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Abstract: Let 𝐾/𝐹 be an extension field where [𝐾: 𝐹] is the dimension of 𝐾 as a vector space over 𝐹. Let 

𝐴𝑢𝑡(𝐾/𝐹) be the automorphism group of 𝐾/𝐹 where its order is denoted by |𝐴𝑢𝑡(𝐾/𝐹) |. In this research, 

we will show that |𝐴𝑢𝑡(𝐾/𝐹) | ≤ [𝐾: 𝐹]. Moreover, 𝐾/𝐹 is called a Galois extension if the equality holds that 

is |𝐴𝑢𝑡(𝐾/𝐹) | = [𝐾: 𝐹]. We will also discuss about the fixed field of 𝐾/𝐹. Furthermore, we will give a 

necessary and sufficient condition for an extension field 𝐾/𝐹 to be a Galois extension using the property of 

its fixed field. 
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1. Introduction 

Let 𝐹 and 𝐾 be fields where 𝐹 ⊆ 𝐾. The field 𝐾 is called an extension field of 𝐹 and is denoted by 𝐾/𝐹. 
Moreover, we know that 𝐾 can be viewed as a vector space over 𝐹. Thus, 𝐾 have a basis where the dimension 
of 𝐾 is written by [𝐾: 𝐹]. Furthermore, we form a set of all automorphisms of 𝐾 and we denote it by 𝐴𝑢𝑡(𝐾/𝐹) 
which is a group under the operation of composition in 𝐴𝑢𝑡(𝐾/𝐹). The group 𝐴𝑢𝑡(𝐾/𝐹) is called 
automorphism group of 𝐾/𝐹. The number of elements in 𝐴𝑢𝑡(𝐾/𝐹) is called order of 𝐴𝑢𝑡(𝐾/𝐹) and is written 
as |𝐴𝑢𝑡(𝐾/𝐹) |. 

The relation between the dimension of 𝐾/𝐹 and the order of 𝐴𝑢𝑡(𝐾/𝐹) ([𝐾: 𝐹] and |𝐴𝑢𝑡(𝐾/𝐹) |) was 
discussed in several researches.  In [5], the author shows that |𝐴𝑢𝑡(𝐾/𝐹) | ≤ [𝐾: 𝐹]. However, the equality 

between 𝐴𝑢𝑡(𝐾/𝐹) and [𝐾: 𝐹] does not always hold. For example, the extension field 𝑄(√2
3
)/𝑄 has 

𝐴𝑢𝑡(𝑄(√2
3
)/𝑄) = {𝑖𝑑} and the basis of (√2

3
)/𝑄 is {1, √2

3
, √4
3
} so that |𝐴𝑢𝑡(𝐾/𝐹) | ≠ [𝐾: 𝐹]. Then, it motivates 

the definition of a Galois extension which is an extension field 𝐾/𝐹 where |𝐴𝑢𝑡(𝐾/𝐹) | = [𝐾: 𝐹].   
Furthermore, let 𝐾/𝐹 be an extension field with its automorphism group 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). Then, we form 

a set in 𝐾 defined by 
𝐾𝐺 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜎 ∈ 𝐺 }. 

In other words, 𝐾𝐺 is the set of all elements in 𝐾 which are mapped into itself by every 𝜎 ∈ 𝐺. The set 𝐾𝐺  is a 
subfield in 𝐾 where 𝐹 ⊆ 𝐾𝐺  and is called fixed field of 𝐾. 

Throughout this research, we will give some properties of an extension field and its automorphisms 
group. Next, we will also give a necessary and sufficient condition for 𝐾/𝐹 to be a Galois extension using the 
properties of its fixed field. 
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We refer to [1, 2, 5, 6] for some basic theories including groups in particular automorphism group and 
vector spaces. For extension fields and its properties also Galois extension fields, this research is based on 
[3,5] . 
 

2. SOME RESULTS 

2.1. Extension Field and Its Automorphism Group 

In this part, we will discuss about an extension field 𝐾/𝐹 with its properties related to its role as a vector 
space over 𝐹. Next, we will also explain the automorphism group of an extension field 𝐾/𝐹 and give some 
examples on finding all automorphisms of 𝐾/𝐹. Furthermore, we will also discuss some properties of the 
automorphism group of 𝐾/𝐹. 
 
Definition 1. [3] Let 𝐹 and 𝐾 be fields where 𝐹 ⊆ 𝐾. The field 𝐾 is called an extension field of 𝐹 (denoted by 
𝐾/𝐹). 
 
Example 2 

i. ℝ is an extension field of ℚ. 

ii. ℚ(√2) = {𝑎 + 𝑏√2|𝑎, 𝑏 ∈ ℚ. } is an extension field of ℚ. 

iii. ℚ(√2,√3) = (ℚ(√2)(√3) = {𝑎 + 𝑏√2 + 𝑐√3 + 𝑑√6|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ} is an extension field of ℚ. 

