On the Total Irregularity Strength of the Corona Product of a Path with Path

Meilin Imelda Tilukay ${ }^{1 *}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Jalan Ir. M. Putuhena, Kampus Poka - Unpatti, Ambon, Indonesia.
*Email: meilinity@gmail.com
Manuscript submitted : March 2023
Manuscript received : April 2023
Doi
: https://doi.org/10.30598/tensorvol4iss1pp21-26

Abstract

This paper deals with the totally irregular total labeling of the corona product of a path with path. The results gave the exact values of the total irregularity strength of $P_{m} \odot P_{n}$ for integer $2 \leq m \leq 3$ and $n \geq 3$.

2010 Mathematical Subject Classification: 05C78.
Key words: corona product, path, total irregularity strength, totally irregular total labeling

1. Introduction

In research of graph theory, graph labeling is recently becoming highly interesting area. It comes from the availability of open problems in graph labeling. The research of finding the general labeling for any graph, the exact value of any labeling parameter, or even verification of labeling and its parameter for small class of graph, are challenging and widely connect to many other research areas and problems.

Irregular k-labeling of a connected graph of order more than two, one of graph labeling that highly researched, is a map that assign every edge of a graph into k positive integer such that the weights of each vertex are distinct. The largest value of k for which a graph is irregular is called the irregularity strength, denoted as $s(G)$.

In this paper, we consider a finite, undirected, and simple graph. In [1], Tilukay, et al., the exact values of the total irregularity strength of fan, wheel, triangular book, and friendship graphs, are provided. It is clear that fan graph f_{n} is isomorphic to $P_{1} \odot P_{n}$, cycle graph C_{n} is isomorphic to $P_{1} \odot C_{n}$, and star graph S_{n} is isomorphic to $P_{1} \odot S_{n}$. As an advanced study of the research in [1], the extension for P_{m}, where $2 \leq m \leq 3$, is analyzed to provide the more general exact values.

As mentioned in the first result of the totally irregular total labeling [2], the lower bound of the total irregularity strength of a graph (denoted by $t s(G)$) is the maximum of its total edge (or vertex) - irregularity strength; denoted by $\operatorname{tes}(G)$ or $\operatorname{tvs}(G)$, respectively, by Marzuki, et al. as follows.

$$
\begin{equation*}
t s(G) \geq \max \{\operatorname{tes}(G), t v s(G)\} \tag{1}
\end{equation*}
$$

The exact values of the total edge irregular strength of the corona product of a path with a path, a cycle, and a star are given by Nurdin, et al. [3], as follow.

$$
\begin{align*}
& \operatorname{tes}\left(P_{m} \odot P_{n}\right)=\left\lceil\frac{2 m n+1}{3}\right\rceil, \text { for integer } m, n \geq 2 \\
& \operatorname{tes}\left(P_{m} \odot C_{n}\right)=\left\lceil\frac{2 m n+1}{3}\right\rceil, \text { for integer } m, n \geq 2 \tag{2}\\
& \operatorname{tes}\left(P_{m} \odot S_{n}\right)=\left\lceil\frac{2 m n+1}{3}\right\rceil, \text { for integer } m, n \geq 2
\end{align*}
$$

In other hand, the boundary of the total vertex irregularity strength of any graph is given by Baca, et al. in [4], as follow.

$$
\begin{equation*}
\left\lceil\frac{p+\delta(G)}{\Delta(G)+1}\right\rceil \leq t v s(G) \leq p+\Delta(G)-2 \delta(G)+1 \tag{3}
\end{equation*}
$$

Where p is the order of G, q is the size of $G, \delta(G)$ is the minimum degree of G, and $\Delta(G)$ is the maximum degree of G.

Marzuki, et al. [2] found that for path graph (with no order 5) and cycle graph, lower bound in equation (1) is equal to its tes. Moreover, for several Cartesian product graphs, Ramdani and Salman in [5], also found the same result. It is followed by many other results, such as Ramdani et al. [6] for the gear graph, the fungus graph with even order and the disjoint union of stars; Tilukay et al. [1] for that fan, wheel, triangular book, and friendship graphs; Jeyanti and Sudha [7] for double fans $D F_{n},(n \geq 3)$, double triangular snakes $D T_{p},(p \geq 3)$, joint-wheel graphs $W H_{n},(n \geq 3)$, and $P_{m}+K_{m},(m \geq 3)$; Tilukay, et al. for complete graph [8] and complete bipartite graph [9]. Further results of $\operatorname{tvs}(G)$, $\operatorname{tes}(G)$, and $t s(G)$ can be found in [10-17]. Since many previous results lead to $\operatorname{ts}(G)=\operatorname{tes}(G)$ for non-tree graphs, our results are suspected to have similar conclusion.

