Extension Fields Which Are Galois Extensions

Novita Dahoklory ${ }^{1 *}$, Henry W. M. Patty ${ }^{2}$
1,2 Algebra and Analysis Division, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Jl. Ir. M. Putuhena, Ambon. Indonesia
*Email: novitadahoklory93@gmail.com
Manuscript submitted : 09 October 2022;
Accepted for publication : 14 November 2022.
doi
: https://doi.org/10.30598/tensorvol3iss2pp85-92

Abstract

Let K / F be an extension field where [$K: F$] is the dimension of K as a vector space over F. Let $\operatorname{Aut}(K / F)$ be the automorphism group of K / F where its order is denoted by $|A u t(K / F)|$. In this research, we will show that $|A u t(K / F)| \leq[K: F]$. Moreover, K / F is called a Galois extension if the equality holds that is $|A u t(K / F)|=[K: F]$. We will also discuss about the fixed field of K / F. Furthermore, we will give a necessary and sufficient condition for an extension field K / F to be a Galois extension using the property of its fixed field.

2010 Mathematical Subject Classification : 11R32, 13B05
Keywords: Extension field, automorphism group, Galois extension, fixed field

1. Introduction

Let F and K be fields where $F \subseteq K$. The field K is called an extension field of F and is denoted by K / F. Moreover, we know that K can be viewed as a vector space over F. Thus, K have a basis where the dimension of K is written by [$K: F]$. Furthermore, we form a set of all automorphisms of K and we denote it by $A u t(K / F)$ which is a group under the operation of composition in $\operatorname{Aut}(K / F)$. The group $\operatorname{Aut}(K / F)$ is called automorphism group of K / F. The number of elements in $\operatorname{Aut}(K / F)$ is called order of $A u t(K / F)$ and is written as $|A u t(K / F)|$.

The relation between the dimension of K / F and the order of $\operatorname{Aut}(K / F)([K: F]$ and $|\operatorname{Aut}(K / F)|)$ was discussed in several researches. In [5], the author shows that $|A u t(K / F)| \leq[K: F]$. However, the equality between $\operatorname{Aut}(K / F)$ and $[K: F]$ does not always hold. For example, the extension field $Q(\sqrt[3]{2}) / Q$ has $\operatorname{Aut}(Q(\sqrt[3]{2}) / Q)=\{i d\}$ and the basis of $(\sqrt[3]{2}) / Q$ is $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ so that $|A u t(K / F)| \neq[K: F]$. Then, it motivates the definition of a Galois extension which is an extension field K / F where $|\operatorname{Aut}(K / F)|=[K: F]$.

Furthermore, let K / F be an extension field with its automorphism group $G=\operatorname{Aut}(K / F)$. Then, we form a set in K defined by

$$
K^{G}=\{x \in K \mid \sigma(x)=x \text { for every } \sigma \in G\}
$$

In other words, K^{G} is the set of all elements in K which are mapped into itself by every $\sigma \in G$. The set K^{G} is a subfield in K where $F \subseteq K^{G}$ and is called fixed field of K.

Throughout this research, we will give some properties of an extension field and its automorphisms group. Next, we will also give a necessary and sufficient condition for K / F to be a Galois extension using the properties of its fixed field.

We refer to $[1,2,5,6]$ for some basic theories including groups in particular automorphism group and vector spaces. For extension fields and its properties also Galois extension fields, this research is based on [3,5].

2. SOME RESULTS

2.1. Extension Field and Its Automorphism Group

In this part, we will discuss about an extension field K / F with its properties related to its role as a vector space over F. Next, we will also explain the automorphism group of an extension field K / F and give some examples on finding all automorphisms of K / F. Furthermore, we will also discuss some properties of the automorphism group of K / F.

Definition 1. [3] Let F and K be fields where $F \subseteq K$. The field K is called an extension field of F (denoted by $K / F)$.

Example 2

i. $\quad \mathbb{R}$ is an extension field of \mathbb{Q}.
ii. $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}$. $\}$ is an extension field of \mathbb{Q}.
iii. $\mathbb{Q}(\sqrt{2}, \sqrt{3})=(\mathbb{Q}(\sqrt{2})(\sqrt{3})=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}$ is an extension field of \mathbb{Q}.

Let K / F is an extension field. We know that K can be viewed as a vector space over F. Thus, K has a basis B over F where the number of elements in B is called dimension of K denoted by $[K: F]$. Particularly, if $[K: F]<\infty$ then K is called a finite extension of \boldsymbol{F} [3]. Next, we will give an example of the dimension of a finite extension field.

