Determination of Band Gap Energy of ZnO/Au Nanoparticles Resulting in Laser Ablation in Liquid
Abstract
The synthesis of ZnO and ZnO/Au nanoparticles using the laser ablation method in liquid has been successfully carried out. Characterizing the optical properties of ZnO and ZnO/Au using a UV-Vis Spectrophotometer (Ocean Optic MAYA Pro 2000) measured in the wavelength range of 275-875 nm. The characterization results obtained are absorbance and band gap values of ZnO and ZnO/Au nanoparticles. This study found the absorbance values of ZnO nanoparticles at wavelengths 330 and 335 nm. After obtaining the absorbance value, the band gap value was analyzed for ZnO and ZnO/Au nanoparticles, respectively, 3.23 eV and 3.17 eV. The decrease in the band gap value in ZnO is due to the presence of Au in ZnO nanoparticles which can replace one of the lattices in the ZnO crystal structure.
Downloads
Copyright (c) 2022 Mardiana Julita, Muhandis Shiddiq, Miftahul Khair
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- The author grants the journal, the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.