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Abstract: Class imbalance is a common issue in predictive modeling, particularly when minority classes 

carry critical significance, as seen in applications like fraud detection, rare disease prediction, and 

customer churn analysis. This study uses linear and non-linear simulated data scenarios to examine the 

performance of logistic regression, discriminant analysis, and neural networks on imbalanced data. For 

linear data, logistic regression and discriminant analysis displayed high sensitivity but extremely low 

specificity, indicating a strong bias toward the majority class. Neural networks showed marginal 

improvement but remained ineffective in detecting minority classes. In contrast, neural networks 

demonstrated superior sensitivity for non-linear data and were notably better at identifying minority 

classes, underscoring their suitability for complex data relationships. Our results highlight that accuracy 

alone is insufficient for evaluating models on imbalanced data; instead, sensitivity and specificity offer 

more relevant insights. Overall, this study suggests that neural networks are preferable for imbalanced 

data with non-linear patterns, and data characteristics and appropriate evaluation metrics should inform 

model selection. 
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1. INTRODUCTION 

Class imbalance, a prevalent issue in real-world datasets, poses substantial obstacles in developing 

predictive models, particularly when the disparity between majority and minority class occurrences is extreme. 

This imbalance can lead to predictive models favoring majority classes while neglecting minority classes, resulting 

in biased predictions that reduce model accuracy and utility. In critical applications, detecting minority classes is 

paramount; examples include fraud detection (where the minority class is fraudulent activity), rare disease 

prediction (minority class = diagnosed cases), and customer churn prediction (minority class = customers likely to 

leave). In these contexts, failing to identify the minority class accurately can lead to significant financial and 

operational consequences [2], [3], [4]. 

The data structure and the relationships within it heavily influence model selection. Linear models, such as 

logistic regression and discriminant analysis, are often suitable for data with a linear relationship between predictor 

variables and outcomes. These models establish a direct association between predictors and the response, making 

them useful for many prediction tasks due to their interpretability and simplicity. However, when the data exhibits 

non-linear patterns, linear models may struggle to capture the complexity, often leading to underfitting. In such 

cases, non-linear models, like neural networks, offer an advantage as they can model intricate interactions and 

non-linear dependencies between features [3], [5]. 

Current solutions to address class imbalance include resampling methods (such as oversampling the 

minority class or undersampling the majority class) and cost-sensitive learning, where higher misclassification 

costs are applied to minority class predictions. Nevertheless, determining the best model type—linear or non-

linear—remains unresolved when the data is imbalanced and complex. While linear models offer ease of use and 

interpretability, non-linear models like neural networks may outperform them in identifying nuanced patterns, 

particularly when dealing with severe imbalances and non-linear data distributions [6]. 

In light of these issues, this study seeks to evaluate the performance of various predictive models, including 

both linear and non-linear approaches, in managing imbalanced data scenarios. By systematically comparing their 

https://ojs3.unpatti.ac.id/index.php/variance/


 

Chairunissa & Nisa | Performance Evaluation of Neural Networks … 

22  

 

effectiveness, this research aims to provide insights into model selection strategies that align with different data 

characteristics. This study contributes to the field of predictive modeling, offering a refined approach for managing 

imbalanced datasets and enhancing model reliability in critical applications where minority class detection is 

essential [7], [8], [9], [10]. This expanded understanding of model performance across data types aims to support 

practitioners in selecting models that maximize accuracy and utility when facing imbalanced and complex datasets. 

 

2. METHODOLOGY 

This research employed a data simulation approach to create an experimental setting to evaluate the 

performance of various predictive models under different data scenarios. A total of 1,000 samples were generated, 

with an imbalance ratio of 30%, to simulate real-world challenges in prediction modeling. 

2.1. Data Simulation 

To systematically assess the model performance, the data simulation was conducted in two distinct 

scenarios, linear and non-linear with the following analysis steps: 

1) Data Generation 

For both scenarios, variables were simulated using the rnorm(0,1) function to produce values from a 

standard normal distribution. The outcome variable 𝑌 was assigned a binary value, with the majority class 

(0) representing 70% of the data and the minority class (1) comprising 30%, reflecting class imbalance. 

2) Scenario Setup 

Linear Scenario: The relationship between predictors 𝑋1, 𝑋2, 𝑋3 and the binary outcome 𝑌 was kept linear 

to reflect standard conditions for logistic regression and discriminant analysis. 

