September 2022 | Vol. 3 | No. 2 Halaman 85-92
p-ISSN: 2723-0325 e-ISSN: 2723-0333

Extension Fields Which Are Galois Extensions

Novita Dahoklory!*, Henry W. M. Patty 2

L2 Algebra and Analysis Division, Department of Mathematics, Faculty of Mathematics and Natural
Sciences, Pattimura University, JI. Ir. M. Putuhena, Ambon. Indonesia

*Email: novitadahoklory93@gmail.com

Manuscript submitted : 09 October 2022;
Accepted for publication : 14 November 2022.
doi : https://doi.org/10.30598/tensorvol3iss2pp85-92

Abstract: Let K/F be an extension field where [K: F] is the dimension of K as a vector space over F. Let
Aut(K/F) be the automorphism group of K/F where its order is denoted by |Aut(K/F) |. In this research,
we will show that [Aut(K/F) | < [K: F]. Moreover, K/F is called a Galois extension if the equality holds that
is |Aut(K/F) | = [K:F]. We will also discuss about the fixed field of K/F. Furthermore, we will give a
necessary and sufficient condition for an extension field K /F to be a Galois extension using the property of
its fixed field.
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1. Introduction

Let F and K be fields where F € K. The field K is called an extension field of F and is denoted by K /F.
Moreover, we know that K can be viewed as a vector space over F. Thus, K have a basis where the dimension
of K is written by [K: F]. Furthermore, we form a set of all automorphisms of K and we denote itby Aut(K/F)
which is a group under the operation of composition in Aut(K/F). The group Aut(K/F) is called
automorphism group of K/F. The number of elements in Aut(K /F) is called order of Aut(K/F) and is written
as |Aut(K/F) |.

The relation between the dimension of K/F and the order of Aut(K/F) ([K:F] and |Aut(K/F) |) was
discussed in several researches. In [5], the author shows that |Aut(K/F) | < [K: F]. However, the equality
between Aut(K/F) and [K:F] does not always hold. For example, the extension field Q(W)/Q has
Aut(Q(¥2)/Q) = {id} and the basis of (3/2)/Q is {1, V2, ¥4} so that |Aut(K/F) | # [K: F]. Then, it motivates
the definition of a Galois extension which is an extension field K /F where |[Aut(K/F) | = [K: F].

Furthermore, let K /F be an extension field with its automorphism group ¢ = Aut(K/F). Then, we form
asetin K defined by

K¢ ={x € K|o(x) =x for everyo € G }.
In other words, K ¢ is the set of all elements in K which are mapped into itself by every o € G. The set K¢ is a
subfield in K where F € K¢ and is called fixed field of K.
Throughout this research, we will give some properties of an extension field and its automorphisms
group. Next, we will also give a necessary and sufficient condition for K /F to be a Galois extension using the
properties of its fixed field.
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We refer to [1, 2, 5, 6] for some basic theories including groups in particular automorphism group and
vector spaces. For extension fields and its properties also Galois extension fields, this research is based on
[3,5].

2. SOME RESULTS

2.1. Extension Field and Its Automorphism Group

In this part, we will discuss about an extension field K /F with its properties related to its role as a vector
space over F. Next, we will also explain the automorphism group of an extension field K/F and give some
examples on finding all automorphisms of K/F. Furthermore, we will also discuss some properties of the
automorphism group of K /F.

Definition 1. [3] Let F and K be fields where F € K. The field K is called an extension field of F (denoted by
K/F).

Example 2
i. Risan extension field of Q.

ii. Q(\/i) = {a + bV2|a, b € Q.} is an extension field of Q.
iii. Q(v2,v3) = (Q(V2)(vV3) ={a + bv2 + cV3 + dV6|a, b, c,d € Q} is an extension field of Q.

Let K /F is an extension field. We know that K can be viewed as a vector space over F. Thus, K has a
basis B over F where the number of elements in B is called dimension of K denoted by [K: F]. Particularly, if
[K:F] < oo then K is called a finite extension of F [3]. Next, we will give an example of the dimension of a
finite extension field.

Example 3
Given Q with its extension Q(\/E) Every x € Q(\/E) can be expressed by
x=a+bV2.
Therefore, x can be written as a linear combination of {1, \/E} [t is clear that {1, \/E} is linearly independent

over Q. So, {1,\/7} is a basis for Q(\/i) over Q. Hence, [Q(\/i): Q] =2

Suppose K /F is an extension field and E is a subfield in K containing F i.e. F € E € K. Thus, we obtain
extension fields K/F and E /F. We will give a property of [K: F] and [E: F] in the following Lemma.

