Damped Trend Exponential Smoothing and Holt-Winters in Forecasting the Number of Airplane Passengers at Kualanamu Airport

  • Rustham Michael Binoto Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Indonesia
  • Sudarwanto Sudarwanto Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Indonesia
  • Vera Maya Santi Universitas Negeri Jakarta
Keywords: Aircraft Passenger, Damped Trend, Forecasting, Holt-Winters, Kualanamu Airport

Abstract

Airplanes are one of the most frequently chosen modes of transportation by Indonesians today. Kualanamu Airport is one of the busiest airports in terms of the number of passengers. The number of airplane passengers often fluctuates, increasing and decreasing, so an analysis method is required to predict the number of passengers. This study uses the Double Exponential Smoothing Damped Trend and Multiplicative Holt-Winters models. The number of Kualanamu Airport domestic airplane passengers from January 2006 to December 2023 was used as research data. The best model is then used to forecast the number of Kualanamu Airport domestic airplane passengers for 12 periods from the last data used. The results showed that the Multiplicative Holt-Winters model with smoothing parameters  and  obtained smaller (Mean Absolute Error) MAE and (Mean Square Error) MSE values of 21415.556 and 961525264.508, compared to the Double Exponential Smoothing Damped Trend model with smoothing parameters,, and  which obtained MAE and MSE values of  23612.461 and 1061042411.507  in predicting the number of domestic aircraft passengers at Kualanamu Airport. Forecasting accuracy for the next 12 periods using Holt-Winters Exponential Smoothing produces a MAPE value of 9.2%. It shows the accuracy of forecasting in the very good category.

Downloads

Download data is not yet available.

References

S. Hayoto, Y. A. Lesnussa, H. W. M. Patty, and R. J. Djami, “Peramalan Jumlah Penumpang Pesawat Terbang di Pintu Kedatangan Bandar Udara Internasional Pattimura Ambon dengan Menggunakan Metode Arima Box-Jenkins,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 13, no. 3, pp. 135–144, Oct. 2019, doi: 10.30598/barekengvol13iss3pp135-144ar883.

Angkasa Pura II, “Tiga Alasan Pesawat Jadi Transportasi Favorit saat Mudik Lebaran,” Angkasa Pura II. Accessed: Mar. 06, 2024. [Online]. Available: https://www.angkasapura2.co.id/id/news/event/info/584-tiga-alasan-pesawat jadi-transportasi-favorit-saat-mudik-lebaran

T. Purwanti, “Top! Penumpang di Bandara AP II Meroket 30% Tembus 80,14 Juta,” CNBC Indonesia. Accessed: Mar. 06, 2024. [Online]. Available: https://www.cnbcindonesia.com/news/20240117114638-4-506537/top-penumpang-di-bandara-ap-ii-meroket-30-tembus-8014-juta

M. D. Darus and K. Mahalli, “Analisis Tingkat Kepuasan Penumpang Terhadap Kualitas Pelayanan Di Bandar Udara Internasional Kualanamu,” Jurnal Ekonomi dan Keuangan, vol. 3, no. 6, p. 14857, 2015.

O. Y. S. Putra, S. Sihombing, and C. Tasran, “Pengaruh Pelayanan dan Fasilitas Digital Terhadap Kepuasan Penumpang di Bandara Internasional Kualanamu,” WARTA ARDHIA, vol. 46, no. 1, pp. 60–70, Dec. 2020, doi: 10.25104/wa.v46i1.383.60-70.

L. T. Ayu, I. Harahap, and S. Ramadhani, “Pengaruh keberadaan bandara internasional kualanamu terhadap perubahan sosial ekonomi masyarakat di sekitarnya,” Islamic Circle, vol. 2, no. 2, pp. 61–75, 2021.

J. S. Zahra and M. Prastuti, “Peramalan Jumlah Penumpang Pesawat Domestik di Bandara Soekarno-Hatta pada Masa Pandemi Covid-19 Menggunakan ARIMAX dengan Model Intervensi,” Jurnal Sains dan Seni ITS, vol. 12, no. 1, pp. D61–D66, May 2023, doi: 10.12962/j23373520.v12i1.100847.