Table 1. Scenario 1 

Variable Simulation 
X1 rnorm (0,1) 
X2 rnorm (0,1) 
X3 rnorm (0,1) 
Y Majority class (0), minority class (1) 

Data source: Researcher's processing, 2024 

 
Non-linear data scenario: We introduced a more complex relationship pattern between the variables. 
Variables X1, and X2 followed the same normal distribution as in the linear scenario. However, variable X3 
was simulated as a non-linear transformation, defined by X1

2 + rnorm (0,1). The outcome variable Y 
maintained the same class structure as in the linear scenario, with majority class (0) and minority class (1), 
representing a challenging classification task. 

Table 2. Scenario 2 

Variable Simulation 
X1 rnorm (0,1) 
X2 rnorm (0,1) 
X3 X1

2 + rnorm (0,1) 
Y Majority class (0), minority class (1) 

Data source: Researcher's processing, 2024 

3) Validation of Simulated Data 

Summary statistics (mean, variance) and visualizations (e.g., histograms, scatterplots) were used to verify 

distributional properties and ensure the desired data characteristics (e.g., linear vs. non-linear patterns). 

4) Train-Test Split 

The dataset was partitioned into training (70%) and testing (30%) subsets to evaluate the out-of-sample 

performance of the models. 
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5) Reproducibility 

A random seed was set before data generation to ensure the simulation could be replicated for validation 

and comparison purposes.  

These steps ensured that each data scenario realistically reflected the conditions under which the models—

logistic regression, discriminant analysis, and neural networks—would be evaluated. 

2.2. Predictive Model 

Three predictive models were evaluated in this study, each chosen for its suitability to either linear or non-

linear data characteristics. 

1) Logistic Regression: Logistic regression is a widely used statistical method for binary classification. It 

models the probability of a binary outcome based on a set of predictor variables, assuming a linear 

relationship between the independent variables and the dependent variable [11]. The Box-Tidwell Test is 

employed to validate this assumption of linearity between continuous predictors and the logit of the 

outcome. This test introduces interaction terms between each continuous predictor and its natural logarithm 

to detect significant deviations from linearity [12]. If any interaction terms are statistically significant, a 

non-linear transformation of the corresponding predictor may be needed to improve model fit. This model 

is particularly effective in the linear data scenario because it focuses on linear boundaries for classification. 

The model estimates parameters using the maximum likelihood method and assumes a logistic function of 

the form: 

𝑃(𝑌 = 1|𝑋) =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝)
 

where 𝑃(𝑌 = 1|𝑋) is the probability of the outcome being class 1 given input 𝑋, and 𝛽0 + 𝛽1𝑋1 + ⋯ +
𝛽𝑝𝑋𝑝 are the model coefficients [11]. Logistic regression suits linearly separable data and provides 

interpretable results through odds ratios. 

2) Discriminant Analysis: Discriminant analysis is another classification method suited to linearly separable 

data and is commonly applied when classes have Gaussian distributions [13]. It aims to model the difference 

between classes, making it ideal for data with clear, linear separation patterns. Linear Discriminant Analysis 

(LDA) and Quadratic Discriminant Analysis (QDA) are the most commonly used variants. LDA assumes 

equal covariance matrices across groups and uses the linear function:  

𝛿𝑘(𝑥) = 𝑥𝑇 ∑ 𝜇𝑘

−1

 
−

1

2
𝜇𝑘

𝑇 ∑ 𝜇𝑘

−1

 
+ log(𝜋𝑘) 

Where 𝜇𝑘 is the mean vector of class 𝑘, ∑ is the shared covariance matrix, and 𝜋𝑘 is the prior probability 

of class 𝑘. 

3) Neural Networks: Neural networks are flexible, non-linear models for classification designed to handle 

complex relationships and non-linear patterns in data [14]. Comprising interconnected layers (input, 

hidden, and output), each node applies a transformation based on the data it receives, making neural 

networks well-suited to the non-linear data scenario in this research.  A typical feedforward neural network 

consists of layers of interconnected nodes or "neurons" and learns from data by adjusting weights using 

algorithms such as backpropagation. The model can be expressed as: 

�̂� = 𝑓(𝑊(2). 𝑔(𝑊(1)𝑥 + 𝑏(1)) + 𝑏(2)) 

where 𝑥 is the input vector, 𝑊(1), 𝑊(2) are weight matrices, 𝑏(1), 𝑏(2) are bias vectors, 𝑔 is an activation 

function (e.g., ReLU, sigmoid), and 𝑓 is the output function (e.g., softmax for classification) [12]. Neural 

networks are particularly effective in capturing non-linear and high-dimensional relationships in data. 