 
 Let 𝐾/𝐹 is an extension field. We know that 𝐾 can be viewed as a vector space over 𝐹. Thus, 𝐾 has a 
basis 𝐵 over 𝐹 where the number of elements in 𝐵 is called dimension of 𝐾 denoted by [𝐾: 𝐹]. Particularly, if 
[𝐾: 𝐹] < ∞ then 𝐾 is called a finite extension of 𝑭 [3]. Next, we will give an example of the dimension of a 
finite extension field.  
 
Example 3 

Given ℚ with its extension ℚ(√2). Every 𝑥 ∈ ℚ(√2) can be expressed by 

𝑥 = 𝑎 + 𝑏√2. 

Therefore, 𝑥 can be written as a linear combination of {1, √2}. It is clear that {1,√2} is linearly independent 

over ℚ. So, {1, √2} is a basis for ℚ(√2) over ℚ. Hence, [ℚ(√2):ℚ] = 2. 

  
 Suppose 𝐾/𝐹 is an extension field and 𝐸 is a subfield in 𝐾 containing 𝐹 i.e. 𝐹 ⊆ 𝐸 ⊆ 𝐾. Thus, we obtain 
extension fields 𝐾/𝐹 and 𝐸/𝐹. We will give a property of [𝐾: 𝐹] and [𝐸: 𝐹] in the following Lemma. 
 
Lemma 4. [3] If 𝐾,𝐸, 𝐹 are fields where 𝐹 ⊆ 𝐸 ⊆ 𝐾 then [𝐾: 𝐹] = [𝐾:𝐸]. [𝐸: 𝐹]. 
Proof. Let [𝐾: 𝐸] = 𝑚 and [𝐸: 𝐹] = 𝑛. We will show that [𝐾: 𝐹] = [𝐾: 𝐸]. [𝐸: 𝐹] = 𝑚𝑛. 
Suppose that {𝑣1, 𝑣2, … , 𝑣𝑚} and {𝑤1, 𝑤2, … , 𝑤𝑛} be basis for 𝐾/𝐸 and 𝐸/𝐹, respectively. Take any 𝑥 ∈ 𝐾. Since 
𝐾 is a vector space over 𝐸, 𝑥 can be expressed as 

𝑥 = 𝛼1𝑣1 + 𝛼2𝑣2 +⋯+ 𝛼𝑚𝑣𝑚. 
for 𝛼1, 𝛼2, … , 𝛼𝑚 ∈ 𝐸. Note that 𝐸 is a vector space over 𝐹, we obtain  

𝛼𝑖 = 𝛽𝑖1𝑤1 + 𝛽𝑖2𝑤2 +⋯+ 𝛽𝑖𝑛𝑤𝑛 
for 𝑖 = 1,2,… ,𝑚. Then, 

𝑥 = (𝛽11𝑤1 + 𝛽12𝑤2 +⋯+ 𝛽1𝑛𝑤𝑛)𝑣1 +⋯+ (𝛽𝑚1𝑤1 + 𝛽𝑚2𝑤2 +⋯+ 𝛽𝑚𝑛𝑤𝑛)𝑣𝑚 
= 𝛽11𝑣1𝑤1 + 𝛽12𝑣1𝑤2 +⋯+ 𝛽1𝑛𝑣1𝑤𝑛 +⋯+ 𝛽𝑚1𝑣𝑚𝑤1 + 𝛽𝑚2𝑣𝑚𝑤2 +⋯+ 𝛽𝑚𝑛𝑣𝑚𝑤𝑛. 

Thus, 𝐾 is generated by 𝐵 = {𝑣𝑖𝑤𝑗|𝑖 = 1,2,… ,𝑚, 𝑗 = 1,2,… , 𝑛}. Now, we will show that 𝐵 is linearly 

independent. Suppose that 
𝑐11𝑣1𝑤1 + 𝑐12𝑣1𝑤2 +⋯+ 𝑐1𝑛𝑣2𝑤𝑛 +⋯+ 𝑐𝑚1𝑣𝑚𝑤1 + 𝑐𝑚2𝑣𝑚𝑤2 +⋯+ 𝑐𝑚𝑛𝑣𝑚𝑤𝑛 = 0 

So, 
(𝑐11𝑤1 + 𝑐12𝑤2 +⋯+ 𝑐1𝑛𝑤𝑛)𝑣1 +⋯+ (𝑐𝑚1𝑤1 + 𝑐𝑚2𝑤2 +⋯+ 𝑐𝑚𝑛𝑤𝑛)𝑣𝑚 = 0. 