Badan Pusat Statistik, “Jumlah Penumpang Angkutan Udara Internasional pada Januari 2024 Naik 0,41 Persen Diban dingkan Desember 2023,” Badan Pusat Statistik. Accessed: Mar. 07, 2024. [Online]. Available: https://www.bps.go.id/id/pressrelease/2024/03/01/2360/jumlah-penumpangangkutan-udara-internasional-pada-januari-2024-naik-0-41-persendibandingkan-desember-2023.html

J. Heizer and B. Render, Manajemen Operasi, 7th ed. Jakarta: Salemba Empat, 2015.

R. F. Sholeh, “Peramalan harga emas di Indonesia menggunakan algoritma double exponential smoothing damped trend,” INTECOMS: journal of information technology and computer science, vol. 4, no. 2, pp. 328–339, Dec. 2021.

A. Aryati, I. Purnamasari, and Y. N. Nasution, “Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing,” EKSPONENSIAL, vol. 11, no. 1, pp. 99–106, Jan. 2021, doi: 10.30872/eksponensial.v11i1.650.

Y. A. Jatmiko, R. L. Rahayu, and G. Darmawan, “Perbandingan Keakuratan Hasil Peramalan Produksi Bawang Merah Metode Holt-Winters dengan Singular Spectrum Analysis (SSA),” Jurnal Matematika “MANTIK,” vol. 3, no. 1, pp. 13–22, Oct. 2017, doi: 10.15642/mantik.2017.3.1.13-22.

K. F. Azriati, A. Hoyyi, and M. A. Mukid, “Verifikasi Model Arima Musiman Menggunakan Peta Kendali Moving Range (Studi Kasus: Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang),” Jurnal Gaussian, vol. 3, no. 4, pp. 701–710, Oct. 2014.

V. M. Santi, R. Wahyu, and I. Hadi, “Forecasting The Value of Indonesia’s Oil and Gas Imports Using Seasonal Autoregressive Integrated Moving Average Model,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 17, no. 4, pp. 2047–2058, Dec. 2023, doi: 10.30598/barekengvol17iss4pp2047-2058.

D. Rosadi, Analisis Ekonometrika & Runtun Waktu Terapan dengan R. Yogyakarta: ANDI, 2011.

J. E. Hanke and D. W. Wichern, Business Forecasting, 9th ed. New Jersey: PEARSON Prentice Hall, 2009.

E. Padang, G. Tarigan, and U. Sinulingga, “Peramalan Jumlah Penumpang Kereta Api Medan-Rantau Prapat dengan Metode Pemulusan Eksponensial Holt-Winters,” Saintia Matematika, vol. 1, no. 2, pp. 161–174, Mar. 2013.

N. Kurniasih, A. S. Ahmar, D. R. Hidayat, H. Agustin, and E. Rizal, “Forecasting infant mortality rate for China: a comparison between α-Sutte Indicator, ARIMA, and Holt-winters,” in Journal of Physics: Conference Series, IOP Publishing, 2018, p. 012195.

Badan Pusat Statistik, “Jumlah Penumpang Pesawat di Bandara Utama (Orang) (Dataset),” Badan Pusat Statistik. Accessed: Nov. 01, 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NjYjMg==/jumlah-penumpang%20pesawat-di-bandara-utama%E2%80%93orang-.html

O. Trisnawati and M. Prastuti, “Peramalan Curah Hujan di Stasiun Juanda Menggunakan Metode ARIMA Box-Jenkins dan Radial Basis Function Neural Network,” Jurnal Sains dan Seni ITS, vol. 11, no. 1, pp. D82–D88, Feb. 2022, doi: 10.12962/j23373520.v11i1.63165.

P.-C. Chang, Y.-W. Wang, and C.-H. Liu, “The development of a weighted evolving fuzzy neural network for PCB sales forecasting,” Expert Syst Appl, vol. 32, no. 1, pp. 86–96, Jan. 2007, doi: 10.1016/j.eswa.2005.11.021.

Published
2025-05-01
How to Cite
Binoto, R. M., Sudarwanto, S., & Santi, V. (2025). Damped Trend Exponential Smoothing and Holt-Winters in Forecasting the Number of Airplane Passengers at Kualanamu Airport. Pattimura International Journal of Mathematics (PIJMath), 4(1), 29-40. https://doi.org/10.30598/pijmathvol4iss1pp29-40