Lemma 4. [3] If K, E, F are fields where F € E € K then [K: F] = [K: E].[E: F].
Proof. Let [K: E] = mand [E: F] = n. We will show that [K: F] = [K: E]. [E: F] = mn.
Suppose that {v,, vy, ..., v, } and {wy, w,, ..., w,, } be basis for K/E and E /F, respectively. Take any x € K. Since
K is a vector space over E, x can be expressed as
X = a1 + vy + o+ QU
for @y, ay, ..., ay, € E. Note that E is a vector space over F, we obtain
a; = Piywy + Biowy + -+ + Binwy,

fori =1,2,...,m. Then,

x = (Byiwy + Brawz + 0+ Brawp) vy + 0+ (Brawy + Bmawz + 0+ BrnWn)V;m

= P11V1Wy + PraViWy + -+ B1aViWy + o+ Bra VWi + Bra VW2 + -+ B Vi Wa.
Thus, K is generated by B = {viwj|i =12,..,m, j=12,..,n}. Now, we will show that B is linearly
independent. Suppose that
C11V1Wq + €12V Wy + o+ + C1pnVa Wy + *+ + Cppa UmW1 + CaUmWo + = + Cnn VWy, = 0

So,

(c11Wq + cioWy + o+ C1aWp)Vg + o+ (CaWy + CpaWa + - + CpupWi )V, = 0.
Since {v,, vy, ..., Vy, } is linearly independent, we obtain c;;w; + cjpwy + -+ + ¢cijpwy, = 0 fori = 1,2, ..., m. Also,
since {wy, Wy, ..., Wy} is linearly independent, itmeans ¢;; = ¢;; = -+ = ¢; = 0.Thus, ¢;; = 0fori = 1,2,...,m
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andj = 1,2,...,n.We have B isa basis of K over F.Hence, B = {v;w;|i = 1,2,..,m, j = 1,2,...,n}and [K:F] =
mn. [ |

Furthermore, for every extension field K/F, we form the set of all automorphism of K which is defined by
Aut(K/F) = {0:K - K automorphism |c(x) = x,forallx €F }.

Aut(K/F) is a group under the operation of composition. We will give some examples of Aut(K/F) from an

extension field K/F.

Example 5

Suppose an extension field Q(\/E)/Q with its basis B = {1,4/2}. It is known that each automorphism can be
defined by a function

p: B - Q(V2).
The function will then be extended to p': Q(\/i) - Q(\/E) Because ¢ is an element in Aut((@(\/f)/(@), we
have 0(1) = 1and o(a) = o(1.a) = a.0(1) = a.1 = a for every a € Q. Note that,

0=0()=0((v2) -2) =0(v2)* - 2.

So, 0(v/2)? = 2 and a(\/f) = /2 or —/2. So, we get two automorphisms on(\/E) which is defined by

01:B - Q(\/E)

1-1
V22

and
0,:B — Q(\/E)
1-1

V2o V2
Then, those two functions are extended to
0 Q(V2) - @(v2)
a.14+b.V2 - a.0,(1) + b.oy(V2)

02:Q(V2) » Q(V2)
a.14 b2+ a.0,(1) + b.oy (—V2)
Therefore, Aut(Q(v2)/Q) = {0,', 05"} = {id, 53}.

and

Example 6
Given an extension field Q(W)/Q where
Q(W) = {a. 1+b.V2+c. W}
So, {1, V2, W} is a basis of Q(W) over Q. We will use the same way from Example 5 to find all
automorphisms of Q(i/ﬁ) We construct all automorphisms in Q(i/f) from bijective function which is
defined by
p:B - Q(W)
We obtaing(1) = 1 and o(a) = 6(1.a) = a.o(1) = a.1 = aforevery a € Q. So,
0=0(0) = o((¥2)* - 2) = 0((¥2))° - 0(2) = 6 (32)" - 2.
So,
o(V2)’ =2.
We know that the roots of x3 —2 =0 are %/Eei-z’“'%/i, V2 eg'zm,andw. Note that /2 eizm’ V2,32 e§.2m' ¢

Q(3/2), so o(¥/2) = V2. Using the same way, we will also only have o(¥/4) = ¥/4. Hence, we can only form
one automorphism defined by
0;:B - Q(i/z)
1-1
V2= 32
Va s Va

Then, we extend o, to g;’ defined by
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01:Q(V2) » @(V2)
al+b.V24+cVdwao0(1)+ b.al(i/z) +c.oy(V4)
al+bV2+cVamal+bV2c+ V4
Thus, g, is the identity function of Q(i/f) In conclusion, we obtain Aut(@(%)/@) = {0,'} = {id}.