Example 3

Given \mathbb{Q} with its extension $\mathbb{Q}(\sqrt{2})$. Every $x \in \mathbb{Q}(\sqrt{2})$ can be expressed by

$$
x=a+b \sqrt{2}
$$

Therefore, x can be written as a linear combination of $\{1, \sqrt{2}\}$. It is clear that $\{1, \sqrt{2}\}$ is linearly independent over \mathbb{Q}. So, $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}. Hence, $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$.

Suppose K / F is an extension field and E is a subfield in K containing F i.e. $F \subseteq E \subseteq K$. Thus, we obtain extension fields K / F and E / F. We will give a property of $[K: F]$ and $[E: F]$ in the following Lemma.

Lemma 4. [3] If K, E, F are fields where $F \subseteq E \subseteq K$ then $[K: F]=[K: E]$. $[E: F]$.
Proof. Let $[K: E]=m$ and $[E: F]=n$. We will show that $[K: F]=[K: E] .[E: F]=m n$.
Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be basis for K / E and E / F, respectively. Take any $x \in K$. Since K is a vector space over E, x can be expressed as

$$
x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{m} v_{m}
$$

for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in E$. Note that E is a vector space over F, we obtain

$$
\alpha_{i}=\beta_{i 1} w_{1}+\beta_{i 2} w_{2}+\cdots+\beta_{i n} w_{n}
$$

for $i=1,2, \ldots, m$. Then,

$$
\begin{aligned}
x & =\left(\beta_{11} w_{1}+\beta_{12} w_{2}+\cdots+\beta_{1 n} w_{n}\right) v_{1}+\cdots+\left(\beta_{m 1} w_{1}+\beta_{m 2} w_{2}+\cdots+\beta_{m n} w_{n}\right) v_{m} \\
& =\beta_{11} v_{1} w_{1}+\beta_{12} v_{1} w_{2}+\cdots+\beta_{1 n} v_{1} w_{n}+\cdots+\beta_{m 1} v_{m} w_{1}+\beta_{m 2} v_{m} w_{2}+\cdots+\beta_{m n} v_{m} w_{n}
\end{aligned}
$$

Thus, K is generated by $B=\left\{v_{i} w_{j} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$. Now, we will show that B is linearly independent. Suppose that

$$
c_{11} v_{1} w_{1}+c_{12} v_{1} w_{2}+\cdots+c_{1 n} v_{2} w_{n}+\cdots+c_{m 1} v_{m} w_{1}+c_{m 2} v_{m} w_{2}+\cdots+c_{m n} v_{m} w_{n}=0
$$

So,

$$
\left(c_{11} w_{1}+c_{12} w_{2}+\cdots+c_{1 n} w_{n}\right) v_{1}+\cdots+\left(c_{m 1} w_{1}+c_{m 2} w_{2}+\cdots+c_{m n} w_{n}\right) v_{m}=0
$$

Since $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent, we obtain $c_{i 1} w_{1}+c_{i 2} w_{2}+\cdots+c_{i n} w_{n}=0$ for $i=1,2, \ldots, m$. Also, since $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is linearly independent, it means $c_{i 1}=c_{i 2}=\cdots=c_{i n}=0$. Thus, $c_{i j}=0$ for $i=1,2, \ldots, m$
and $j=1,2, \ldots, n$. We have B is a basis of K over F. Hence, $B=\left\{v_{i} w_{j} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$ and $[K: F]=$ $m n$.

Furthermore, for every extension field K / F, we form the set of all automorphism of K which is defined by
$\operatorname{Aut}(K / F)=\{\sigma: K \rightarrow K$ automorphism $\mid \sigma(x)=x$, for all $x \in F\}$.
$\operatorname{Aut}(K / F)$ is a group under the operation of composition. We will give some examples of $\operatorname{Aut}(K / F)$ from an extension field K / F.

Example 5

Suppose an extension field $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ with its basis $B=\{1, \sqrt{2}\}$. It is known that each automorphism can be defined by a function

$$
\rho: B \rightarrow \mathbb{Q}(\sqrt{2})
$$

The function will then be extended to $\rho^{\prime}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2})$. Because σ is an element in $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$, we have $\sigma(1)=1$ and $\sigma(a)=\sigma(1 . a)=a . \sigma(1)=a .1=a$ for every $a \in \mathbb{Q}$. Note that,