Since {𝑣1, 𝑣2, … , 𝑣𝑚} is linearly independent, we obtain 𝑐𝑖1𝑤1 + 𝑐𝑖2𝑤2 +⋯+ 𝑐𝑖𝑛𝑤𝑛 = 0 for 𝑖 = 1,2,… ,𝑚. Also, 
since {𝑤1, 𝑤2, … ,𝑤𝑛} is linearly independent, it means 𝑐𝑖1 = 𝑐𝑖2 = ⋯ = 𝑐𝑖𝑛 = 0. Thus, 𝑐𝑖𝑗 = 0 for 𝑖 = 1,2,… ,𝑚 
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and 𝑗 = 1,2,… , 𝑛. We have 𝐵 is a basis of 𝐾 over 𝐹. Hence, 𝐵 = {𝑣𝑖𝑤𝑗|𝑖 = 1,2,… ,𝑚, 𝑗 = 1,2,… , 𝑛} and [𝐾: 𝐹] =

𝑚𝑛.                 ◼ 
 
Furthermore, for every extension field 𝐾/𝐹, we form the set of all automorphism of 𝐾 which is defined by 

𝐴𝑢𝑡(𝐾/𝐹) = {𝜎:𝐾 → 𝐾 𝑎𝑢𝑡𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 |𝜎(𝑥) = 𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐹  }. 
𝐴𝑢𝑡(𝐾/𝐹) is a group under the operation of composition. We will give some examples of 𝐴𝑢𝑡(𝐾/𝐹) from an 
extension field 𝐾/𝐹. 
Example 5 

Suppose an extension field ℚ(√2)/ℚ with its basis 𝐵 = {1, √2}. It is known that each automorphism can be 

defined by a function  

𝜌: 𝐵 → ℚ(√2). 

The function will then be extended to 𝜌′:ℚ(√2) → ℚ(√2). Because 𝜎 is an element in 𝐴𝑢𝑡(ℚ(√2)/ℚ), we 

have 𝜎(1) = 1 and 𝜎(𝑎) = 𝜎(1. 𝑎) = 𝑎. 𝜎(1) = 𝑎. 1 = 𝑎 for every 𝑎 ∈ ℚ. Note that,  

0 = 𝜎(1) = 𝜎 ((√2)
2
− 2) = 𝜎(√2)2 − 2. 

So, 𝜎(√2)2 = 2 and 𝜎(√2) = √2 or −√2. So, we get two automorphisms of ℚ(√2) which is defined by 

𝜎1: 𝐵 → ℚ(√2) 

1 ↦ 1 

√2 ↦ √2 
and 

𝜎2: 𝐵 → ℚ(√2) 

1 ↦ 1 

√2 ↦ −√2. 
Then, those two functions are extended to  

𝜎1′: ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(√2) 
and 

𝜎2: ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(−√2) 

Therefore, 𝐴𝑢𝑡(ℚ(√2)/ℚ) = {𝜎1′, 𝜎2′} = {𝑖𝑑, 𝜎2}. 

 
Example 6 

Given an extension field ℚ(√2
3
)/ℚ where 

ℚ(√2
3
) = {𝑎. 1 + 𝑏. √2

3
+ 𝑐. √4

3
}. 

So, {1, √2
3
, √4
3
} is a basis of ℚ(√2

3
) over ℚ. We will use the same way from Example 5 to find all 

automorphisms of ℚ(√2
3
). We construct all automorphisms in ℚ(√2

3
) from bijective function which is 

defined by  

𝜌: 𝐵 → ℚ(√2
3
). 

We obtain 𝜎(1) = 1 and 𝜎(𝑎) = 𝜎(1. 𝑎) = 𝑎. 𝜎(1) = 𝑎. 1 = 𝑎 for every 𝑎 ∈ 𝑄. So,  

0 = 𝜎(0) = 𝜎((√2
3
)3 − 2) = 𝜎((√2

3
))3 − 𝜎(2) = 𝜎(√2

3
)
3
− 2. 

So, 

𝜎(√2
3
)
3
= 2. 

We know that the roots of 𝑥3 − 2 = 0 are √2
3
 𝑒
1

3
.2𝜋𝑖
√2
3
, √2
3
 𝑒
2

3
.2𝜋𝑖 ,and√2

3
. Note that √2

3
 𝑒
1

3
.2𝜋𝑖
√2
3
, √2
3
 𝑒
2

3
.2𝜋𝑖 ∉

ℚ(√2
3
), so 𝜎(√2

3
) = √2

3
. Using the same way, we will also only have 𝜎(√4

3
) = √4

3
. Hence, we can only form 

one automorphism defined by 

𝜎1: 𝐵 → ℚ(√2
3
) 

1 ↦ 1 

√2
3
↦ √2

3
 

√4
3
↦ √4

3
 

 
Then, we extend 𝜎1 to 𝜎1′ defined by 
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𝜎1′: ℚ(√2
3
) → ℚ(√2

3
) 

𝑎. 1 + 𝑏. √2
3
+ 𝑐. √4

3
↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(√2

3
) + 𝑐. 𝜎1(√4

3
) 

𝑎. 1 + 𝑏. √2
3
+ 𝑐. √4

3
↦ 𝑎. 1 + 𝑏. √2

3
 𝑐 + √4

3
. 

