of a triangle having a common vertex as a center and the other 

mutually disjoint vertices. 

 

 

Theorem 6. Let 𝑚𝐹𝑛 be the disjoint union of 𝑚 copies of a friendship graph 𝐹𝑛, where 𝑚 ≥ 2 and 𝑛 ≥ 2. 

Then 

𝑡𝑠(𝑚𝐹𝑛) = 𝑚𝑛 + 1. 

 

Proof. Since the friendship graph 𝐹𝑛 has 2𝑛 + 1 vertices and 3𝑛 edges, the disjoint union of 𝑚 copies of 

the friendship graph 𝐹𝑛  is a graph of order 2𝑚𝑛 + 𝑚 , size 3𝑚𝑛 , and maximum degree 2𝑛 . Follow from 

equation (3-5), we obtain 𝑡𝑠(𝑚𝐹𝑛) ≥ 𝑚𝑛 + 1 , for 𝑚, 𝑛 ≥ 2 . Next, to conclude that it is the exact value of 

𝑡𝑠(𝑚𝐹𝑛), we need to prove that there is a totally irregular total (𝑚𝑛 + 1) −labeling of 𝑚𝐹𝑛. Let 𝑉(𝑚𝐹𝑛) =

{𝑣𝑖|1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑥𝑖1

𝑗
, 𝑦𝑖1

𝑗
|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟} ∪ {𝑥𝑖

𝑟+1, 𝑦𝑖
𝑟+1|1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑥𝑖2

𝑗
, 𝑦𝑖2

𝑗
|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 −

𝑟 − 1}  and 𝐸(𝑚𝐹𝑛) = {𝑣𝑖𝑥𝑖1

𝑗
, 𝑣𝑖𝑦𝑖1

𝑗
, 𝑥𝑖1

𝑗
𝑦𝑖1

𝑗
|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟} ∪ {𝑣𝑖𝑥𝑖

𝑟+1, 𝑣𝑖𝑦𝑖
𝑟+1, 𝑥𝑖

𝑟+1𝑦𝑖
𝑟+1|1 ≤ 𝑖 ≤ 𝑚} ∪

{𝑣𝑖𝑥𝑖2

𝑗
, 𝑣𝑖𝑦𝑖2

𝑗
, 𝑥𝑖2

𝑗
𝑦𝑖2

𝑗
|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1}.  Let 𝑡𝑖 = 𝑛𝑖 + 1  and 𝑟 = ⌊

𝑛−1

2
⌋ . Consider that 

𝑚𝐹𝑛consists of 𝑚 component of form 𝐹𝑛. We partition 𝑛 triangles of each component of form 𝐹𝑛 into 3 

parts, as follow: 

i. 𝑟 first triangles 𝑣𝑖𝑥𝑖1

𝑗
𝑦𝑖1

𝑗
𝑣𝑖, where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑟; 

ii. Triangle 𝑣𝑖𝑥𝑖
𝑟+1𝑦𝑖

𝑟+1𝑣𝑖, where 1 ≤ 𝑖 ≤ 𝑚; 

iii. 𝑛 − 𝑟 − 1 triangles 𝑣𝑖𝑥𝑖2

𝑗
𝑦𝑖2

𝑗
𝑣𝑖 , where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1. 

Next, we construct a total labeling 𝜆: 𝑉 ∪ 𝐸 → {1, 2, 3, ⋯ , 𝑚𝑛 + 1} defined by 

𝜆(𝑣𝑖) = 𝑛(𝑖 − 1) + 𝑟 + 1,   1 ≤ 𝑖 ≤ 𝑚; 

𝜆(𝑥𝑖1

𝑗
) = 𝑛(𝑖 − 1) + 1,     1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝜆(𝑦𝑖1

𝑗
) = 𝑛(𝑖 − 1) + 1,     1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝜆(𝑥𝑖
𝑟+1) = 𝑛(𝑖 − 1) + 𝑟 + 1,   1 ≤ 𝑖 ≤ 𝑚; 

𝜆(𝑦𝑖
𝑟+1) = 𝑛(𝑖 − 1) + 𝑟 + 1,   1 ≤ 𝑖 ≤ 𝑚; 

𝜆(𝑥𝑖2

𝑗
) = 𝑛𝑖 + 1,      1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1; 

𝜆(𝑦𝑖2

𝑗
) = 𝑛𝑖 + 1,      1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1; 