$$
0=\sigma(1)=\sigma\left((\sqrt{2})^{2}-2\right)=\sigma(\sqrt{2})^{2}-2
$$

So, $\sigma(\sqrt{2})^{2}=2$ and $\sigma(\sqrt{2})=\sqrt{2}$ or $-\sqrt{2}$. So, we get two automorphisms of $\mathbb{Q}(\sqrt{2})$ which is defined by

$$
\begin{aligned}
\sigma_{1}: B & \rightarrow \mathbb{Q}(\sqrt{2}) \\
1 & \mapsto 1 \\
\sqrt{2} & \mapsto \sqrt{2}
\end{aligned}
$$

and

$$
\begin{gathered}
\sigma_{2}: B \rightarrow \mathbb{Q}(\sqrt{2}) \\
1 \mapsto 1 \\
\sqrt{2} \mapsto-\sqrt{2} .
\end{gathered}
$$

Then, those two functions are extended to

$$
\begin{gathered}
\sigma_{1}^{\prime}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2}) \\
a .1+b \cdot \sqrt{2} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(\sqrt{2})
\end{gathered}
$$

and

$$
\begin{gathered}
\sigma_{2}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2}) \\
a .1+b \cdot \sqrt{2} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(-\sqrt{2})
\end{gathered}
$$

Therefore, $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\left\{\sigma_{1}{ }^{\prime}, \sigma_{2}{ }^{\prime}\right\}=\left\{i d, \sigma_{2}\right\}$.

Example 6

Given an extension field $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ where

$$
\mathbb{Q}(\sqrt[3]{2})=\{a .1+b \cdot \sqrt[3]{2}+c \cdot \sqrt[3]{4}\}
$$

So, $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q}. We will use the same way from Example 5 to find all automorphisms of $\mathbb{Q}(\sqrt[3]{2})$. We construct all automorphisms in $\mathbb{Q}(\sqrt[3]{2})$ from bijective function which is defined by

$$
\rho: B \rightarrow \mathbb{Q}(\sqrt[3]{2})
$$

We obtain $\sigma(1)=1$ and $\sigma(a)=\sigma(1 . a)=a \cdot \sigma(1)=a .1=a$ for every $a \in Q$. So,

$$
0=\sigma(0)=\sigma\left((\sqrt[3]{2})^{3}-2\right)=\sigma((\sqrt[3]{2}))^{3}-\sigma(2)=\sigma(\sqrt[3]{2})^{3}-2
$$

So,

$$
\sigma(\sqrt[3]{2})^{3}=2
$$

We know that the roots of $x^{3}-2=0$ are $\sqrt[3]{2} e^{\frac{1}{3} \cdot 2 \pi i} \sqrt[3]{2}, \sqrt[3]{2} e^{\frac{2}{3} \cdot 2 \pi i}$, and $\sqrt[3]{2}$. Note that $\sqrt[3]{2} e^{\frac{1}{3} \cdot 2 \pi i} \sqrt[3]{2}, \sqrt[3]{2} e^{\frac{2}{3} \cdot 2 \pi i} \notin$ $\mathbb{Q}(\sqrt[3]{2})$, so $\sigma(\sqrt[3]{2})=\sqrt[3]{2}$. Using the same way, we will also only have $\sigma(\sqrt[3]{4})=\sqrt[3]{4}$. Hence, we can only form one automorphism defined by

$$
\begin{aligned}
\sigma_{1}: B & \rightarrow \mathbb{Q}(\sqrt[3]{2}) \\
1 & \mapsto 1 \\
\sqrt[3]{2} & \mapsto \sqrt[3]{2} \\
\sqrt[3]{4} & \mapsto \sqrt[3]{4}
\end{aligned}
$$

Then, we extend σ_{1} to $\sigma_{1}{ }^{\prime}$ defined by

$$
\begin{gathered}
\sigma_{1}{ }^{\prime}: \mathbb{Q}(\sqrt[3]{2}) \rightarrow \mathbb{Q}(\sqrt[3]{2}) \\
a .1+b . \sqrt[3]{2}+c \cdot \sqrt[3]{4} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(\sqrt[3]{2})+c \cdot \sigma_{1}(\sqrt[3]{4}) \\
a .1+b \cdot \sqrt[3]{2}+c \cdot \sqrt[3]{4} \mapsto a \cdot 1+b \cdot \sqrt[3]{2} c+\sqrt[3]{4} .
\end{gathered}
$$

Thus, $\sigma_{1}{ }^{\prime}$ is the identity function of $\mathbb{Q}(\sqrt[3]{2})$. In conclusion, we obtain $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=\left\{\sigma_{1}{ }^{\prime}\right\}=\{i d\}$.
Next, we will give a property of $\operatorname{Aut}(K / F)$ in the following lemma.
Proposition 7. [5] If $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is the set of automorphisms of K then $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is linearly independent (i.e. if $\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\cdots+\alpha_{n} \sigma_{n}=0$ then $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0$).