Thus, 𝜎1′ is the identity function of ℚ(√2
3
). In conclusion, we obtain 𝐴𝑢𝑡(ℚ(√2

3
)/ℚ) = {𝜎1′} = {𝑖𝑑}. 

 
Next, we will give a property of 𝐴𝑢𝑡(𝐾/𝐹) in the following lemma. 
 
Proposition 7. [5] If {𝜎1, 𝜎2, … , 𝜎𝑛} is the set of automorphisms of 𝐾 then {𝜎1, 𝜎2, … , 𝜎𝑛} is linearly 
independent (i.e. if 𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑛𝜎𝑛 = 0 then 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑛 = 0). 
 
Proof. 
Suppose that {𝜎1, 𝜎2, … , 𝜎𝑛} is the set of automorphisms of 𝐾. We will prove that {𝜎1, 𝜎2, … , 𝜎𝑛} is linearly 
independent using induction method on 𝑘 elements of the given set. 

i. For 𝑘 = 1. We take any 𝜎𝑖  for 𝑖 = 1,2,… , 𝑛 where  𝛼𝑖𝜎𝑖 = 0. It means (𝛼1𝜎1)(𝑥) = 𝛼1(𝜎1(𝑥)) = 0.  Note 

that 𝐾 is a field and 𝜎𝑖  is an automorphism, then we have 𝜎1(𝑥) ≠ 0 for every nonzero 𝑥 ∈ 𝐾. 

Therefore, 𝛼𝑖 = 0. 
ii. It holds for 𝑘 where {𝜎1, 𝜎2, … , 𝜎𝑘} is linearly independent. 

iii. We will prove that also holds for 𝑘 + 1. Suppose that  

𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑘+1𝜎𝑘+1 = 0 
 where 𝛼1, 𝛼2, … , 𝛼𝑘+1 ∈ 𝐹. So, for every 𝑥 ∈ 𝐾 

      (𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑘+1𝜎𝑘+1)(𝑥) = 0. 
 Thus,  
       𝛼1𝜎1(𝑥) + 𝛼2𝜎2(𝑥) + ⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥) = 0.                                     (1) 
 

 Because {𝜎1, 𝜎2, … , 𝜎𝑛} are distinct, there is a nonzero 𝑦 ∈ 𝐾 such that 𝜎1(𝑦) ≠ 𝜎2(𝑦). Using equation 
(1), we obtain 

⟺ 𝛼1𝜎1(𝑥𝑦) + 𝛼2𝜎2(𝑥𝑦) +⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥𝑦) = 0 
             ⟺ 𝛼1𝜎1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) + ⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0   (2) 

 From (i), we obtain 
     𝛼1𝜎1(𝑥) = −𝛼2𝜎2(𝑥) − ⋯− 𝛼𝑘+1𝜎𝑘+1(𝑥)                   (3) 
 
 Then, we substitute (3) to (2)  
 

⟺ (−𝛼2𝜎2(𝑥)−𝛼3𝜎3(𝑥) − ⋯− 𝛼𝑘+1𝜎𝑘+1(𝑥) )𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) + ⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0 
⟺ −𝛼2𝜎2(𝑥)𝜎1(𝑦)−𝛼3𝜎3(𝑥)𝜎1(𝑦)…− 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) +⋯+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0 
⟺ −𝛼2𝜎2(𝑥)𝜎1(𝑦)−𝛼3𝜎3(𝑥)𝜎1(𝑦) − ⋯−𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎1(𝑦) + 𝛼2𝜎2(𝑥)𝜎2(𝑦) + 𝛼3𝜎3(𝑥)𝜎3(𝑦) + ⋯

+ 𝛼𝑘+1𝜎𝑘+1(𝑥)𝜎𝑘+1(𝑦) = 0 

⟺𝛼2𝜎2(𝑥)(𝜎2(𝑦) − 𝜎1(𝑦)) + 𝛼3𝜎3(𝑥)(𝜎3(𝑦) − 𝜎1(𝑦))…+ 𝛼𝑘+1𝜎𝑘+1(𝑥)(𝜎𝑘+1(𝑦) − 𝜎1(𝑦)) = 0 

     ⟺ 𝛼2(𝜎2(𝑦) − 𝜎1(𝑦))𝜎2(𝑥) + 𝛼3(𝜎3(𝑦) − 𝜎1(𝑦))𝜎3(𝑥) + ⋯+ 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦))𝜎𝑘+1(𝑥) = 0 

⟺ (𝛼2(𝜎2(𝑦) − 𝜎1(𝑦))𝜎2 + 𝛼3(𝜎3(𝑦) − 𝜎1(𝑦))𝜎3…+ 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦))𝜎𝑘+1) (𝑥) = 0 

 
Using the assumption for 𝑘, we obtain 

𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = 𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = ⋯ = 𝛼𝑘+1(𝜎𝑘+1(𝑦) − 𝜎1(𝑦)) = 0. 

