Implementation of Centroid Clustering Method for Industrial Clusterization in Regencies and Cities in Maluku Province

  • M. Y. Matdoan Statistics Study Program, FMIPA, Universitas Pattimura, Indonesia
  • Rahmi Fadhilah Department of Statistics, FSAD, Institut Teknologi Sepuluh Nopember, Indonesia
  • N. S. Laamena Statistics Study Program, FMIPA, Universitas Pattimura, Indonesia
  • Dinda Ayu Safira Department of Statistics, FSAD, Institut Teknologi Sepuluh Nopember, Indonesia
  • S. B. Loklomin Statistics Study Program, FMIPA, Universitas Pattimura , Indonesia
Keywords: Centroid, Cluster, Industry

Abstract

The industrial sector has a vital role in economic development. In addition to increasing state revenue, the industrial sector can also provide business opportunities that make a positive contribution to efforts to equalize community welfare. The limited employment opportunities available in Maluku Province need to be balanced with the increase in the labor force, which significantly impacts the high unemployment. Basically, the high unemployment rate will significantly impact economic development, which aims to improve the standard of living of the people in Maluku Province. Centroid Linkage is the average of all objects in the cluster, and the distance. The distance between the cluster centroids is what separates two clusters. Cluster centroid is the center value of observations on variables in a set of cluster variables. The purpose of this research is to cluster the distribution of industries in regencies and cities in Maluku Province using data from BPS Maluku Province. This study obtained the results that there are 3 clusters formed in the clusterization of industry in regencies and cities in Maluku Province, namely cluster 1 consisting of Tanimbar Islands Regency. Cluster 2 consists of Buru, South Buru, West Seram, East Seram, Central Maluku, Tual City, Southeast Maluku, and Aru Islands Regency. Furthermore, Cluster 3 consists of Ambon City and Southwest Maluku.

Downloads

Download data is not yet available.

Author Biography

N. S. Laamena, Statistics Study Program, FMIPA, Universitas Pattimura, Indonesia

Program Studi Statistika

References

Saragih, A. H. (2018). Pengaruh penerimaan pajak terhadap pertumbuhan ekonomi di Indonesia [The effect of tax revenue on economic growth in Indonesia]. Jurnal Sikap, 3(1), 277683.

Nuraeni, (2018). Faktor-faktor yang mempengaruhi persistensi laba (studi kasus pada perusahaan property dan real estate yang terdaftar di bursa efek indonesia tahun 2013-2015) [Factors affecting earnings persistence (case study of property and real estate companies listed on the Indonesian stock exchange in 2013-2015). Accruals (Accounting Research Journal of Sutaatmadja), 2(1), 82-112.

Hilman, A. M., & Ester, A. M. (2018). Peranan Sektor Industri Pengolahan Dalam Perekonomian Indonesia: Model Input-Output [The Role of the Manufacturing Industry Sector in the Indonesian Economy: An Input-Output Model]. Media Ekonomi, 26(1), 63-76.

Arsyad (2010). Pengaruh Perputaran Kas, Piutang dan Persediaan Terhadap Profitabilitas Perusahaan Sektor Aneka Industri yang Terdaftar di BEI [The Effect of Cash Turnover, Receivables and Inventories on the Profitability of Miscellaneous Industrial Sector Companies Listed on the IDX]. Public Policy (Jurnal Aplikasi Kebijakan Publik & Bisnis), 2(1), 57-74.

Usman, H., & Sobari, N. (2013). Aplikasi Teknik Multivariate Untuk Riset Pemasaran [Application of Multivariate Techniques for Marketing Research], Jakarta: PT. Prajagrafindo Persada.

Sitepu, R., Irmeilyana, I., & Gultom, B. (2011). Analisis cluster terhadap tingkat pencemaran udara pada sektor industri di Sumatera Selatan [Cluster analysis of air pollution levels in the industrial sector in South Sumatra]. Jurnal Penelitian Sains, 14(3).

Gudono (2014). Halo effect in analytical procedure: the impact of client profile and information scope. Global Journal of Business Research, 8(1), 9-26.

Metisen, B. M., & Sari, H. L. (2015). Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila [Clustering analysis using the K-Means method in grouping product sales at Fadhila Supermarket]. Jurnal media infotama, 11(2).

Rahmawati, L. (2012). Analisis Kelompok Dengan Menggunakan Metode Hierarki Untuk Pengelompokan Kabupaten/Kota Di Jawa Timur Berdasar Indikator Kesehatan [Group Analysis Using Hierarchical Method for Grouping Regency / City in East Java Based on Health Indicators], Jurnal Matematika Vol.1 No.2 Universitas Negeri Malang,

Ananda, R., & Yamani, A. Z. (2020). Determination of Initial K-means Centroid in the Process of Clustering Data Evaluation of Teaching Lecturers [Determination of Initial K-means Centroid in the Process of Clustering Data Evaluation of Teaching Lecturers]. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 4(3), 544-550.

Cornish (2007). A meta-analysis on the influence of inflammatory bowel disease on pregnancy. Gut, 56(6), 830-837.

Simamora, B. (2005). Analisis multivariat pemasaran [Multivariate analysis of marketing. Gramedia Pustaka Utama.

Han, J., & Kamber, M. (2001). Data mining: concepts and techniques, second. University of Illinois at Urbana Champaign: Morgan Kaufmann.

Budiman, I., Prahasto, T., & Christyono, Y. (2012). Data Clustering menggunakan metodologi Crisp-DM untuk pengenalan pola proporsi pelaksanaan tridharma [Data Clustering using Crisp-DM methodology for pattern recognition of tridharma implementation proportion]. In Seminar Nasional Aplikasi Teknologi Informasi (SNATI).

Sunaryo, S., Setiawan, S., & Siagian, T. H. (2011). Mengatasi masalah multikolinearitas dan outlier dengan pendekatan robpca (studi kasus analisis regresi angka kematian bayi di Jawa Timur) [Overcoming multicollinearity and outlier problems with robpca approach (case study of regression analysis of infant mortality rate in East Java)]. Jurnal Matematika Sains dan Teknologi, 12(1), 1-10.

Puspitasari, M. (2016). Pengelompokan Kabupaten / Kota Berdasarkan Faktor- Faktor Yang Mempengaruhi Kemiskinan Di Jawa Tengah Menggunakan Metode Ward Dan Average Linkage [Grouping Regencies / Cities Based on Factors Affecting Poverty in Central Java Using Ward and Average Linkage Methods], Jurnal Matematika Vol. 5 No. 6 Universitas Negeri Yogyakarta.

Published
2024-05-01
How to Cite
Matdoan, M. Y., Fadhilah, R., Laamena, N., Safira, D., & Loklomin, S. (2024). Implementation of Centroid Clustering Method for Industrial Clusterization in Regencies and Cities in Maluku Province. Pattimura International Journal of Mathematics (PIJMath), 3(1), 09-14. https://doi.org/10.30598/pijmathvol3iss1pp09-14