Proof.

Suppose that $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is the set of automorphisms of K. We will prove that $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is linearly independent using induction method on k elements of the given set.
i. For $k=1$. We take any σ_{i} for $i=1,2, \ldots, n$ where $\alpha_{i} \sigma_{i}=0$. It means $\left(\alpha_{1} \sigma_{1}\right)(x)=\alpha_{1}\left(\sigma_{1}(x)\right)=0$. Note that K is a field and σ_{i} is an automorphism, then we have $\sigma_{1}(x) \neq 0$ for every nonzero $x \in K$. Therefore, $\alpha_{i}=0$.
ii. It holds for k where $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}$ is linearly independent.
iii. We will prove that also holds for $k+1$. Suppose that

$$
\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\cdots+\alpha_{k+1} \sigma_{k+1}=0
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k+1} \in F$. So, for every $x \in K$

$$
\left(\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\cdots+\alpha_{k+1} \sigma_{k+1}\right)(x)=0
$$

Thus,

$$
\begin{equation*}
\alpha_{1} \sigma_{1}(x)+\alpha_{2} \sigma_{2}(x)+\cdots+\alpha_{k+1} \sigma_{k+1}(x)=0 \tag{1}
\end{equation*}
$$

Because $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ are distinct, there is a nonzero $y \in K$ such that $\sigma_{1}(y) \neq \sigma_{2}(y)$. Using equation (1), we obtain

$$
\begin{align*}
& \Leftrightarrow \alpha_{1} \sigma_{1}(x y)+\alpha_{2} \sigma_{2}(x y)+\cdots+\alpha_{k+1} \sigma_{k+1}(x y)=0 \\
& \Leftrightarrow \alpha_{1} \sigma_{1}(x) \sigma_{1}(y)+\alpha_{2} \sigma_{2}(x) \sigma_{2}(y)+\cdots+\alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y)=0 \tag{2}
\end{align*}
$$

From (i), we obtain

$$
\begin{equation*}
\alpha_{1} \sigma_{1}(x)=-\alpha_{2} \sigma_{2}(x)-\cdots-\alpha_{k+1} \sigma_{k+1}(x) \tag{3}
\end{equation*}
$$

Then, we substitute (3) to (2)

$$
\begin{aligned}
& \Leftrightarrow\left(-\alpha_{2} \sigma_{2}(x)-\alpha_{3} \sigma_{3}(x)-\cdots-\alpha_{k+1} \sigma_{k+1}(x)\right) \sigma_{1}(y)+\alpha_{2} \sigma_{2}(x) \sigma_{2}(y)+\cdots+\alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y)=0 \\
& \Leftrightarrow-\alpha_{2} \sigma_{2}(x) \sigma_{1}(y)-\alpha_{3} \sigma_{3}(x) \sigma_{1}(y) \ldots-\alpha_{k+1} \sigma_{k+1}(x) \sigma_{1}(y)+\alpha_{2} \sigma_{2}(x) \sigma_{2}(y)+\cdots+\alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y)=0 \\
& \Leftrightarrow-\alpha_{2} \sigma_{2}(x) \sigma_{1}(y)-\alpha_{3} \sigma_{3}(x) \sigma_{1}(y)-\cdots-\alpha_{k+1} \sigma_{k+1}(x) \sigma_{1}(y)+\alpha_{2} \sigma_{2}(x) \sigma_{2}(y)+\alpha_{3} \sigma_{3}(x) \sigma_{3}(y)+\cdots \\
& \quad \quad+\alpha_{k+1} \sigma_{k+1}(x) \sigma_{k+1}(y)=0 \\
& \Leftrightarrow \alpha_{2} \sigma_{2}(x)\left(\sigma_{2}(y)-\sigma_{1}(y)\right)+\alpha_{3} \sigma_{3}(x)\left(\sigma_{3}(y)-\sigma_{1}(y)\right) \ldots+\alpha_{k+1} \sigma_{k+1}(x)\left(\sigma_{k+1}(y)-\sigma_{1}(y)\right)=0 \\
& \Leftrightarrow \alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right) \sigma_{2}(x)+\alpha_{3}\left(\sigma_{3}(y)-\sigma_{1}(y)\right) \sigma_{3}(x)+\cdots+\alpha_{k+1}\left(\sigma_{k+1}(y)-\sigma_{1}(y)\right) \sigma_{k+1}(x)=0 \\
& \Leftrightarrow\left(\alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right) \sigma_{2}+\alpha_{3}\left(\sigma_{3}(y)-\sigma_{1}(y)\right) \sigma_{3} \ldots+\alpha_{k+1}\left(\sigma_{k+1}(y)-\sigma_{1}(y)\right) \sigma_{k+1}\right)(x)=0
\end{aligned}
$$