2.3. Evaluation Metrics 

Model performance was evaluated based on the following metrics: 
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1) Accuracy: This metric measures the proportion of true results (both true positives and true negatives) 

among the total number of cases[15], [16], [17]. 

2) Sensitivity: Sensitivity indicates the proportion of actual positives (minority class) that are correctly 

identified by the model [15], [16], [17]. 

3) Specificity: Specificity measures the proportion of actual negatives (majority class) that are correctly 

identified [15], [16], [17]. 

4) Kappa: Kappa statistic provides a measure of agreement between the predicted and actual classifications, 

adjusting for the possibility of chance agreement. 

These metrics provided a comprehensive assessment of each model's performance across both linear and non-

linear data scenarios, allowing for a detailed comparison of their strengths and limitations under conditions of class 

imbalance. 

 

3.  RESULTS AND DISCUSSION 

This section presents the findings from the linearity tests on simulated data and the model evaluations on 

both linear and non-linear scenarios. We focus on the performance metrics of logistic regression, discriminant 

analysis, and neural networks under imbalanced data conditions. In both scenarios, the binary target variable Y 

was simulated with a class imbalance ratio of approximately 80:20 (majority: minority) to reflect common 

challenges in real-world classification problems such as fraud detection or medical diagnosis. 

3.1. Linearity Test Results on Simulated Data 

3.1.1. Linear Scenario 

The simulated data for the linear scenario was generated by assuming additive relationships between 

predictors (X1, X2, X3) and the log odds of the binary outcome Y. In contrast, the non-linear scenario involved 

non-additive interactions and transformations (e.g., squared or exponential terms) in the data-generating process 

to mimic more complex real-world relationships. In the linear data scenario, the Box-Tidwell test [18] was 

conducted to assess the linearity of the predictor variables (X1, X2, X3) with respect to the logit of the target 

variable Y. The test examines whether each predictor has a linear relationship with the logit of the outcome by 

introducing interaction terms with their logarithmic transformations. The form of the logistic regression model 

used in the test is: 

log (
𝑃(𝑌 = 1)

1 − 𝑃(𝑌 = 1)
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4(𝑋1. log(𝑋1)) + 𝛽5(𝑋2. log(𝑋2)) + 𝛽6(𝑋3. log(𝑋3)) 

The estimates and p-values for the predictors and their logarithmic transformations are presented in Table 

3 below. 

Table 3. Linearity Test Results for Linear Scenario 

Variable Estimates P-Value 

Intercept -2.47 0.04* 

X1 0.75 0.21 

X2 0.15 0.75 

X3 -0.78 0.13 

X1_log -2.46 0.17 

X2_log -0.11 0.94 

X3_log -2.13 0.21 

Data source: Researcher's processing, 2024 

The p-values for the log-transformed predictors (X1_log, X2_log, X3_log) exceed 0.05, indicating no significant 

non-linear relationship between these predictors and the target variable Y. Consequently, the predictors can be 

assumed to have a linear relationship with the logit, supporting the choice of linear models in this scenario. 
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3.1.2. Non-Linear Scenario 

In contrast, the Box-Tidwell test for the non-linear data scenario (see Table 4) was conducted to examine 

the linearity assumption between each predictor and the logit of the binary outcome variable YYY. In this case, 

the test revealed statistically significant p-values (p < 0.001) for all predictors and their logarithmic transformations 

(see Table 4). This provides strong evidence of non-linearity between the predictors (X1, X2, X3) and the logit of 

Y, justifying this dataset's use of non-linear models, such as neural networks. The form of the model used in the 

Box-Tidwell test for the non-linear scenario is the same logistic regression formulation: 

log (
𝑃(𝑌 = 1)

1 − 𝑃(𝑌 = 1)
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4(𝑋1. log(𝑋1)) + 𝛽5(𝑋2. log(𝑋2)) + 𝛽6(𝑋3. log(𝑋3)) 

In this model, the interaction terms (𝑋𝑖 . log(𝑋𝑖)) assess the departure from linearity for each predictor. 