2. The Total Irregularity Strength of the Corona Product of a Path with Path

Using the axiomatic deductive and pattern detection method, we derive the following theorem.

Theorem 1. For every integer $2 \leq m \leq 3, n \geq 2$,

$$
t s\left(P_{m} \odot P_{n}\right)=\left\lceil\frac{2 m n+1}{3}\right\rceil
$$

Proof. The corona product of a path P_{m} and a path P_{n} resulting a graph $P_{m} \odot P_{n}$ of order $m(n+1)$ and size $2 m n-1$. Follow from equation (1) and (2), we obtain $t s\left(P_{m} \odot P_{n}\right) \geq\left\lceil\frac{2 m n+1}{3}\right\rceil$, for $2 \leq m \leq 3, n \geq 2$. Next, to conclude that it is the exact value of $t s\left(P_{m} \odot P_{n}\right)$, we need to prove that there is a totally irregular total $\left\lceil\frac{2 m n+1}{3}\right\rceil$ - labeling of $\quad P_{m} \odot P_{n}$. Let $\quad V\left(P_{m} \odot P_{n}\right)=\left\{v_{i}, v_{i}^{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\} \quad$ and $E\left(P_{m} \odot P_{n}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq m-1\right\} \cup\left\{v_{i} v_{i}^{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} v_{i}^{j+1} \mid 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$. Let $\lambda: V \cup E \rightarrow\left\{1,2,3, \cdots,\left\lceil\frac{2 m n+1}{3}\right\rceil\right\}$ and $r_{i}=\left\lceil\frac{2 n i+1}{3}\right\rceil$ for $2 \leq i \leq m$. Define λ as follows.
$\lambda\left(v_{i}\right)=\left\{\begin{array}{l}1, \\ r_{i},\end{array}\right.$
for $i=1 ;$
for $2 \leq i \leq m ;$
$\lambda\left(v_{i}^{j}\right)=\left\{\begin{array}{l}j, \\ r_{i}+j-n,\end{array}\right.$
for $i=1,1 \leq j \leq n$;
for $2 \leq i \leq m, 1 \leq j \leq n$;
$\lambda\left(v_{i} v_{i}^{j}\right)= \begin{cases}j, & \text { for } i=1,1 \leq j \leq n ; \\ r_{i}+j-n, & \text { for } 2 \leq i \leq m, 1 \leq j \leq n ;\end{cases}$
$\lambda\left(v_{i}^{j} v_{i}^{j+1}\right)= \begin{cases}1, & \text { for } i=1,1 \leq j \leq n-1 ; \\ r_{i}, & \text { for } 2 \leq i \leq m, 1 \leq j \leq n-1 ;\end{cases}$
$\lambda\left(v_{i} v_{i+1}\right)= \begin{cases}2 n+1-r_{2}, & \text { for } i=1 ; \\ 4 n+4-r_{2}-r_{3}, & \text { for } i=2, n \neq 5 ; \\ n, & \text { for } i=2 n=4,5 .\end{cases}$
From the definition above, we have $\lambda\left(v_{m}^{n}\right)=\lambda\left(v_{m} v_{m}^{n}\right)=\lambda\left(v_{m}^{n} v_{m}^{n+1}\right)=r_{m}=\left\lceil\frac{2 m n+1}{3}\right\rceil$ as the maximum label.
Next, we checked the vertex-weights and edge-weights as follows.
For the vertex-weight, we evaluate the functions above and obtain
$w\left(v_{1}^{j}\right)=\left\{\begin{array}{c}3, \text { for } i=1 ; \\ 2 j+2, \text { for } 2 \leq j \leq n-1 ; ~ \\ 2 n+1, \text { for } i=n ;\end{array}\right.$
$w\left(v_{2}^{j}\right)=\left\{\begin{array}{c}2 n+3, \text { for } i=1 ; \\ 2 n+r_{2}+2 j+1, \text { for } 2 \leq j \leq n-1 ; ~ \\ 4 n+1, \text { for } i=n ;\end{array}\right.$
$w\left(v_{3}^{j}\right)=\left\{\begin{array}{c}4 n+3, \text { for } i=1 ; \\ 4 n+r_{3}+2 j+1, \text { for } 2 \leq j \leq n-1 ; ~ \\ 6 n+1, \text { for } i=n ;\end{array}\right.$
$w\left(v_{1}\right)=\frac{n(n+5)}{2}-r_{2}+2 ;$
$w\left(v_{2}\right)=\left\{\begin{array}{c}\frac{n}{2}\left(2 r_{2}-n+5\right)+1, \text { for } m=2 ; \\ \frac{n}{2}\left(2 r_{2}-n+13\right)-r_{2}-r_{3}+3, \text { for } m=3, n \neq 5 ; \\ \frac{n}{2}\left(2 r_{2}-n+5\right)+6, \text { for } m=3, n=5 ;\end{array}\right.$
$w\left(v_{3}\right)=\left\{\begin{array}{l}\frac{n}{2}\left(2 r_{3}-n+9\right)+5, \text { for } m=3, n \neq 5 ; \\ \frac{n}{2}\left(2 r_{3}-n+3\right)+r_{3}, \text { for } m=3, n=4,5 .\end{array}\right.$

