Actinobacteria from Mangrove Rhizosphere as a Source of Biocontrol Agents to Support Sustainable Agriculture

  • Rubiyatna Sakaroni Departement of Biology Education, Faculty of Teacher Training and Education, University of Mataram, Mataram 83115, West Nusa Tenggara, Indonesia
  • Anindita Suliya Hangesti Mandra Kusuma Departement of Biology Education, Faculty of Teacher Training and Education, University of Mataram, Mataram 83115, West Nusa Tenggara, Indonesia
  • Marosa Robi'atul Adawiyah Departement of Biology Education, Faculty of Teacher Training and Education, University of Mataram, Mataram 83115, West Nusa Tenggara, Indonesia
Keywords: Mangrove rhizosphere, Actinobacteria, Ralstonia solanacearum, biocontrol agent

Abstract

Mangrove ecosystems harbor diverse microorganisms with important ecological and biotechnological roles. Actinobacteria, in particular, are well known as producers of bioactive compounds and potential biocontrol agents against plant pathogens, making their exploration relevant for sustainable agriculture. This study aimed to isolate and characterize Actinobacteria from the rhizosphere of mangroves in Bagek Kembar, West Lombok, and to evaluate their antagonistic potential against Ralstonia solanaciearum, plant disease agent. Soil samples were collected using a quadrant method, while environmental parameters such as pH, temperature, humidity, and salinity were measured to assess habitat suitability. Actinobacteria were isolated and identified through Gram staining and morphological observation, their abundance was calculated using the Total Plate Count method, and antagonistic activity was tested using the agar well diffusion assay. The results showed that soil pH was relatively neutral, with temperature and salinity suitable for Actinobacteria growth. Five isolates (ACT R1–R5) were obtained, all Gram-positive with filamentous hyphae-like morphology. Total Plate Count analysis indicated high abundance (3.2 × 105), although the diversity of isolates recovered was relatively low. Antagonistic assays revealed that ACT R2 and ACT R4 moderate inhibitory effect, and ACT R1, ACT R3, and ACT R5 weak. Overall, these findings demonstrate that mangrove rhizospheres in West Lombok are a promising source of Actinobacteria with significant potential as environmentally friendly biocontrol agents

Downloads

Download data is not yet available.

References

Amini, E. R., Hadiprayitno, G., & Suana, I. W. (2024). Identification of Potential and Suitability of Bagek Kembar Mangrove Forest, Cendi Manik, Sekotong, Lombok Barat as a Tourist Attraction. Jurnal Biologi Tropis, 24(2), 333–341. https://doi.org/10.29303/jbt.v24i2.6835

Anith, K. N., Nysanth, N. S., & Natarajan, C. (2021). Novel and rapid agar plate methods for in vitro assessment of bacterial biocontrol isolates’ antagonism against multiple fungal phytopathogens. Letters in Applied Microbiology, 73(2), 229–236. https://doi.org/10.1111/lam.13495

Balakrishnan, S., Santhanam, P., & Srinivasan, M. (2016). Larvicidal potency of marine actinobacteria isolated from mangrove environment against Aedes aegypti and Anopheles stephensi. Journal of Parasitic Diseases. https://doi.org/10.1007/s12639-016-0812-3

Baskaran, V., Mahalakshmi, A., & Prabavathy, V. (2023). Mangroves: A hotspot for novel bacterial and archaeal diversity. Rhizosphere, 27. https://doi.org/https://doi.org/10.1016/j.rhisph.2023.100748

Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458–467. https://doi.org/10.1016/j.micpath.2017.09.036

Chiranjeevi, C., & Vijayalakshmi, M. (2022). Taxonomic Characterization, Antimicrobial Activity and Antioxidant Potential of Rare Actinobacterium Isolated From Mangrove Ecosystem of Machilipatnam, Andhrapradesh, India. Asian Journal of Pharmaceutical and Clinical Research, 15(3), 113–117. https://doi.org/10.22159/ajpcr.2022.v15i3.43666