Using the assumption for k, we obtain

$$
\alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right)=\alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right)=\cdots=\alpha_{k+1}\left(\sigma_{k+1}(y)-\sigma_{1}(y)\right)=0
$$

Note that $\alpha_{2}\left(\sigma_{2}(y)-\sigma_{1}(y)\right)=0$ and $(y) \neq \sigma_{1}(y)$, so we have $\alpha_{2}=0$. Moreover, using (i) and $\alpha_{2}=$ 0 , we also have

$$
\begin{aligned}
& \Leftrightarrow \alpha_{1} \sigma_{1}(x)+\alpha_{3} \sigma_{3}(x) \ldots+\alpha_{k+1} \sigma_{k+1}(x)=0 \\
& \Leftrightarrow\left(\alpha_{1} \sigma_{1}+\alpha_{3} \sigma_{3}+\cdots+\alpha_{k+1} \sigma_{k+1}\right)(x)=0 .
\end{aligned}
$$

Therefore, $\alpha_{1} \sigma_{1}+\alpha_{3} \sigma_{3}+\cdots+\alpha_{k+1} \sigma_{k+1}=0$. Again, using the assumption for $n=k$, it implies that that $\alpha_{1}=\alpha_{3}=\cdots=\alpha_{k+1}=0$. Hence, $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is linearly independent over F.

Moreover, we will give the relation between $|A u t(K / F)|$ and $[K: F]$ in the proposition below.

Proposition 8 [5]

If K / F is an extension field then $|A u t(K / F)| \leq[K: F]$.

Proof

Write $G=\operatorname{Aut}(K / F)$. Suppose $G=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ so that $|G|=n$. Let $[K: F]=n$ and the basis of K / F is $B=$ $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ for some $d \in N$. We will prove that $n \leq d$ using a method of contradiction.
Suppose $n>d$. We form a linear equation system i.e.

$$
\begin{gathered}
\sigma_{1}\left(v_{1}\right) x_{1}+\sigma_{2}\left(v_{1}\right) x_{2}+\cdots+\sigma_{n}\left(v_{1}\right) x_{n}=0 \\
\sigma_{1}\left(v_{2}\right) x_{1}+\sigma_{2}\left(v_{2}\right) x_{2}+\cdots+\sigma_{n}\left(v_{2}\right) x_{n}=0 \\
\vdots \\
\sigma_{1}\left(v_{d}\right) x_{1}+\sigma_{2}\left(v_{d}\right) x_{2}+\cdots+\sigma_{n}\left(v_{d}\right) x_{n}=0
\end{gathered}
$$

Note that there are more variables than the number of equations. It implies there is a nonzero solution, $\left(x_{1} x_{2} \vdots x_{n}\right)=\left(c_{1} c_{2} \vdots c_{n}\right)$ where $c_{i} \neq 0$ for some $i \in\{1,2, \ldots, n\}$. Let $w \in K / F$. It means w can be expressed as

$$
w=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}
$$

where $a_{1}, a_{2}, \ldots, a_{d} \in F$. Then, we multiply a_{i} to the system of equations. Thus,

$$
\begin{gathered}
a_{1} \sigma_{1}\left(v_{1}\right) x_{1}+a_{1} \sigma_{2}\left(v_{1}\right) x_{2}+\cdots+a_{1} \sigma_{n}\left(v_{1}\right) x_{n}=0 \\
a_{2} \sigma_{1}\left(v_{2}\right) x_{1}+a_{2} \sigma_{2}\left(v_{2}\right) x_{2}+\cdots+a_{2} \sigma_{n}\left(v_{2}\right) x_{n}=0 \\
\vdots \\
a_{d} \sigma_{1}\left(v_{d}\right) x_{1}+a_{d} \sigma_{2}\left(v_{d}\right) x_{2}+\cdots+a_{d} \sigma_{n}\left(v_{d}\right) x_{n}=0
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\left(a_{1} \sigma_{1}\left(v_{1}\right)+a_{2} \sigma_{1}\left(v_{2}\right)+\cdots+a_{d} \sigma_{1}\left(v_{d}\right)\right) c_{1}+\left(a_{1} \sigma_{2}\left(v_{1}\right)+a_{2} \sigma_{2}\left(v_{2}\right)+\cdots+a_{d} \sigma_{2}\left(v_{d}\right)\right) c_{2}+\cdots+\left(a_{1} \sigma_{n}\left(v_{1}\right)\right. \\
\left.+a_{2} \sigma_{n}\left(v_{2}\right)+\cdots+a_{d} \sigma_{n}\left(v_{d}\right)\right) c_{n}=0
\end{gathered}
$$