Table 4. Linearity Test Results for Non-Linear Scenario 

Variable Estimates P-Value 

Intercept -2.77 < 2e-16 *** 

X1 1.76 1.89e-07 *** 

X2 1.96 6.39e-15 *** 

X3 1.78 < 2e-16 *** 

X1_log 0.41 3.91e-07 *** 

X2_log 0.58 < 2e-16 *** 

X3_log 0.18 0.000331 *** 

Data source: Researcher's processing, 2024 

 
These results confirm that the predictors do not maintain a linear relationship with the logit of the outcome variable. 

Hence, non-linear classifiers, such as neural networks, are more suitable for modeling this data type. The positive 

coefficients for the log-transformed predictors suggest that these transformations add valuable information to the 

model, indicating a strong non-linear association with the target variable. 

3.2. Observation and Prediction Matrices 

To better understand each model's performance in classifying imbalanced data in linear and non-linear 

scenarios, we examine the observation and prediction matrices showing the true vs. predicted class distribution. 

These matrices highlight each model's sensitivity (true positive rate) and specificity (true negative rate) 

performance and offer insights into class distribution challenges. 

3.2.1.  Observation and Prediction Matrices for Linear Scenario 

In the linear scenario, the matrices for logistic regression, discriminant analysis, and neural network models 

are shown in Table 5. 
Table 5. Observation and Prediction Matrices for Linear Scenario  

Model True Class Predicted Class 0 Predicted Class 1 

Logistic Regression 
0 140 60 

1 0 0 

Discriminant Analysis 
0 140 60 

1 0 0 

Neural Network 
0 138 59 

1 2 1 

Data source: Researcher's processing, 2024 

In this scenario: 

1) Logistic Regression and Discriminant Analysis consistently misclassified all minority class observations as 

the majority class (sensitivity of 1.00 but specificity of 0.00), underscoring their challenge in addressing 

imbalanced data with linear relationships. 

2) The neural network slightly improved classification accuracy, identifying two minority cases correctly, 

which is reflected in a marginally higher kappa score (0.003), yet specificity remained very low (0.02). 
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The dominance of predictions in the majority class reveals the models' tendency to rely heavily on the more 

frequent class, likely due to the imbalanced nature of the data. The neural network's slight improvement indicates 

a possible advantage of non-linear models, even in linear scenarios with imbalanced data. 

3.2.2. Observation and Prediction Matrices for Non-Linear Scenario 

In the non-linear data scenario, the observation and prediction matrices reveal significant improvements 

with the neural network model, as shown in Table 6. 

Table 6. Observation and Prediction Matrices for Non-Linear Scenario  

Model True Class Predicted Class 0 Predicted Class 1 

Logistic Regression 0 19 9 

1 33 139 

Discriminant Analysis 0 14 8 

1 38 140 

Neural Network 0 30 11 

1 22 137 

Data source: Researcher's processing, 2024 
In this scenario: 

1) Logistic Regression and Discriminant Analysis misclassified a significant portion of the minority class (33 

and 38 incorrect predictions, respectively), reflecting their limited adaptability to non-linear relationships 

within imbalanced data. This is consistent with their lower kappa scores (0.253 and 0.1907, respectively). 

2) Neural network showed clear improvements, correctly identifying 137 out of 159 minority class 

observations and achieving an overall accuracy of 0.82. This model also balanced specificity (0.77) and 

sensitivity (0.95), leading to the highest kappa score (0.3906) among the models. 

These results underscore the importance of using models that capture non-linear patterns when dealing with 

imbalanced data. In the non-linear scenario, the neural network's ability to correctly identify both majority and 

minority classes demonstrates its flexibility in handling complex relationships, making it a preferred choice over 

traditional linear models. The observation and prediction matrices reveal how each model responds to the data's 

characteristics, emphasizing the need for careful model selection in predictive tasks, especially under challenging 

non-linearity and class imbalance conditions. 

Figure 1 presents a comparative visualization of the prediction results across all three models using stacked 

bar charts to enhance understanding of model performance in the non-linear scenario. These plots visually 

demonstrate the number of correctly and incorrectly classified instances for each class, helping to highlight the 

strengths and limitations of each method under non-linear conditions. The neural network model's better 

adaptability is evident in its higher number of correct predictions for the minority class. 

 
Figure 1. Classification Results by Model under Non-Linear Scenario 
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As shown in Figure 1, the neural network’s superior classification of minority class instances in the non-linear 

scenario is visually evident, especially in comparison to the flat performance of logistic regression and discriminant 

analysis. This visual confirmation further supports the numerical findings in Table 8. 