Ebrahimi-Zarandi, M., Riseh, R., & Tarkka, M. (2022). Actinobacteria as Effective Biocontrol Agents against Plant Pathogens, an Overview on Their Role in Eliciting Plant Defense. Microorganisms, 10. https://doi.org/https://doi.org/10.3390/microorganisms10091739

Ellermann, M., & Arthur, J. (2017). Siderophore‐mediated iron acquisition and modulation of host‐bacterial interactions. Free Radical Biology and Medicine, 105, 68–78. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2016.10.489

Gaballa, M., Soutiyah, M., Abid, A., & Attitalla, I. (2025). Distribution, Abundance, and Environmental Responses of Actinobacteria in Rhizospheric and Bulk Soils of Al-Haniya, Libya. Acta Biology Forum. https://doi.org/https://doi.org/10.51470/abf.2025.4.1.12

Golden, A., Dukovski, I., Segrè, D., & Korolev, K. (2022). Growth instabilities shape morphology and genetic diversity of cellular aggregates. BioRxiv. https://doi.org/https://doi.org/10.1101/2022.03.28.486080.

Govind, G., Ravindra, R., & Anil, A. (2023). A review on Industrially important metabolite from Actinomycetes. International Journal of Applied and Advanced Biology (IJAAB). https://doi.org/https://doi.org/10.60013/ijaab.v2i1.89

Hadi, S. N., Dewi, P. S., & Kartini. (2019). Identification of the ultisol land indigenus bacteria from Banyumas Regency based on the characteristics of morphology, physiology and biochemistry. IOP Conference Series: Earth and Environmental Science, 250(1). https://doi.org/10.1088/1755-1315/250/1/012095

Hadiprayitno, G., Suana, I. W., Santoso, D., Japa, L., Suyantri, E., Wirajagat, G. C., Syazali, M., Ilhamdi, M. L., & Kawirian, R. R. (2024). Vegetation condition and tourism suitability of natural mangrove in Bagek Kembar, Lombok, Indonesia. Biodiversitas, 25(10), 3703–3711. https://doi.org/10.13057/biodiv/d251032

Hao, L., Wang, Y., Chen, X., Zheng, X., Chen, S., Li, S., Zhang, Y., & Xu, Y. (2019). Exploring the potential of natural products from mangrove rhizosphere bacteria as biopesticides against plant diseases. Plant Disease, 103(11), 2925–2932. https://doi.org/10.1094/PDIS-11-18-1958-RE

Hidayatullah, A. R. (2019). Isolasi Actinomycetes dari Sedimen Mangrove Ujung Pangkah Di Gresik. Universitas Airlangga.

Hu, D., Sun, C., Jin, T., Fan, G., Mok, K. M., Li, K., Lee, S. M., & Lee, S. M. (2020). Exploring the Potential of Antibiotic Production From Rare Actinobacteria by Whole-Genome Sequencing and Guided MS / MS Analysis. Frontiers in Microbiology, 11(July), 1–12. https://doi.org/10.3389/fmicb.2020.01540

Kemung, H. M., Tan, L. T., Chan, K., Ser, H., Law, J. W., Lee, L., & Goh, B. (2020). Streptomyces sp. Strain MUSC 125 from Mangrove Soil in Malaysia with Anti-MRSA, Anti-Biofilm and Antioxidant Activities. Molecules, 25, 1–20.

Khaing, A., Win, T., Oo, K., & Fu, P. (2021). Antagonistic Activity of Indigenous Rhizobacteria through Biosynthesis of Indole-3-Acetic Acid (IAA), Hydrogen Cyanide (HCN), and Siderophores. Austin Journal of Biotechnology & Bioengineering. https://doi.org/https://doi.org/10.26420/austinjbiotechnolbioeng.2021.1110

Li, Q., Chen, X., Jiang, Y., & Jiang, C. (2016). Morphological Identification of Actinobacteria. https://doi.org/https://doi.org/10.5772/61461

Li, R., Wang, M., Ren, Z., Ji, Y., Yin, M., Zhou, H., & Tang, S. (2021). Amycolatopsis aidingensis sp. nov., a Halotolerant Actinobacterium, Produces New Secondary Metabolites. Frontiers in Microbiology, 12. https://doi.org/https://doi.org/10.3389/fmicb.2021.743116.