and

$$
\sigma_{1}\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}\right) \cdot c_{1}+\sigma_{2}\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}\right) \cdot c_{2}+\cdots+\sigma_{n}\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{d} v_{d}\right) \cdot c_{n}=0
$$

So, $c_{1} . \sigma_{1}(w)+c_{2} . \sigma_{2}(w)+\cdots+c_{n} \sigma_{n}(w)=0$ and $\left(c_{1} \sigma_{1}+c_{1} \sigma_{2}+\cdots+c_{n} \sigma_{n}\right)(w)=0$. It holds for every $w \in$ K / F. It implies that $\alpha_{1} \sigma_{1}+\alpha_{2} \sigma_{2}+\cdots+\alpha_{n} \sigma_{d}=0$. Note that there is $c_{i} \neq 0$ for some $i=1,2, \ldots, n$. Hence, $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$ is linearly dependent. It implies contradiction with Proposition 7. Hence, $n \leq d$ that is $|G| \leq$ [K:F].

Based on Proposition 8, we have $|A u t(K / F)| \leq[K: F]$. However, equality does not always hold for all extension fields. We will give an example to describe it.

Example 9

Given an extension field $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$. From Example 4, we know that $\mathbb{Q}(\sqrt[3]{2})=\{a .1+b \cdot \sqrt[3]{2}+c \cdot \sqrt[3]{4}\}$ So, $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is a basis of $\mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q}. We also have $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=\{i d\}$. Thus, $[\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}]=3$ and $|\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})|=1$.

Based on the example above, it then motivates the definition of Galois extension. We will give the definition of Galois extension on the following definition.

Definition 10. [5] Let K / F be a finite extension field. K is called Galois extension over F if $|A u t(K / F)|=$ [K:F].

It's common to write the automorphism $A u t(K / F)$ as $\operatorname{Gal}(K / F)$ when K is a Galois extension. Next, we will give an example of a Galois extension and a non-Galois extension in the following example.

Example 11

i. Using Example 5, we have $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is a Galois extension. Because the basis of $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is $\{1, \sqrt{2}\}$. We obtain $\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\left\{i d, \sigma_{2}\right\}$. Thus, $|\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})|=[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$. Hence, $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ is a Galois extension field over \mathbb{Q}.
ii. Based on Example 6 , we know that $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not a Galois extension because $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=\{i d\}$ and the basis of $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is $\{1, \sqrt[3]{2}\}$. So, $|\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})| \neq[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=2$.

2.2. Fixed Field of An Extension Field

In this part, we will discuss about fixed field of an extension field K / F. Then, we give a necessary and sufficient condition for an extension field to be a Galois extension using the property of fixed of K / F.

Let K / F be an extension field and $G=A u t(K / F)$. We form a subset of K defined by

$$
K^{G}=\{x \in K \mid \sigma(x)=x, \forall \sigma \in G\} .
$$

Note that $\forall a, b \in K^{G}$ dan $\sigma \in G$, we obtain

$$
\sigma(a-b)=\sigma(a)-\sigma(b)=a-b
$$

and

$$
\sigma\left(a b^{-1}\right)=\sigma(a) \sigma\left(b^{-1}\right)=\sigma(a)(\sigma(b))^{-1}=a b^{-1}
$$

Therefore, K^{G} is a subfield in K and is called fixed field of K / F [5].

Example 12

i. Using Example 5, we have $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$. We obtain $G=\operatorname{Aut}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})=\left\{\right.$ id, $\left.\sigma_{2}{ }^{\prime}\right\}$ where

$$
\begin{gathered}
i d: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2}) \\
a .1+b \cdot \sqrt{2} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(\sqrt{2})
\end{gathered}
$$

and

$$
\begin{gathered}
\sigma_{2}^{\prime}: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2}) \\
a .1+b \cdot \sqrt{2} \mapsto a \cdot \sigma_{1}(1)+b \cdot \sigma_{1}(-\sqrt{2}) .
\end{gathered}
$$

Thus, $i d(a .1)=a$ and $\sigma_{2}^{\prime}(a .1)=a$ where $a \in \mathbb{Q}$. Hence, $Q(\sqrt{2})^{G}=\mathbb{Q}$.
ii. Based on Example $6, \mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is an extension field with its automorphism group $G=$ $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})=\{i d\}$. Note that for every $x \in \mathbb{Q}(\sqrt[3]{2})$, we obtain $i d(x)=x$. Therefore, $\mathbb{Q}(\sqrt[3]{2})^{G}=$ $\mathbb{Q}(\sqrt[3]{2})$.