 

Note that 𝛼2(𝜎2(𝑦) − 𝜎1(𝑦)) = 0 and (𝑦) ≠ 𝜎1(𝑦), so we have 𝛼2 = 0. Moreover, using (i) and 𝛼2 =

0, we also have 
⟺ 𝛼1𝜎1(𝑥) + 𝛼3𝜎3(𝑥)…+ 𝛼𝑘+1𝜎𝑘+1(𝑥) = 0 
⟺ (𝛼1𝜎1 + 𝛼3𝜎3 +⋯+ 𝛼𝑘+1𝜎𝑘+1)(𝑥) = 0. 

 
Therefore, 𝛼1𝜎1 + 𝛼3𝜎3 +⋯+ 𝛼𝑘+1𝜎𝑘+1 = 0. Again, using the assumption for 𝑛 = 𝑘, it implies that 
that  𝛼1 = 𝛼3 = ⋯ = 𝛼𝑘+1 = 0. Hence, {𝜎1, 𝜎2, … , 𝜎𝑛} is linearly independent over 𝐹.  ◼ 
 

Moreover, we will give the relation between |𝐴𝑢𝑡(𝐾/𝐹)| and [𝐾: 𝐹] in the proposition below. 
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Proposition 8 [5] 
If 𝐾/𝐹 is an extension field then |𝐴𝑢𝑡(𝐾/𝐹)| ≤ [𝐾: 𝐹]. 
 
Proof 
Write 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). Suppose 𝐺 = {𝜎1, 𝜎2, … , 𝜎𝑛} so that |𝐺| = 𝑛. Let [𝐾: 𝐹] = 𝑛 and the basis of 𝐾/𝐹 is  𝐵 =
{𝑣1, 𝑣2, … , 𝑣𝑑} for some 𝑑 ∈ 𝑁. We will prove that  𝑛 ≤ 𝑑 using a method of contradiction. 
Suppose 𝑛 > 𝑑. We form a linear equation system i.e. 

𝜎1(𝑣1)𝑥1 + 𝜎2(𝑣1)𝑥2 +⋯+ 𝜎𝑛(𝑣1)𝑥𝑛 = 0 
𝜎1(𝑣2)𝑥1 + 𝜎2(𝑣2)𝑥2 +⋯+ 𝜎𝑛(𝑣2)𝑥𝑛 = 0 

⋮ 
𝜎1(𝑣𝑑)𝑥1 + 𝜎2(𝑣𝑑)𝑥2 +⋯+ 𝜎𝑛(𝑣𝑑)𝑥𝑛 = 0. 

Note that there are more variables than the number of equations. It implies there is a nonzero solution, 
(𝑥1 𝑥2  ⋮  𝑥𝑛  ) = (𝑐1 𝑐2  ⋮  𝑐𝑛  ) where 𝑐𝑖 ≠ 0 for some 𝑖 ∈ {1,2,… , 𝑛}. Let 𝑤 ∈ 𝐾/𝐹. It means 𝑤 can be 
expressed as 

𝑤 = 𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑 
where 𝑎1, 𝑎2, … , 𝑎𝑑 ∈ 𝐹. Then, we multiply 𝑎𝑖 to the system of equations. Thus, 

𝑎1𝜎1(𝑣1)𝑥1 + 𝑎1𝜎2(𝑣1)𝑥2 +⋯+ 𝑎1𝜎𝑛(𝑣1)𝑥𝑛 = 0 
𝑎2𝜎1(𝑣2)𝑥1 + 𝑎2𝜎2(𝑣2)𝑥2 +⋯+ 𝑎2𝜎𝑛(𝑣2)𝑥𝑛 = 0 

⋮ 
𝑎𝑑𝜎1(𝑣𝑑)𝑥1 + 𝑎𝑑𝜎2(𝑣𝑑)𝑥2 +⋯+ 𝑎𝑑𝜎𝑛(𝑣𝑑)𝑥𝑛 = 0. 

Therefore,    
(𝑎1𝜎1(𝑣1) + 𝑎2𝜎1(𝑣2) + ⋯+ 𝑎𝑑𝜎1(𝑣𝑑))𝑐1 + (𝑎1𝜎2(𝑣1) + 𝑎2𝜎2(𝑣2) + ⋯+ 𝑎𝑑𝜎2(𝑣𝑑))𝑐2 +⋯+ (𝑎1𝜎𝑛(𝑣1)

+ 𝑎2𝜎𝑛(𝑣2) + ⋯+ 𝑎𝑑𝜎𝑛(𝑣𝑑))𝑐𝑛 = 0 
and 
𝜎1(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐1 + 𝜎2(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐2 +⋯+ 𝜎𝑛(𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑑𝑣𝑑). 𝑐𝑛 = 0. 