Maulidah, N., & Zakiyah, U. (2023). Analisis Status Kesehatan Hutan Mangrove di Ekowisata Mangrove Bagek Kembar, Kabupaten Lombok Barat Menggunakan Data Citra Landsat 8 dan Software MonMang 2.0 [Universitas Brawijaya]. https://repository.ub.ac.id/id/eprint/200767/

Michael, T., Madigan, K. S. B., Daniel, H. B., Sattley, W. M., & David, A. S. (2017). Brock Biology of Microorganisms (15th Edition) (15th ed.). Pearson.

Miteva, D. A., Murray, B. C., & Pattanayak, S. K. (2015). Do protected areas reduce blue carbon emissions? A quasi-experimental evaluation of mangroves in Indonesia. Ecological Economics, 119, 127–135. https://doi.org/10.1016/j.ecolecon.2015.08.005

Naligama, K. N., Weerasinghe, K. E., & Halmillawewa, A. P. (2022). Characterization of Bioactive Actinomycetes Isolated from Kadolkele Mangrove Sediments , Sri Lanka. Polish Journal of Microbiology, 71(2), 191–204. https://doi.org/https://doi.org/10.33073/pjm-2022-017

Nur, S., Hidayati, I., Zulkifli, L., Sedijani, P., Ayu, D., & Rasmi, C. (2024). Antagonistic Test of Endophytic Bacteria of Chili Pepper Roots Producing Siderophores and Hydrolase Enzymes against Plant Pathogenic Bacteria Ralstonia Solanacearum. Jurnal Biologi Tropis, 24(4), 857–867.

Nurikhsanti, M., Zulkifli, L., Rasmi, D. A. C., & Sedijani, P. (2024). Antagonistic Test of Bacteria Producing Siderophore and Protease Enzymes from The Rhizosfer of Peanut Plants on The Growth of Pathogenic Fungus Colletotrichum gloeosporioides. Jurnal Biologi Tropis, 24(1), 100–108. https://doi.org/10.29303/jbt.v24i1.6459

Pascale, A., Proietti, S., Pantelides, I., & Stringlis, I. (2020). Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 10. https://doi.org/https://doi.org/10.3389/fpls.2019.01741.

Qudraty, H. N., Japa, L., & Suyantri, E. (2023). Analysis of Mangrove Community in The Bagek Kembar Essential Ecosystem Area, West Lombok. Jurnal Biologi Tropis, 23(1), 39–46. https://doi.org/10.29303/jbt.v23i1.5799

Rahlwes, K., Sparks, I., & Morita, Y. (2019). Cell Walls and Membranes of Actinobacteria. Sub-Cellular Biochemistry, 92, 417–469. https://doi.org/https://doi.org/10.1007/978-3-030-18768-2_13

Remijawa, E., Rupidara, A., Ngginak, J., & Radjasa, O. (2020). Isolasi dan Seleksi Bakteri Penghasil Enzim Ekstraseluler pada Tanah Mangrove Di Pantai Noebaki. Jurnal Enggano, 5, 164–180. https://doi.org/https://doi.org/10.31186/JENGGANO.5.2.164-180

Sangkanu, S., Rukachaisirikul, V., Suriyachadkun, C., & Phongpaichit, S. (2017). Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microbial Pathogenesis, 112(October), 303–312. https://doi.org/10.1016/j.micpath.2017.10.010