Theorem 13. [5] Let K / F be an extension field where $[K: F]<\infty$. If $K^{G}=F$ then $[K: F]=|A u t(K / F)|$.
Proof. Let $[K: F]=d$ and $|A u t(K / F)|=n$. Based on Proposition 8, we have $d \geq n$. Next, we will prove that $d \leq n$ using a method of contradiction.
Suppose $d>n$. Thus, there exist $n+1$ elements $v_{1}, v_{2}, \ldots, v_{n+1}$ which are linearly independent over F. Then, we construct the following system of the equations

$$
\begin{gathered}
\sigma_{1}\left(v_{1}\right) x_{1}+\sigma_{1}\left(v_{2}\right) x_{2}+\cdots+\sigma_{1}\left(v_{n+1}\right) x_{n+1}=0 \\
\sigma_{2}\left(v_{1}\right) x_{1}+\sigma_{2}\left(v_{2}\right) x_{2}+\cdots+\sigma_{2}\left(v_{n+1}\right) x_{n+1}=0 \\
\vdots \\
\sigma_{n}\left(v_{1}\right) x_{1}+\sigma_{2}\left(v_{2}\right) x_{2}+\cdots+\sigma_{n}\left(v_{n+1}\right) x_{n+1}=0
\end{gathered}
$$

Note that there are more variables than the number of equations. It implies there is a non-trivial solution, $\left(x_{1} x_{2} \vdots x_{n+1}\right)=\left(\alpha_{1} \alpha_{2} \vdots \alpha_{n+1}\right)$ where $\alpha_{i} \neq 0$ for some $i \in\{1,2, \ldots, n+1\}$. Among all non-trivial solutions, we choose r as the least number of non-zero elements. Moreover, $r \neq 1$ because $\sigma_{1}\left(v_{1}\right) \alpha_{1}=0$ implies $\sigma_{1}\left(v_{1}\right)=0$ and $v_{1}=0$.
i. We will prove that there exists a non-trivial solutions where α_{i} are in F for any $i \in\{1,2, \ldots, n+1\}$. Suppose $\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{r} \\ 0 \\ \vdots \\ 0\end{array}\right)$ is a non-trivial solution with r non-zero elements where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \neq 0$. We obtain
a new non-trivial solution by multiplying the given solution with $\frac{1}{\alpha_{r}}$ which is $\left(\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{r} \\ 0 \\ \vdots \\ 0\end{array}\right)=\left(\begin{array}{c}\alpha_{1} / \alpha_{r} \\ \alpha_{2} / \alpha_{r} \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right)$. Thus,

$$
\begin{equation*}
\beta_{1} \sigma_{i}\left(v_{1}\right)+\beta_{2} \sigma_{i}\left(v_{2}\right)+\cdots+1 . \sigma_{i}\left(v_{n+1}\right)=0 \tag{4}
\end{equation*}
$$

For $i=1,2, \ldots, n$. Now, we will show that β_{i} are in F for any $i \in\{1,2, \ldots, n+1\}$ using method of contradiction. Suppose there exists $\beta_{i} \notin F$, say β_{1}. We know that $F=K^{G}$ so that β_{1} is not an element of the fixed field. In other words, there exists $\sigma_{k} \in G$ where $\sigma_{k}\left(\beta_{1}\right) \neq \beta_{1}$. So, $\sigma_{k}\left(\beta_{1}\right)-\beta_{1} \neq 0$. Since G is a group, it implies $\sigma_{k} G=G$. It means for any $\sigma_{i} \in G$, we obtain $\sigma_{i}=\sigma_{k} \sigma_{j}$ for $j=1,2, \ldots, n$. Applying σ_{k} to the expressions of (*)

