Forecasting Palm Oil Production in North Sumatera Using the Adaptive Neuro Fuzzy Inference System Method

  • Riezky Purnama Sari Mathematics Department, Faculty of Science and Technology, Universitas Samudra, Indonesia
  • Adinda Tri Hidayati Mathematics Department, Faculty of Science and Technology, Universitas Samudra, Indonesia
  • Fairus Fairus Mathematics Department, Faculty of Science and Technology, Universitas Samudra, Indonesia
Keywords: Forecasting, Palm Oil Production, Adaptive Neuro Fuzzy Inference System

Abstract

Indonesia is an agricultural and maritime country because it is the country that has the largest agriculture and plantations in ASEAN. One of them is palm oil production, because palm oil is believed to not only be able to produce various types of butter, cooking oil or soap, but can also be a substitute for fuel oil. In the province of North Sumatra itself, oil palm is a crop that has potential and produces very high profits. Therefore, forecasting is used to determine future palm oil production results using the ANFIS method in order to increase or catalyze palm fruit. The data source used in this research comes from the Central Statistics Agency (BPS) of North Sumatra. The aim of this research is to determine the results of forecasting palm oil production in North Sumatra using the ANFIS model. So we got results from forecasting palm oil production in North Sumatra which experienced fluctuations throughout the period January 2023 to December 2024 with a forecasting accuracy level of 92% and a MAPE value of 12.778179% with MAPE criteria of 10% - 20% which was considered 'Good '. So it can be concluded that the forecasting results were carried out well and can be used for future forecasting.

Downloads

Download data is not yet available.

References

Ginting HG, Azmi Z, Ginting RI. Jaringan Syaraf Tiruan Dalam Peramalan Harga Jual Sawit Dengan Metode Backpropagation. J Cyber Tech. 2020;x(x):1–15.

Adiguna MA, Muhajirin A. Penerapan Logika Fuzzy Pada Penilaian Mutu Dosen Terhadap Tri Dharma Perguruan Tinggi. 2017;2(1):16–9.

Wibawa AP, Qonita A, Dwiyanto FA, Haviluddin. Perbandingan Metode Prediksi pada Bidang Bisnis dan Keuangan. Pros Semin Ilmu Komput dan Teknol Inf. 2018;3(1):129–33.

Hutapea M, Nainggolan P, Panjaitan PD, Damanik D. Analisis Determinasi Volume Ekspor Minyak Kelapa Sawit Sumatera Utara. J Ecogen. 2023;6(2):213.

Cikasungka AT, Perkebunan PT, Viii N, Oil P. Mimbar Agribisnis : PT . PERKEBUNAN NUSANTARA VIII PALM OIL FORECASTING WITH EXPONENTIAL SMOOTHING Perkebunan Nusantara VIII unit Pabrik. 2023;9(2):3273–84.

Andalita I, Irhamah. Peramalan Jumlah Penumpang Kereta Api Kelas Ekonomi Kertajaya Menggunakan ARIMA dan ANFIS. J Sains Dan Seni Its. 2015;4(2):2–7.

Wardani AR, Nasution YN, Amijaya FDT. Aplikasi Logika Fuzzy Dalam Mengoptimalkan Produksi Minyak Kelapa Sawit Di PT. Waru Kaltim Plantation Menggunakan Metode Mamdani. Inform Mulawarman J Ilm Ilmu Komput. 2017;12(2):94.

Handrianto M, Cipta H. Peramalan Jumlah Produksi Minyak Kelapa Sawit Menggunakan Metode Holt-Winters Exponential Smoothing (Studi Kasus : PT. Sinar Gunung Sawit Raya). J Absis J Pendidik Mat dan Mat [Internet]. 2023;6(1):781–93. Available from: http://journal.upp.ac.id/index.php/absis/article/view/2165

Parlinsa Elvani S, Rachma Utary A, Yudaruddin R. Peramalan Jumlah Produksi Tanaman Kelapa Sawit Dengan Menggunakan Metode Arima (Autoregressive Integrated Moving Average). J Manaj [Internet]. 2016;8(1):2016. Available from: http://journal.feb.unmul.ac.id

Published
2025-05-01
How to Cite
Sari, R. P., Hidayati, A. T., & Fairus, F. (2025). Forecasting Palm Oil Production in North Sumatera Using the Adaptive Neuro Fuzzy Inference System Method. Pattimura International Journal of Mathematics (PIJMath), 4(1), 1-6. https://doi.org/10.30598/pijmathvol4iss1pp1-6