Next, we will give a property of Aut(K/F) in the following lemma.

Proposition 7. [5] If {gy,0y,...,0,} is the set of automorphisms of K then {gy,0,,...,0,} is linearly
independent (i.e. if ;01 + a0, + - + a0, = 0thena; = a, = - = a, = 0).

Proof.
Suppose that {0y, 03, ..., 7,,} is the set of automorphisms of K. We will prove that {gy, g, ..., 6, } is linearly
independent using induction method on k elements of the given set.

i.  Fork = 1.Wetakeanyg; fori = 1,2,...,nwhere a;0; = 0. It means (a,07)(x) = a;(g,(x)) = 0. Note
that K is a field and o; is an automorphism, then we have g,(x) # 0 for every nonzero x € K.
Therefore, a; = 0.

ii. Itholds for k where {01, 03, ..., 6} } is linearly independent.

iii. We will prove that also holds for k + 1. Suppose that

a104 + a0, + -+ Ap10k41 =0
where a4, a3, ..., @41 € F. So, for every x € K
(@101 + @307 + -+ + Apy10k41) (x) = 0.
Thus,
a;01(x) + az05(x) + -+ + Apy1 0341 (x) = 0. (1)

Because {0y, gy, ..., 0, } are distinct, there is a nonzero y € K such that o; (y) # 0,(y). Using equation
(1), we obtain

S a,01(xy) + az05(xy) + -+ + Ay 0k (xy) = 0

& a101(x)01(¥) + a20,(X)02 () + -+ + g1 0441 () 041 (¥) = 0 (2)
From (i), we obtain

a;01(x) = —a305(x) =+ — Qg1 0341 (%) (3)

Then, we substitute (3) to (2)

S (—ay0,(x)—a305(x) — =+ — Apy10k41 (%) )01 (V) + 420,(X) 0, (V) + -+ + Ay 10k 41 (X) k1 () = 0
S =0, ()01 (¥)—a303(x)01 (V) -+ — Apy10k41(X) 01 (V) + 2205 (x)02(¥) + -+ + Aps10k 41 (X) 041 () = 0
S —a,0,(x)01 (¥)—a303(x)01 (¥) = —Aps10k41 ()01 (¥) + @20, (x) 0, (y) + azo5(x)o3(y) + -

+ A 410%41 () 041 () =0
= asz(x)(O'z(y) - 0'1()7)) + 0530'3(35)(03()7) - 0'1()’)) .t ak+10'k+1(x)(0'k+1()’) - 0'1()’)) =0
= 052(02(3/) - 01(3/))02(35) + a3(03(y) - 01()’))03(35) + ot “k+1(0k+1(}’) - 01(3’))0k+1(x) =0
& (a2(02(0) = 01() 0, + a3(03(¥) = 91(31)) 05 . + A1 (G141 (1) — 1)) 1) (x) = 0

Using the assumption for k, we obtain
ay(o,(y) — 01(3’)) = az(az()’) - 01()’)) == ak+1(ak+1(y) - 01(}’)) =0.

Note that a, (az ) —og (y)) = 0 and (y) # g,(y), so we have a, = 0. Moreover, using (i) and a, =
0, we also have

© a,01(x) + a303(x) . + Apy1 041 (x) = 0

& (101 + azo3 + - + Qi1 0341) (x) = 0.

Therefore, a0, + az05 + -+ + a1 0x4+1 = 0. Again, using the assumption for n = k, it implies that
that a; = a3 = -+ = ap41 = 0. Hence, {04, 05, ..., 0, } is linearly independent over F. B

Moreover, we will give the relation between |Aut(K/F)| and [K: F] in the proposition below.
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Proposition 8 [5]
If K /F is an extension field then |Aut(K/F)| < [K: F].