3.3. Model Evaluation 

The performance of each model in the linear data scenario is summarized in Table 3, using accuracy, 

sensitivity, specificity, and kappa statistics. 

3.3.1.Model Evaluation on Linear Imbalanced Data 

The performance of each model in the linear data scenario is summarized in Table 7, using accuracy, 

sensitivity, specificity, and kappa statistics. 

Table 7. Model Performance on Linear Imbalanced Data 

Model Accuracy Sensitivity Specificity Kappa 

Logistic Regression 0.70 1.00 0.00 0.000 

Discriminant Analysis 0.70 1.00 0.00 0.000 

Neural Network 0.69 0.98 0.02 0.003 

Data source: Researcher's processing, 2024 

Both logistic regression and discriminant analysis achieved high sensitivity (1.00), accurately identifying all 

minority class instances, but they had low specificity (0.00), failing to classify any majority class instances 

correctly. This is reflected in the kappa values (0.000), which indicate no agreement beyond chance, highlighting 

the models’ limitations in addressing class imbalance. The neural network model performed similarly, with a 

slightly lower sensitivity (0.98) and a marginally higher specificity (0.02), suggesting limited effectiveness in a 

linear data scenario. 

3.3.2  Model Evaluation on Non-Linear Imbalanced Data 

These findings align with previous research that highlights the superiority of neural networks in capturing 

complex, non-linear interactions in high-dimensional data [18]. While interpretable and efficient, traditional linear 

models often struggle when the true data-generating process involves significant interaction or non-linear terms. 

The model performance results in the non-linear data scenario are shown in Table 8. 

Table 8. Model Performance on Non-Linear Imbalanced Data 

Model Accuracy Sensitivity Specificity Kappa 

Logistic Regression 0.73 0.42 0.82 0.253 

Discriminant Analysis 0.72 0.31 0.86 0.1907 

Neural Network 0.82 0.95 0.77 0.3906 

Data source: Researcher's processing, 2024 

 In the non-linear data scenario, the neural network outperformed the other models, with an accuracy of 0.82 

and a high sensitivity (0.95), indicating its ability to identify the minority class instances more accurately. The 

kappa statistic (0.3906) confirms a moderate agreement, suggesting that the neural network is more effective for 

non-linear imbalanced data. Logistic regression and discriminant analysis, while achieving acceptable specificity 

(0.82 and 0.86, respectively), showed lower sensitivity, underscoring their limitations in capturing the non-linear 

patterns within the data. 

3.4. Discussion 

The findings demonstrate that model choice significantly impacts performance in class imbalance and data 

non-linearity. Traditional models, such as logistic regression and discriminant analysis, provided comparable 

performance for linear relationships. However, these models struggled in non-linear settings, while the neural 

network performed effectively, particularly in sensitivity and overall accuracy. These results align with the 

literature emphasizing the strengths of neural networks for complex, non-linear data structures [6]. The lack of 

specificity in linear models within both scenarios underscores the challenges of addressing class imbalance, 

particularly in the majority class. This study highlights the importance of matching model selection with data 

characteristics to enhance predictive accuracy in imbalanced datasets. The findings suggest that neural networks 
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can perform applications involving non-linear relationships, such as rare event detection in medical diagnostics or 

fraud detection than traditional linear models. 

 

4. CONCLUSION 

In this study, we evaluated the performance of logistic regression, discriminant analysis, and neural 

networks on imbalanced simulated datasets with linear and non-linear patterns. For linear data, logistic regression 

and discriminant analysis demonstrated high sensitivity but very low specificity, reflecting a strong bias toward 

the majority class and their inability to detect minority class observations accurately. While neural networks 

slightly improved linear data, they still fell short in effectively identifying minority cases. In the non-linear data 

scenario, neural networks significantly outperformed the linear models, achieving higher sensitivity and better 

detecting minority classes. This result highlights neural networks' capacity to model complex, non-linear 

relationships within imbalanced data, making them more effective for such contexts. As an evaluation metric, 

accuracy proved insufficient for assessing model performance on imbalanced data. Sensitivity and specificity, 

however, offered more relevant insights, revealing the models' strengths and weaknesses in handling class 

imbalances. Ultimately, these findings suggest that neural networks are preferable for imbalanced data with non-

linear relationships. The choice of model should be carefully aligned with data characteristics, and evaluation 

should incorporate metrics that adequately reflect performance on imbalanced datasets. 
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