 
So, 𝑐1. 𝜎1(𝑤) + 𝑐2. 𝜎2(𝑤) +⋯+ 𝑐𝑛𝜎𝑛(𝑤) = 0 and (𝑐1𝜎1 + 𝑐1𝜎2 +⋯+ 𝑐𝑛𝜎𝑛)(𝑤) = 0. It holds for every 𝑤 ∈
𝐾/𝐹. It implies that 𝛼1𝜎1 + 𝛼2𝜎2 +⋯+ 𝛼𝑛𝜎𝑑 = 0. Note that there is 𝑐𝑖 ≠ 0 for some 𝑖 = 1,2,… , 𝑛. Hence,  
{𝜎1, 𝜎2, … , 𝜎𝑛} is linearly dependent. It implies contradiction with Proposition 7. Hence, 𝑛 ≤ 𝑑 that is |𝐺| ≤
[𝐾: 𝐹].                     ◼ 
 
Based on Proposition 8, we have |𝐴𝑢𝑡(𝐾/𝐹)| ≤ [𝐾: 𝐹]. However, equality does not always hold for all 
extension fields. We will give an example to describe it. 
 
Example 9 

Given an extension field ℚ(√2
3
)/ℚ. From Example 4, we know that ℚ(√2

3
) = {𝑎. 1 + 𝑏. √2

3
+ 𝑐. √4

3
} So, 

{1, √2
3
, √4
3
} is a basis of ℚ(√2

3
) over ℚ.  We also have 𝐴𝑢𝑡(ℚ(√2

3
)/ℚ) = {𝑖𝑑}. Thus, [ℚ(√2

3
)/ℚ] = 3 and 

|𝐴𝑢𝑡(ℚ(√2
3
)/ℚ)| = 1. 

 
Based on the example above, it then motivates the definition of Galois extension. We will give the definition 
of Galois extension on the following definition. 
 
Definition 10. [5] Let 𝐾/𝐹 be a finite extension field. 𝐾 is called Galois extension over 𝐹 if |𝐴𝑢𝑡(𝐾/𝐹)| =
[𝐾: 𝐹].  
 
It’s common to write the automorphism 𝐴𝑢𝑡(𝐾/𝐹) as 𝐺𝑎𝑙(𝐾/𝐹) when 𝐾 is a Galois extension. Next, we will 
give an example of a Galois extension and a non-Galois extension in the following example. 
 
 
Example 11 

i. Using Example 5, we have ℚ(√2)/ℚ is a Galois extension. Because the basis of ℚ(√2)/ℚ  is{1, √2}. We 

obtain 𝐴𝑢𝑡(ℚ(√2)/ℚ ) = {𝑖𝑑, 𝜎2}. Thus, |𝐴𝑢𝑡(ℚ(√2)/ℚ)| = [ℚ(√2):ℚ] = 2. Hence, ℚ(√2)/ℚ is a Galois 

extension field over ℚ. 
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ii. Based on Example 6, we know that ℚ(√2
3
)/ℚ is not a Galois extension because 𝐴𝑢𝑡(ℚ(√2

3
)/ℚ ) = {𝑖𝑑} 

and the basis of ℚ(√2
3
)/ℚ is {1, √2

3
}. So, |𝐴𝑢𝑡(ℚ(√2

3
)/ℚ)| ≠ [ℚ(√2

3
):ℚ] = 2. 

 

2.2. Fixed Field of An Extension Field 

In this part, we will discuss about fixed field of an extension field 𝐾/𝐹. Then, we give a necessary and sufficient 
condition for an extension field to be a Galois extension using the property of fixed of 𝐾/𝐹.  
 
Let 𝐾/𝐹 be an extension field and 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). We form a subset of 𝐾 defined by 

𝐾𝐺 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥, ∀𝜎 ∈ 𝐺}. 
Note that ∀𝑎, 𝑏 ∈ 𝐾𝐺 dan 𝜎 ∈ 𝐺, we obtain  

𝜎(𝑎 − 𝑏) = 𝜎(𝑎) − 𝜎(𝑏) = 𝑎 − 𝑏 
and 

𝜎(𝑎𝑏−1) = 𝜎(𝑎)𝜎(𝑏−1) = 𝜎(𝑎)(𝜎(𝑏))−1 = 𝑎𝑏−1. 
 

Therefore, 𝐾𝐺 is a subfield in 𝐾 and is called fixed field of 𝐾/𝐹 [5]. 
 
Example 12 

i. Using Example 5, we have ℚ(√2)/ℚ. We obtain 𝐺 = 𝐴𝑢𝑡(ℚ(√2)/ℚ ) = {𝑖𝑑, 𝜎2′} where  

𝑖𝑑:ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(√2) 
and 

𝜎2′: ℚ(√2) → ℚ(√2) 

𝑎. 1 + 𝑏. √2 ↦ 𝑎. 𝜎1(1) + 𝑏. 𝜎1(−√2). 