$$
\begin{aligned}
& \Leftrightarrow \sigma_{k}\left(\beta_{1} \sigma_{j}\left(v_{1}\right)+\beta_{2} \sigma_{j}\left(v_{2}\right)+\cdots+1 \cdot \sigma_{j}\left(v_{r}\right)\right)=0 \\
& \Leftrightarrow \sigma_{k}\left(\beta_{1}\right) \cdot \sigma_{k} \sigma_{j}\left(v_{1}\right)+\sigma_{k}\left(\beta_{2}\right) \cdot \sigma_{k} \sigma_{j}\left(v_{2}\right)+\cdots+\sigma_{k} \sigma_{j}\left(v_{r}\right)=0
\end{aligned}
$$

for $j=1,2, \ldots, n$ so that from $\sigma_{i}=\sigma_{k} \sigma_{j}$. We obtain

$$
\begin{equation*}
\sigma_{k}\left(\beta_{1}\right) \cdot \sigma_{i}\left(v_{1}\right)+\sigma_{k}\left(\beta_{2}\right) \cdot \sigma_{i}\left(v_{2}\right)+\cdots+\sigma_{i}\left(v_{r}\right)=0 \tag{5}
\end{equation*}
$$

Subtracting (4) and (5), we have

$$
\left(\beta_{1}-\sigma_{k}\left(\beta_{1}\right) \sigma_{i}\left(v_{1}\right)+\left(\beta_{2}-\sigma_{k}\left(\beta_{2}\right) \sigma_{i}\left(v_{2}\right)+\cdots+\left(\beta_{r-1}-\sigma_{k}\left(\beta_{r-1}\right) \sigma_{i}\left(v_{r-1}\right)+0=0\right.\right.\right.
$$

which is non-trivial solution because $\sigma_{k}\left(\beta_{1}\right) \neq \beta_{1}$ and is having $r-1$ non-zeo elements, contrary to the choice of r as the minimal number. Hence, $\left(\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{r} \\ 0 \\ \vdots \\ 0\end{array}\right)$ is a non-trivial where all $\beta_{i} \in F$ for any $i=$ $1,2, \ldots, n$.
ii. Using (i), we obtain a nonzero solution with all elements are in F. So, using the first equation in the system, we obtain

$$
\begin{aligned}
& \Leftrightarrow \sigma_{1}\left(v_{1}\right) \beta_{1}+\sigma_{1}\left(v_{2}\right) \beta_{2}+\cdots+\sigma_{1}\left(v_{r}\right) \beta_{r}=0 \\
& \Leftrightarrow \sigma_{1}\left(\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{r} v_{r}\right)=0 .
\end{aligned}
$$

Because σ_{1} is an automorphism, we obtain $\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{r} v_{r}=0$ where $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$ are nonzero elements in K. It is contrary to $v_{1}, v_{2}, \ldots, v_{n+1}$ which are linearly independent over F.

Thus, we have $d \leq n$. Hence, $d=n$ i.e. $[K: F]=|A u t(K / F)|$.

Corollary 14. [5] Let K / F be an extension field where [$K: F]<\infty . K$ is a Galois extension over F if and only if $K^{G}=F$.

Proof

(\Rightarrow) We have K is a Galois extension over F. It means $[K: F]=|A u t(K / F)|$. We will show that $K^{G}=F$. We know that K^{G} is a subfield of K and $F \subseteq K^{G} \subseteq K$. Based on Lemma 4 and Theorem 13, we obtain

$$
|\operatorname{Aut}(K / F)|=\left[K: K^{G}\right]=[K: F] /\left[K^{G}: F\right] .
$$

Because $[K: F]=|\operatorname{Aut}(K / F)|$. It implies $\left[K^{G}: F\right]=1$. Hence, $K^{G}=F$.
(\Leftarrow) We know that $K^{G}=F$. Using Theorem 13, we have $[K: F]=|A u t(K / F)|$. Thus, K is a Galois extension over F.

3. Conclusion

Let K / F be an extension field where $[K: F]<\infty$ and $G=A u t(K / F) . K$ is a Galois extension over F if and only if its fixed is F that is $K^{G}=F$.

References

[1] D. S., \& Foote, R. M. (2004). Abstract algebra (Vol. 3). Hoboken: Wiley.
[2] Khanna, V. K., \& Bhamri, S. K. (2016). A course in abstract algebra. India: Vikas Publishing House.
[3] Lidl, R., \& Niederreiter, H. (1994). Introduction to finite fields and their applications. Cambridge: Cambridge University Press.
[4] Malik, D.S., \& Mordeson, J.N. (1997). Fundamentals of Abstract Algebra. USA: Mc-GrawHill Companies, Inc.
[5] Morandi, P. (1999). Fields and Galois Theory. New York: Springer.
[6] Roman, S. (2005). Advanced Linear Algebra. New York: Springer.