Proof
Write G = Aut(K/F). Suppose G = {ay, 05, ..., 0, } so that |G| = n. Let [K: F] = n and the basisof K/F is B =
{v1,v,, ...,v4} for some d € N. We will prove that n < d using a method of contradiction.
Suppose n > d. We form a linear equation system i.e.
01(v1)x1 + 0, (V1)xg + -+ + 0 (V1) x, = 0
01(V2)x1 + 0, (V2)xz + -+ 0, (V2)x, = 0

01(Wa)x1 + 02 (Vg)x + -+ + 0 (Vg)xy, = 0.
Note that there are more variables than the number of equations. It implies there is a nonzero solution,
(1%, # %y )=0(cycy ¢ ¢, ) where ¢; # 0 for some i € {1,2,..,n}. Let w € K/F. It means w can be
expressed as
W =a,v +av, +- -+ agvq

where a4, a,, ..., ag € F. Then, we multiply a; to the system of equations. Thus,

a101(v1)x1 + @10, (v1)xz + - + @10, (V)X = 0

a,01(V5)x1 + a0, (V2)xz + -+ + 420, (V2)xy, = 0

aqo1(va)x1 + aqo,(va)x, + - + ag0,(vg)x, = 0.
Therefore,
(a101(v1) + a0, (V) + -+ + agoy (Vg))cy + (a0, (V1) + a0, (V) + -+ ag0,(Vg))cy + -+ + (a0,(vy)
+ azan(vz) + adUn(vd))Cn =0
and
o1(a vy + a,vy + -+ agvg).cqy + 0y(a vy + ayv, + o+ agvg).cp + o+ o (a v F ayv, o+ agvy).c, = 0.

So, ¢;.a.(W) + cy.0,(W) + -+ + cpo, (W) = 0and (¢i04 + c105 + -+ + ¢,,0,) (W) = 0. It holds for every w €
K /F. It implies that a0, + @0, + --- + a,,0; = 0. Note that there is ¢; # 0 for some i = 1,2, ..., n. Hence,
{01, 05, ..., 0, } is linearly dependent. It implies contradiction with Propeosition 7. Hence, n < d that is |G| <
[K:F]. [ ]

Based on Proposition 8, we have |Aut(K/F)| < [K: F]. However, equality does not always hold for all
extension fields. We will give an example to describe it.

Example 9
Given an extension field Q(W)/Q. From Example 4, we know that Q(W) = {a.l +b.32 +c. W} So,

{1,3/2,3/4} is a basis of Q(3/2) over Q. We also have Aut(Q(32)/Q) = {id}. Thus, [Q(3/2)/Q] = 3 and
|[Aut(Q(¥2)/Q)| = 1.

Based on the example above, it then motivates the definition of Galois extension. We will give the definition
of Galois extension on the following definition.

Definition 10. [5] Let K/F be a finite extension field. K is called Galois extension over F if |[Aut(K/F)| =
[K:F].

[t's common to write the automorphism Aut(K/F) as Gal(K/F) when K is a Galois extension. Next, we will
give an example of a Galois extension and a non-Galois extension in the following example.

Example 11
i. Using Example 5, we have Q(\/f)/(@ is a Galois extension. Because the basis of Q(ﬁ)/(@ is{1,v2}. We

obtain Aut(Q(\/E)/Q) = {id, 0, }. Thus, |Aut(Q(\/f)/Q)| = [(@(\/E): Q] = 2. Hence, (@(\/E)/Q is a Galois

extension field over Q.
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ii. Based on Example 6, we know that Q(3/2)/Q is not a Galois extension because Aut(Q(V2)/Q) = {id}
and the basis of Q(¥2)/Qis {1, ¥/2}. So, |Aut(Q(§/§)/Q)| # [Q(¥2):Q] = 2.

2.2. Fixed Field of An Extension Field

In this part, we will discuss about fixed field of an extension field K /F. Then, we give a necessary and sufficient
condition for an extension field to be a Galois extension using the property of fixed of K /F.

Let K/F be an extension field and G = Aut(K/F). We form a subset of K defined by
K¢ ={x € K|o(x) = x,Vo € G}.

Note that Va,b € K¢ dan o € G, we obtain
o(la—b)=0c(a)—ab)=a—»b

and
glab™) = o(a)a(b™) = o(a)(c(b))" = ab~t.

Therefore, K¢ is a subfield in K and is called fixed field of K /F [5].

Example 12
i. Using Example 5, we have Q(\/E)/Q. We obtain ¢ = Aut(@(\/i)/(@) = {id, g,'} where

id: Q(v2) » Q(v2)
a.14+bN2w a.0,(1) +b.oy(V2)

;1 Q(v2) - Q(v2)
a.l+bN2wa.o0,(1)+ b.al(—\/f).
Thus, id(a.1) = a and 05(a. 1) = a where a € Q. Hence, Q(\/E)G =Q.

and

ii. Based on Example 6, Q(W)/Q is an extension field with its automorphism group G =

Aut(@(%)/@) = {id}. Note that for every x € Q(W), we obtain id(x) = x. Therefore, Q(W)G =
Q(V2).