Thus, 𝑖𝑑(𝑎. 1) = 𝑎 and 𝜎2
′(𝑎. 1) = 𝑎 where 𝑎 ∈ ℚ. Hence, 𝑄(√2)

𝐺
= ℚ. 

 

ii. Based on Example 6, ℚ(√2
3
)/ℚ is an extension field with its automorphism group 𝐺 =

𝐴𝑢𝑡(ℚ(√2
3
)/ℚ ) = {𝑖𝑑}. Note that for every 𝑥 ∈ ℚ(√2

3
), we obtain 𝑖𝑑(𝑥) = 𝑥. Therefore, ℚ(√2

3
)
𝐺
=

ℚ(√2
3
). 

 

Theorem 13. [5] Let 𝐾/𝐹 be an extension field where [𝐾: 𝐹] < ∞. If 𝐾𝐺 = 𝐹 then [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. 
Proof.  Let [𝐾: 𝐹] = 𝑑 and |𝐴𝑢𝑡(𝐾/𝐹)| = 𝑛. Based on Proposition 8, we have 𝑑 ≥ 𝑛. Next, we will prove 
that 𝑑 ≤ 𝑛 using a method of contradiction. 
Suppose 𝑑 > 𝑛. Thus, there exist 𝑛 + 1 elements 𝑣1, 𝑣2, … , 𝑣𝑛+1 which are linearly independent over 𝐹. Then, 
we construct the following system of the equations 
 

𝜎1(𝑣1)𝑥1 + 𝜎1(𝑣2)𝑥2 +⋯+ 𝜎1(𝑣𝑛+1)𝑥𝑛+1 = 0 
𝜎2(𝑣1)𝑥1 + 𝜎2(𝑣2)𝑥2 +⋯+ 𝜎2(𝑣𝑛+1)𝑥𝑛+1 = 0 

⋮ 
𝜎𝑛(𝑣1)𝑥1 + 𝜎2(𝑣2)𝑥2 +⋯+ 𝜎𝑛(𝑣𝑛+1)𝑥𝑛+1 = 0. 

Note that there are more variables than the number of equations. It implies there is a non-trivial solution, 
(𝑥1 𝑥2  ⋮  𝑥𝑛+1  ) = (𝛼1 𝛼2  ⋮  𝛼𝑛+1  ) where 𝛼𝑖 ≠ 0 for some 𝑖 ∈ {1,2,… , 𝑛 + 1}. Among all non-trivial 
solutions, we choose 𝑟 as the least number of non-zero elements. Moreover, 𝑟 ≠ 1 because 𝜎1(𝑣1)𝛼1 = 0 
implies 𝜎1(𝑣1) = 0 and 𝑣1 = 0. 

i. We will prove that there exists a non-trivial solutions where 𝛼𝑖 are in 𝐹 for any 𝑖 ∈ {1,2,… , 𝑛 + 1}. 

Suppose 

(

 
 
 

𝛼1
𝛼2
⋮
𝛼𝑟
0
⋮
0 )

 
 
 

 is a non-trivial solution with 𝑟 non-zero elements where 𝛼1, 𝛼2, … , 𝛼𝑟 ≠ 0. We obtain 
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a new non-trivial solution by multiplying the given solution with 
1

𝛼𝑟
 which is 

(

 
 
 
 

𝛽1
𝛽2
⋮
𝛽𝑟
0
⋮
0 )

 
 
 
 

=

(

 
 
 
 

𝛼1/𝛼𝑟
𝛼2/𝛼𝑟
⋮
1
0
⋮
0 )

 
 
 
 

. Thus, 

   𝛽1𝜎𝑖(𝑣1) + 𝛽2𝜎𝑖(𝑣2) + ⋯+ 1.𝜎𝑖(𝑣𝑛+1) = 0           (4) 
 
 For 𝑖 = 1,2,… , 𝑛. Now, we will show that 𝛽𝑖  are in 𝐹 for any 𝑖 ∈ {1,2,… , 𝑛 + 1} using method of 

contradiction. Suppose there exists 𝛽𝑖 ∉ 𝐹, say 𝛽1. We know that 𝐹 = 𝐾𝐺  so that 𝛽1 is not an element 
of the fixed field. In other words, there exists 𝜎𝑘 ∈ 𝐺 where 𝜎𝑘(𝛽1) ≠ 𝛽1. So, 𝜎𝑘(𝛽1) − 𝛽1 ≠ 0. Since 𝐺 
is a group, it implies 𝜎𝑘𝐺 = 𝐺. It means for any 𝜎𝑖 ∈ 𝐺, we obtain 𝜎𝑖 = 𝜎𝑘𝜎𝑗 for 𝑗 = 1,2,… , 𝑛. Applying 