Next, we evaluate the edge-weights as follows.
$w\left(v_{1} v_{1}^{j}\right)=2 j+1,1 \leq j \leq n ;$
$w\left(v_{1}^{j} v_{1}^{j+1}\right)=2 j+2,1 \leq j \leq n-1$;
$w\left(v_{2} v_{2}^{j}\right)=\left\{\begin{array}{l}2 n+2 j+1,1 \leq j \leq n, n \equiv 2 \bmod 3 ; \\ 2 n+2 j+2,1 \leq j \leq n, n \equiv 1 \bmod 3 ; \\ 2 n+2 j+3,1 \leq j \leq n, n \equiv 0 \bmod 3 ;\end{array}\right.$
$w\left(v_{2}^{j} v_{2}^{j+1}\right)=\left\{\begin{array}{l}2 n+2 j+2,1 \leq j \leq n, n \equiv 2 \bmod 3 ; \\ 2 n+2 j+3,1 \leq j \leq n, n \equiv 1 \bmod 3 ; \\ 2 n+2 j+4,1 \leq j \leq n, n \equiv 0 \bmod 3 ;\end{array}\right.$
$w\left(v_{3} v_{3}^{j}\right)=\left\{\begin{array}{l}4 n+2 j+3,1 \leq j \leq n, n \equiv 2 \bmod 3 ; \\ 4 n+2 j+2,1 \leq j \leq n, n \equiv 1 \bmod 3 ; \\ 4 n+2 j+1,1 \leq j \leq n, n \equiv 0 \bmod 3 ;\end{array}\right.$
$w\left(v_{3}^{j} v_{3}^{j+1}\right)=\left\{\begin{array}{l}4 n+2 j+4,1 \leq j \leq n, n \equiv 2 \bmod 3 ; \\ 4 n+2 j+3,1 \leq j \leq n, n \equiv 1 \bmod 3 ; \\ 4 n+2 j+2,1 \leq j \leq n, n \equiv 0 \bmod 3 ;\end{array}\right.$
$w\left(v_{i} v_{i+1}\right)=2 n i+2,1 \leq i \leq 2$;
It can be checked that the vertex-weights and edge-weights form increasingly sub-sequences for which there is no two vertices of the same weight.

From the evaluation on vertex-weights and edge-weights above, we obtain that the corona product of a
path P_{m} and a path $P_{n}, P_{m} \odot P_{n}$ with every integer $2 \leq m \leq 3, n \geq 2$, is a totally irregular total graph with the $t s\left(P_{m} \odot P_{n}\right)=\left\lceil\frac{2 m n+1}{3}\right\rceil$.