𝜆(𝑥𝑖1

𝑗
𝑦𝑖1

𝑗
) = 𝑛(𝑖 − 1) + 𝑗    1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝜆(𝑣𝑖𝑥𝑖1

𝑗
) = 𝑛(𝑖 − 1) + 2𝑗 − 1,  1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝜆(𝑣𝑖𝑦𝑖1

𝑗
) = 𝑛(𝑖 − 1) + 2𝑗,    1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝜆(𝑥𝑖
𝑟+1𝑦𝑖

𝑟+1) = 𝑛(𝑖 − 1) + 𝑟 + 1,  1 ≤ 𝑖 ≤ 𝑚; 

𝜆(𝑣𝑖𝑥𝑖
𝑟+1) = 𝑛(𝑖 − 1) + 𝑟 + 2,   1 ≤ 𝑖 ≤ 𝑚; 

𝜆(𝑣𝑖𝑦𝑖
𝑟+1) = 𝑛(𝑖 − 1) + 𝑟 + 3,   1 ≤ 𝑖 ≤ 𝑚; 

𝜆(𝑥𝑖2

𝑗
𝑦𝑖2

𝑗
) = 𝑛(𝑖 − 1) + 𝑟 + 𝑗 + 1,  1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1. 
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𝜆(𝑣𝑖𝑥𝑖2

𝑗
) = {

𝑛(𝑖 − 1) + 2𝑗,                     even 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1; 

𝑛(𝑖 − 1) + 2𝑗 + 1,             odd 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1;  
    

𝜆(𝑣𝑖𝑦𝑖2

𝑗
) = {

𝑛(𝑖 − 1) + 2𝑗 + 1,             even 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1; 

𝑛(𝑖 − 1) + 2𝑗 + 2,             odd 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1;  
    

 

From the construction above, one can check that the maximum label is 𝑚𝑛 + 1, as on vertex 𝑥𝑖2

𝑛  for example. 

Next, we evaluate all the vertex-weights and all the edge-weights as follow.  

 

For the edge-weights we have: 

𝑤(𝑥𝑖1

𝑗
𝑦𝑖1

𝑗
) = 3𝑛(𝑖 − 1) + 𝑗 + 2,     1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝑤(𝑣𝑖𝑥𝑖1

𝑗
) = 3𝑛(𝑖 − 1) + 𝑟 + 2𝑗 + 1,   1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝑤(𝑣𝑖𝑦𝑖1

𝑗
) = 3𝑛(𝑖 − 1) + 𝑟 + 2𝑗 + 2,    1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝑤(𝑥𝑖
𝑟+1𝑦𝑖

𝑟+1) = 3𝑛(𝑖 − 1) + 3𝑟 + 3,    1 ≤ 𝑖 ≤ 𝑚; 

𝑤(𝑣𝑖𝑥𝑖
𝑟+1) = 3𝑛(𝑖 − 1) + 3𝑟 + 4,    1 ≤ 𝑖 ≤ 𝑚; 

𝑤(𝑣𝑖𝑦𝑖
𝑟+1) = 3𝑛(𝑖 − 1) + 3𝑟 + 5,    1 ≤ 𝑖 ≤ 𝑚; 

𝑤(𝑥𝑖2

𝑗
𝑦𝑖2

𝑗
) = 3𝑛(𝑖 − 1) + 2𝑛 + 𝑟 + 𝑗 + 3,  1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1. 

𝑤(𝑣𝑖𝑥𝑖2

𝑗
) = {

3𝑛(𝑖 − 1) + 𝑛 + 𝑟 + 2𝑗 + 2,             even 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1; 

3𝑛(𝑖 − 1) + 𝑛 + 𝑟 + 2𝑗 + 3,             odd 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1;   
    

𝑤(𝑣𝑖𝑦𝑖2

𝑗
) = {

3𝑛(𝑖 − 1) + 𝑛 + 𝑟 + 2𝑗 + 3,              even 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1; 

3𝑛(𝑖 − 1) + 𝑛 + 𝑟 + 2𝑗 + 4,              odd 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1.  
    

Investigating all these edge-weights, we obtain that there is no two vertices of the same weight. Specifically, 

this total labeling is very optimal such that all the edge-weights for a consecutive sequence of difference 1 

from 3 to |𝐸(𝑚𝐹𝑛| + 2.  