𝜎𝑘 to the expressions of (*) 
⟺𝜎𝑘(𝛽1𝜎𝑗(𝑣1) + 𝛽2𝜎𝑗(𝑣2) + ⋯+ 1. 𝜎𝑗(𝑣𝑟)) = 0 

⟺𝜎𝑘(𝛽1). 𝜎𝑘𝜎𝑗(𝑣1) + 𝜎𝑘(𝛽2). 𝜎𝑘𝜎𝑗(𝑣2) + ⋯+ 𝜎𝑘𝜎𝑗(𝑣𝑟) = 0 

 for 𝑗 = 1,2,… , 𝑛 so that from 𝜎𝑖 = 𝜎𝑘𝜎𝑗 . We obtain  

   𝜎𝑘(𝛽1). 𝜎𝑖(𝑣1) + 𝜎𝑘(𝛽2). 𝜎𝑖(𝑣2) +⋯+ 𝜎𝑖(𝑣𝑟) = 0.    (5)
  

 
 Subtracting (4) and (5), we have 

(𝛽1 − 𝜎𝑘(𝛽1)𝜎𝑖(𝑣1) + (𝛽2 − 𝜎𝑘(𝛽2)𝜎𝑖(𝑣2) + ⋯+ (𝛽𝑟−1 − 𝜎𝑘(𝛽𝑟−1)𝜎𝑖(𝑣𝑟−1) + 0 = 0 
 which is non-trivial solution because 𝜎𝑘(𝛽1) ≠ 𝛽1 and is having 𝑟 − 1 non-zeo elements, contrary to 

the choice of 𝑟 as the minimal number. Hence, 

(

 
 
 
 

𝛽1
𝛽2
⋮
𝛽𝑟
0
⋮
0 )

 
 
 
 

 is a non-trivial where all 𝛽𝑖 ∈ 𝐹 for any 𝑖 =

1,2,… , 𝑛. 
ii. Using (i), we obtain a nonzero solution with all elements are in 𝐹. So, using the first equation in the 

system, we obtain 
⟺𝜎1(𝑣1)𝛽1 + 𝜎1(𝑣2)𝛽2 +⋯+ 𝜎1(𝑣𝑟)𝛽𝑟 = 0 
⟺𝜎1(𝛽1𝑣1 + 𝛽2𝑣2 +⋯+ 𝛽𝑟𝑣𝑟) = 0. 

Because 𝜎1is an automorphism, we obtain 𝛽1𝑣1 + 𝛽2𝑣2 +⋯+ 𝛽𝑟𝑣𝑟 = 0 where 𝛽1, 𝛽2, … , 𝛽𝑟  are 
nonzero elements in 𝐾. It is contrary to 𝑣1, 𝑣2, … , 𝑣𝑛+1 which are linearly independent over 𝐹. 

 
Thus, we have 𝑑 ≤ 𝑛. Hence, 𝑑 = 𝑛 i.e. [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. ◼ 
 
 
Corollary 14. [5] Let 𝐾/𝐹 be an extension field where [𝐾: 𝐹] < ∞. 𝐾 is a Galois extension over 𝐹 if and only 
if 𝐾𝐺 = 𝐹. 
 
Proof 
(⇒) We have 𝐾 is a Galois extension over 𝐹. It means [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. We will show that 𝐾𝐺 = 𝐹. We 

know that 𝐾𝐺 is a subfield of 𝐾 and 𝐹 ⊆ 𝐾𝐺 ⊆ 𝐾. Based on Lemma 4 and Theorem 13, we obtain 
|𝐴𝑢𝑡(𝐾/𝐹)| = [𝐾:𝐾𝐺] = [𝐾: 𝐹]/[𝐾𝐺: 𝐹]. 

Because  [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. It implies [𝐾𝐺: 𝐹] = 1. Hence, 𝐾𝐺 = 𝐹. 
 
(⇐) We know that 𝐾𝐺 = 𝐹. Using Theorem 13, we have [𝐾: 𝐹] = |𝐴𝑢𝑡(𝐾/𝐹)|. Thus, 𝐾 is a Galois extension 

over 𝐹.              ◼ 
 

3. Conclusion 
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Let 𝐾/𝐹 be an extension field where [𝐾: 𝐹] < ∞ and 𝐺 = 𝐴𝑢𝑡(𝐾/𝐹). 𝐾 is a Galois extension over 𝐹 if and 
only if its fixed is 𝐹 that is 𝐾𝐺 = 𝐹. 

References 

[1] D. S., & Foote, R. M. (2004). Abstract algebra (Vol. 3). Hoboken: Wiley. 

[2] Khanna, V. K., & Bhamri, S. K. (2016). A course in abstract algebra. India: Vikas Publishing House. 

[3] Lidl, R., & Niederreiter, H. (1994). Introduction to finite fields and their applications. Cambridge: 

Cambridge University Press. 

[4] Malik, D.S., & Mordeson, J.N. (1997). Fundamentals of Abstract Algebra. USA: Mc-GrawHill Companies, 

Inc. 

[5] Morandi, P. (1999). Fields and Galois Theory. New York: Springer. 

[6] Roman, S. (2005). Advanced Linear Algebra. New York: Springer. 