3. Conclusion

By equation (3) and the result above, we can conclude that the corona product of a path P_{m} and a path $P_{n}, \quad P_{m} \odot P_{n}$ with every integer $2 \leq m \leq 3, n \geq 2$, is a totally irregular total graph with the $t s\left(P_{m} \odot P_{n}\right)=\left\lceil\frac{2 m n+1}{3}\right\rceil$. In other word, the total irregularity strength of $P_{m} \odot P_{n}$ with every integer $2 \leq m \leq 3, n \geq 2$ is equal to its total edge irregularity strength.

References

[1] Tilukay, M. I., Salman, A. N. M., \& Persulessy, E. R. (2015) On the total irregularity strength of fan, wheel, triangular book, and friendship graphs. Procedia Computer Science, 74, 124-131.
[2] Marzuki, C. C., Salman, A. N. M., \& Miller, M. (2013), On the total irregularity strength of cycles and paths, Far East Journal of Mathematical Sciences (FJMS), 82 (1), 1-21.
[3] Nurdin, Salman A.N.M., \& Baskoro, E.T. (2009). The total edge irregular strengths of the corona product of paths with some graphs. Journal of Combinatorial Mathematics and Combinatorial Computing. 71, 227233.
[4] Bača, M., Jendrol̀, S., Miller, M., \& Ryan, J. (2007). On irregular total labellings, Discrete Math. 307, 13781388.
[5] Ramdani, R. \& Salman, A.N.M. (2013). On the total irregularity strength of some cartesian product graphs, AKCE International Journal of Graphs and Combinatorics, 10 (2), 199-209.
[6] Ramdani, R., Salman, A.N.M., Assiyatun, H., Semanicova-Fenovcikova, A., \& Baca, M. (2015). Total irregularity strength of three family of graphs, Mathematics in Computer Science, 9, 229-237.
[7] Jeyanthi, P., \& Sudha, A. (2019), On the total irregularity strength of some graphs, Bulletin of the Interternational Mathematical Virtual Institute, 9 (2), 393-401.
[8] Tilukay, M. I., Tomasouw, B.P., Rumlawang, F. Y., \& Salman, A. N. M. (2017). The total irregularity strength of complete graphs and complete bipartite graphs, Far East Journal of Mathematical Sciences, 102 (2), 317-327
[9] Tilukay, M. I., Taihuttu, P. D. M., Salman, A. N. M., Rumlawang, F. Y., \& Leleury, Z. A. (2021). Complete bipartite graph is a totally irregular total graph, Electronic Journal of Graph Theory and Applications 9(2), 387-396
[10] Galian, J A. (2022). A dynamic survey of graph labeling. Electronic Journal of Combinatorics. 25, 1-623 Retrieved December 2nd, 2020, from: https://www. combinatorics.org/files/Surveys/ds6/ds6v25-2022. pdf
[11] Indriati, D., Widodo, Wijayanti, I. E., \& Sugeng, K. A. (2016). On total irregularity strength of star graphs, double-stars, and caterpillar, AIP Conference Proceedings, 1707 (1), 020008(1)-020008(6).
[12] Ivaňco, J. \& Jendrol, S. (2006). Total edge irregularity strength of trees, Discussioness Mathematicae Graph Theory, 26, 449-456.
[13] Ramdani, R., Salman, A.N.M., \& Assiyatun, H. (2015). Total irregularity strength of regular graphs, Journal of Mathematical \& Fundamental Sciences, 47 (3), 281-295.
[14] Simanjuntak, R., Susilawati, S., \& Baskoro, E. T. (2020). Total vertex irregularity strength for trees with
many vertices of degree two, Electronic Journal of Graph Theory and Applications, 8 (2), 415-421.
[15] Susilawati, Baskoro, E. T., \& Simanjuntak, R. (2018). Total vertex irregularity strength of trees with maximum degree five, Electronic Journal of Graph Theory and Applications. 6 (2), 250-257.
[16] Rosyida, I., Widodo, \& Indriati, D. (2018). On total irregular strength of caterpillars with two leaves on each internal vertex, Journal of Physics Conferences Series, 1008, 012046
[17] Rosyida, I., Mulyono, \& Indriati, D. (2021). On totally irregular total labeling of caterpillars having even number of internal vertices with degree three, AIP Conference Proceedings, 2326, 020024