 

For the vertex-weights we have: 

𝑤(𝑣𝑖) = {
(2𝑛2 + 𝑛)(𝑖 − 1) + 2𝑛2 + 4𝑟2 − 4𝑛𝑟 − 𝑛 + 5𝑟 + 5,       even 𝑛, 1 ≤ 𝑖 ≤ 𝑚;     

(2𝑛2 + 𝑛)(𝑖 − 1) + 2𝑛2 + 4𝑟2 − 4𝑛𝑟 + 𝑛 + 3𝑟 + 3,       odd 𝑛, 1 ≤ 𝑖 ≤ 𝑚;       
  

𝑤(𝑥𝑖1

𝑗
) = 3𝑛(𝑖 − 1) + 3𝑗,     1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝑤(𝑦𝑖1

𝑗
) = 3𝑛(𝑖 − 1) + 3𝑗 + 1,    1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟; 

𝑤(𝑥𝑖
𝑟+1) = 3𝑛(𝑖 − 1) + 3𝑟 + 4,    1 ≤ 𝑖 ≤ 𝑚; 

𝑤(𝑦𝑖1

𝑟+1) = 3𝑛(𝑖 − 1) + 3𝑟 + 5,    1 ≤ 𝑖 ≤ 𝑚; 

𝑤(𝑥𝑖2

𝑗
) = {

3𝑛𝑖 + 𝑟 + 3𝑗 + 2,     even 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1;     
3𝑛𝑖 + 𝑟 + 3𝑗 + 3,     odd 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1;       

  

𝑤(𝑦𝑖2

𝑗
) = {

3𝑛𝑖 + 𝑟 + 3𝑗 + 3,     even 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1;     
3𝑛𝑖 + 𝑟 + 3𝑗 + 4,     odd 𝑛, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1.       

  

 

Investigating all these vertex-weights, we obtain the following conditions. 

1. 𝑤(𝑥𝑖1

𝑗
) < 𝑤(𝑦𝑖1

𝑗
) < 𝑤(𝑥𝑖

𝑟+1) < 𝑤(𝑦𝑖1

𝑟+1) < 𝑤(𝑥𝑖2

𝑗
) < 𝑤(𝑦𝑖2

𝑗
); 

2. 𝑤(𝑣𝑖) = 𝑤(𝑥𝑘1

𝑗
) or 𝑤(𝑣𝑖) = 𝑤(𝑦𝑘1

𝑗
) or ⋯ or 𝑤(𝑣𝑖) = 𝑤(𝑦𝑘2

𝑗
), for some 𝑖 < 𝑘 ≤ 𝑚. 

For instance, Condition 2 above is occurred on graph 12𝐹6. Under the total labeling 𝜆 on graph 12𝐹6, we 

found that 𝑤(𝑣1) = 𝑤(𝑥32

2 ) = 49, 𝑤(𝑣2) = 𝑤(𝑥72

3 ), and 𝑤(𝑣3) = 𝑤(𝑦121

2 ) = 205. It means that we need to 

eliminate Condition 2 to have the appropriate total labeling 𝜆. 
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Since the |𝑉(𝑚𝐹𝑛)| < |𝐸(𝑚𝐹𝑛|  while 𝜆  is very optimal for labeling all the edges, there are gaps in the 

sequence of vertex-weights 𝑤(𝑥𝑖1

𝑗
) < 𝑤(𝑦𝑖1

𝑗
) < 𝑤(𝑥𝑖

𝑟+1) < 𝑤(𝑦𝑖1

𝑟+1) < 𝑤(𝑥𝑖2

𝑗
) < 𝑤(𝑦𝑖2

𝑗
) . It means that the 

weight of 𝑣𝑖 can be changed to eliminate Condition 2. Consider the 𝑖-th friendship graph 𝐹𝑛 of Condition 2 

(where its center-weight 𝑤(𝑣𝑖)  equals to one of 𝑤(𝑥𝑖1

𝑗
), 𝑤(𝑦𝑖1

𝑗
), 𝑤(𝑥𝑖

𝑟+1), 𝑤(𝑦𝑖1

𝑟+1), 𝑤(𝑥𝑖2

𝑗
), 𝑤(𝑦𝑖2

𝑗
) ). Since 

𝜆(𝑥𝑖1

𝑗
) = 𝜆(𝑦𝑖1

𝑗
), 𝜆(𝑥𝑖

𝑟+1) = 𝜆(𝑦𝑖1

𝑟+1),  and 𝜆(𝑥𝑖2

𝑗
) = 𝜆(𝑦𝑖2

𝑗
) , then 𝑤(𝑣𝑖)  can be modified to have a distinct 

weight that fill the gap without changing the edge-weight sequence as follow. 