Setiawan, A. W. (2019). EPIDEMIOLOGI PENYAKIT LAYU BAKTERI DAN PERKEMBANGAN KOMPLEKS SPESIES Ralstonia solanacearum. Jurnal Galung Tropika, 8(3), 243–270. https://doi.org/10.31850/jgt.v8i3.502

Sriragavi, G., Sangeetha, M., Santhakumar, M., Lokesh, E., Nithyalakshmi, M., Saleel, C. A., & Balagurunathan, R. (2023). Exploring Antibacterial Properties of Bioactive Compounds Isolated from Streptomyces sp. in Bamboo Rhizosphere Soil. ACS Omega, 8(39), 36333–36343. https://doi.org/10.1021/acsomega.3c04954

Sultana, F., & Motaher Hossain, M. (2022). Assessing the potentials of bacterial antagonists for plant growth promotion, nutrient acquisition, and biological control of Southern blight disease in tomato. PLoS ONE, 17(6 June), 1–24. https://doi.org/10.1371/journal.pone.0267253

Sun, H., Jiang, S., Jiang, C., Wu, C., Gao, M., & Wang, Q. (2021). A review of root exudates and rhizosphere microbiome for crop production. Environmental Science and Pollution Research, 28, 54497–54510. https://doi.org/https://doi.org/10.1007/s11356-021-15838-7.

Trégarot, E., Caillaud, A., Cornet, C. C., Taureau, F., Catry, T., Cragg, S. M., & Failler, P. (2021). Mangrove ecological services at the forefront of coastal change in the French overseas territories. Science of the Total Environment, 763, 143004. https://doi.org/10.1016/j.scitotenv.2020.143004

Wang, Y. S., & Gu, J. D. (2021). Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. International Biodeterioration and Biodegradation, 162(February), 105248. https://doi.org/10.1016/j.ibiod.2021.105248

Wang, Z., Luo, W., Cheng, S., Zhang, H., Zong, J., & Zhang, Z. (2023). Ralstonia solanacearum – A soil borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. Frontiers in Plant Science, 14(February), 1–12. https://doi.org/10.3389/fpls.2023.1141902

Xie, J., Wicaksono, W. A., Zhaoyang, L., Berg, G., Cernava, T., & Beibei, G. (2024). Rhizosphere bacteria show a stronger response to antibiotic-based biopesticide than to conventional pesticides. Journal of Hazardous Materials, 09(5), 7352–7363.

Xue, H., & Lozano-dur, R. (2020). Insights into the Root Invasion by the Plant. Plants, 9(15), 1–9.

Zaki, M., Saleh, E., Zaki, M., Korayem, A., & Amin, S. (2022). Antibacterial Activity of a New Strain of Streptomyces maritimus MSQ21 against Ralstonia solanacearum. Pakistan Journal of Biological Sciences : PJBS, 25(7), 642–653. https://doi.org/https://doi.org/10.3923/pjbs.2022.642.653

Zhao, J., Han, L., Yu, M., Cao, P., Li, D., Guo, X., Liu, Y., Wang, X., & Xiang, W. (2019). Characterization of Streptomyces sporangiiformans sp. nov., a Novel Soil Actinomycete with Antibacterial Activity against Ralstonia solanacearum. Microorganisms, 7. https://doi.org/https://doi.org/10.3390/microorganisms7090360

Zhu, Y., Cai, H., Song, L., & Chen, H. (2019). Aerated Irrigation Promotes Soil Respiration and Microorganism Abundance around Tomato Rhizosphere. Soil Science Society of America Journal. https://doi.org/https://doi.org/10.2136/sssaj2018.08.0299.

Published
2025-10-31
How to Cite
Sakaroni, R., Kusuma, A. S. H. M., & Adawiyah, M. R. (2025). Actinobacteria from Mangrove Rhizosphere as a Source of Biocontrol Agents to Support Sustainable Agriculture. BIOEDUPAT: Pattimura Journal of Biology and Learning, 5(2), 360-369. https://doi.org/10.30598/bioedupat.v5.i2.pp360-369