Theorem 13. [5] Let K /F be an extension field where [K: F] < o.If K¢ = F then [K: F] = |Aut(K/F)|.
Proof. Let [K: F] = d and |[Aut(K/F)| = n. Based on Proposition 8, we have d > n. Next, we will prove
that d < n using a method of contradiction.

Suppose d > n. Thus, there exist n + 1 elements vy, vy, ..., V41 Which are linearly independent over F. Then,
we construct the following system of the equations

01(v1)x1 + 01(V2)x3 + 4+ 01 (Vpy1)Xpyr = 0
02 (v1)x1 + 0, (V)x + -+ + 0, (V1) X4 = 0

on(V1)x1 + 02 (V2)x5 + -+ + 0 (Vn11)Xny1 = 0.
Note that there are more variables than the number of equations. It implies there is a non-trivial solution,
(1% ¢ x4 )=(ayay i ayyq ) where a; #0 for some i€{1,2,..,n+1}. Among all non-trivial
solutions, we choose r as the least number of non-zero elements. Moreover, r # 1 because o;(v;)@; =0
implies o4 (v;) = 0and v; = 0.

i. We will prove that there exists a non-trivial solutions where ¢; are in F for any i € {1,2,...,n + 1}.
241

oz

Suppose | @r |is anon-trivial solution with r non-zero elements where a4, a5, ..., ¢, # 0. We obtain
0

0



Tensor : Pure and Applied Mathematics Journal | Volume 3 | Nomor 2 | Hal. 85-92 91

B a/ar
B2 az/ar
anew non-trivial solution by multiplying the given solution with ai which is ﬁr = 1 . Thus,
T 0 (')
0 0
B10i(v1) + P20 (v5) + -+ L.0y(vpy1) =0 (4)

For i =1,2,...,n. Now, we will show that §; are in F for any i € {1,2,...,n + 1} using method of
contradiction. Suppose there exists 3; € F, say ;. We know that F = K¢ so that f; is not an element
of the fixed field. In other words, there exists g, € G where g, (8,) # B;.So, 0, (81) — 1 # 0. Since G
is a group, itimplies 0, G = G. It means for any o; € G, we obtain g; = oy0j for j = 1,2, ..., n. Applying
oy to the expressions of (*)

& 0k (B10j(v1) + B20j(V2) + -+ + L.g;(v)) = 0

& 0 (B1). 0k 0; (V1) + 0k (B2). 0y 0; (V) + -+ + 00 (1) = 0
forj =1,2,...,nso that from g; = o 0j. We obtain

ok (B1). 0i(v1) + 0 (B2). 0y (V) + -+ + 0;(v) = 0. (5)

Subtracting (4) and (5), we have
By — 0k (B0 (v1) + (B2 — o (B2)oy(v2) + -+ + (Br—y — 0k (Br_1) oy (V1) + 0 =0
which is non-trivial solution because g;,(,) # B; and is having r — 1 non-zeo elements, contrary to
B1
B>

the choice of r as the minimal number. Hence, | g, | is a non-trivial where all ; € F for any i =
0

0
1,2,..,n.
ii. Using (i), we obtain a nonzero solution with all elements are in F. So, using the first equation in the

system, we obtain

S 0,(v1)f1 + 01 (V2B + -+ 0 (v )B =0

& 01(B1v1 + Povy + -+ Brvr) = 0.
Because oyis an automorphism, we obtain S v, + Bov, + -+ S,v, = 0 where 4,55, ..., 5 are
nonzero elements in K. It is contrary to vy, vy, ..., V41 Which are linearly independent over F.

Thus, we have d < n. Hence,d = nie. [K:F] = |Aut(K/F)|. ®

Corollary 14. [5] Let K/F be an extension field where [K: F] < co. K is a Galois extension over F if and only
ifK¢ =F.

Proof
(=) We have K is a Galois extension over F. It means [K: F] = |Aut(K/F)|. We will show that K¢ = F. We
know that K€ is a subfield of K and F € K¢ c K. Based on Lemma 4 and Theorem 13, we obtain
|Aut(K/F)| = [K:KC] = [K: F]/[KS:F].
Because [K:F] = |Aut(K/F)|.Itimplies [K%:F] = 1. Hence, K¢ = F.

(&) We know that K¢ = F. Using Theorem 13, we have [K: F] = |Aut(K/F)|. Thus, K is a Galois extension
over F. .

3. Conclusion
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Let K/F be an extension field where [K: F] < oo and G = Aut(K/F). K is a Galois extension over F if and
only if its fixed is F thatis K¢ = F.
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