Let 𝑎 ≠ 0 be the minimum integer for which 𝑤(𝑣𝑖) + 𝑎 can fill the gap.  

1. For even 𝑎 > 0 , choose some triangles 𝑣𝑖𝑥𝑖
𝑗
𝑦𝑖

𝑗
 , for some 𝑗  and define 𝜆∗(𝑥𝑖

𝑗
) = 𝜆∗(𝑦𝑖

𝑗
) = 𝜆(𝑥𝑖

𝑗
) − 1 , 

𝜆∗(𝑣𝑖𝑥𝑖
𝑗
) = 𝜆(𝑣𝑖𝑥𝑖

𝑗
) + 1, 𝜆∗(𝑣𝑖𝑦𝑖

𝑗
) = 𝜆(𝑣𝑖𝑦𝑖

𝑗
) + 1, and 𝜆∗(𝑥𝑖

𝑗
𝑦𝑖

𝑗
) = 𝜆(𝑥𝑖

𝑗
𝑦𝑖

𝑗
) + 2.  

2. For even 𝑎 < 0 , choose some triangles 𝑣𝑖𝑥𝑖
𝑗
𝑦𝑖

𝑗
 , for some 𝑗  and define 𝜆∗(𝑥𝑖

𝑗
) = 𝜆∗(𝑦𝑖

𝑗
) = 𝜆(𝑥𝑖

𝑗
) + 1 , 

𝜆∗(𝑣𝑖𝑥𝑖
𝑗
) = 𝜆(𝑣𝑖𝑥𝑖

𝑗
) − 1, 𝜆∗(𝑣𝑖𝑦𝑖

𝑗
) = 𝜆(𝑣𝑖𝑦𝑖

𝑗
) + 1, and 𝜆∗(𝑥𝑖

𝑗
𝑦𝑖

𝑗
) = 𝜆(𝑥𝑖

𝑗
𝑦𝑖

𝑗
) − 2.  

3. For odd 𝑎 > 0, choose triangles 𝑣𝑖𝑥𝑖
𝑗
𝑦𝑖

𝑗
 triangles, for some 𝑗, of the last 𝑛 − 𝑟 − 1 triangles, and define  

𝜆∗(𝑣𝑖𝑥𝑖
𝑗
) =  𝜆(𝑥𝑖

𝑗
𝑦𝑖

𝑗
) + 𝜆(𝑦𝑖

𝑗
) − 𝜆(𝑣𝑖) and 𝜆∗(𝑥𝑖

𝑗
𝑦𝑖

𝑗
) =  𝜆(𝑣𝑖𝑥𝑖

𝑗
) + 𝜆(𝑣𝑖) − 𝜆(𝑦𝑖

𝑗
).  

4. For odd 𝑎 < 0 , choose triangles 𝑣𝑖𝑥𝑖
𝑗
𝑦𝑖

𝑗
  triangles, for some 𝑗 , of the first 𝑟 + 1  triangles, and define  

𝜆∗(𝑣𝑖𝑥𝑖
𝑗
) =  𝜆(𝑥𝑖

𝑗
𝑦𝑖

𝑗
) + 𝜆(𝑦𝑖

𝑗
) − 𝜆(𝑣𝑖) and 𝜆∗(𝑥𝑖

𝑗
𝑦𝑖

𝑗
) =  𝜆(𝑣𝑖𝑥𝑖

𝑗
) + 𝜆(𝑣𝑖) − 𝜆(𝑦𝑖

𝑗
).  

5. Set 𝜆∗(𝑣) = 𝜆(𝑣) and 𝜆∗(𝑒) = 𝜆(𝑒) for each of the rest of vertices and edges. 

After applying the above modification on the total labeling 𝜆 to have 𝜆∗, we can obtain that there is no two 

vertex of the same weight.  

Thus, the total labeling 𝜆∗ above is a totally irregular total (𝑚𝑛 + 1)-labeling and the exact value of the total 

irregularity strength of 𝑚 copies of the friendship graph is 𝑚𝑛 + 1. ∎ 

 

3. Conclusion 

By Theorem 1, we have showed that 𝑚 copies of the friendship graph 𝑚𝐹𝑛 is a totally irregular total graph 

and the total irregularity strength of 𝑚𝐹𝑛 is equal to its total edge irregularity strength.  
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