Penerapan Teknologi Penginderaan Jauh untuk Kajian Indeks Kerapatan Vegetasi (NDVI) Tahun 2020 di Kecamatan Sirimau
Abstract
This study aims to examine the distribution of vegetation density in Sirimau District using the NDVI method calculated from Landsat 8 satellite imagery. Landsat 8 imagery is processed to obtain NDVI values that describe the level of vegetation density and health in the study area. The results of the analysis show that most of the Sirimau District area is dominated by dense vegetation with NDVI values between 0.63 and 0.80 covering around 57.8% of the total area. In addition, vegetation is quite dense with NDVI values between 0.42 and 0.63 and vegetation is not dense with NDVI values between 0.21 and 0.42 occupying around 20.4% and 14.7% of the area, respectively. While non-vegetation and clouds and air only occupy a small part of the area with percentages of 7.1% and 0.003% of the total area, respectively. This study proves that the use of remote sensing technology, especially Landsat 8 imagery, is effective in mapping and integrating vegetation conditions quickly and accurately. The results of this study are expected to support natural resource management and spatial planning in Sirimau District.
Downloads
References
BPS Kota Ambon. (2022). Kota Ambon dalam Angka 2022. 401.
Hatipah Yasmine, W., Jauhari, A., & Rina Muhayah Noor Pitri Program Studi Kehutanan, dan. (2022). ANALISIS KORELASI NILAI NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI) DENGAN SUHU PERMUKAAN TANAH DI KHDTK UNIVERSITAS LAMBUNG MANGKURAT Correlation Analysis of Normalized Difference Vegetation Index (NDVI) Value with Land Surface Temperature at KHDTK of . Jurnal Sylva Scienteae, 05(5), 793–801.
Hatulesila, J. W., Mardiatmoko, G., & Irwanto, I. (2019). Analisis Nilai Indeks Kehijauan (Ndvi) Pada Pola Ruang Kota Ambon, Provinsi Maluku. Jurnal Hutan Pulau-Pulau Kecil, 3(1), 55–67. https://doi.org/10.30598/jhppk.2019.3.1.55
Hayu, M. K., & Ridwana, R. (2019). Analisis Kerapatan Vegetasi Untuk Area Pemukiman Dengan Memanfaatan Citra Satelit Landsat Di Kota Tasikmalaya. Jurnal Geografi, 8(2), 78. https://doi.org/10.24036/geografi/vol8-iss2/845
Hussain, S., Raza, A., Abdo, H. G., Mubeen, M., Tariq, A., Nasim, W., Majeed, M., Almohamad, H., & Al Dughairi, A. A. (2023). Relation of land surface temperature with different vegetation indices using multi-temporal remote sensing data in Sahiwal region, Pakistan. Geoscience Letters, 10(1). https://doi.org/10.1186/s40562-023-00287-6
Insan, A. F. N., & Prasetya, F. V. A. S. (2021). Sebaran Land Surface Temperature Dan Indeks Vegetasi Di Wilayah Kota Semarang Pada Bulan Oktober 2019. Buletin Poltanesa, 22(1), 45–52. https://doi.org/10.51967/tanesa.v22i1.471
Kosasih, D., Nasihin, I., & Zulkarnain, E. R. (2019). Deteksi Kerapatan Vegetasi dan Suhu Permukaan Tanah Menggunakan Citra Landsat 8 (Studi Kasus : Stasiun Penelitian Pasir Batang Taman Nasional Gunung Ciremai. Konservasi untuk Kesejahteraan Masyarakat, 1, 162–173.
Kurniadin, N., Yani, M., Nurgiantoro, N., Annafiyah, A., Prasetya, F. V. A. S., Insanu, R. K., Wumu, R., & Suryalfihra, S. I. (2022). Deteksi Perubahan Suhu Permukaan Tanah dan Hubungannya dengan Pengaruh Albedo dan NDVI Menggunakan Data Satelit Landsat-8 Multitemporal di Kota Palu Tahun 2013 - 2020. Geoid, 18(1), 82. https://doi.org/10.12962/j24423998.v18i1.13157
Lasaiba, M. A. (2022). Pemanfaatan Citra Landsat 8 Oli/Tirs Untuk Identifikasi Erapatan Vegetasi Menggunakan Metode Normalized Difference Vegetation Index (Ndvi) Di Kota Ambon. JURNAL GEOGRAFI Geografi dan Pengajarannya, 20(1), 53–65. https://doi.org/10.26740/jggp.v20n1.p53-65
Lasaiba, M. A., & Tetelepta, E. G. (2023). AMBON BERBASIS NORMALIZED DIFFERENCE VEGETATION INDEX ( NDVI ). https://doi.org/10.14710/jpk.11.2.124-139
Latue, P. C., Rakuasa, H., & Sihasale, D. A. (2023). Analisis Kerapatan Vegetasi Kota Ambon Menggunakan Data Citra Satelit Sentinel-2 dengan Metode MSARVI Berbasis Machine Learning pada Google Earth Engine. sudo Jurnal Teknik Informatika, 2(2), 68–77. https://doi.org/10.56211/sudo.v2i2.270
Limehuwey, R., & Jaelani, L. M. (2016). Development of Algorithm Model for Estimating Cholophyll-a Concentration Using In-Situ Data and Atmospherically Corrected Landsat-8 Image by 6SV, Case Study: Gili Iyang’s Waters. Internasional Seminar of Basic Science, May, 1–7. https://doi.org/10.13140/RG.2.2.19983.59048
Purwanto, A. (2015). Pemanfaatan Citra Landsat 8 Untuk Identifikasi Normalized Difference Vegetation Index ( Ndvi ) Di Kecamatan Silat Hilir Kabupaten Kapuas Hulu. Edukasi, 13(1), 27–36.
Sunaryo, D. K., & Iqmi, M. Z. (2015). PEMANFAATAN CITRA LANDSAT 8 UNTUK PENDETEKSIAN DAN MENGETAHUI HUBUNGAN KERAPATAN VEGETASI TERHADAP SUHU PERMUKAAN (Studi Kasus : Kota Bandar Lampung, Provinsi Lampung). Spectra, XIII, 55–72.
Taloor, A. K., Drinder Singh Manhas, & Chandra Kothyari, G. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9(August 2020), 0–10. https://doi.org/10.1016/j.acags.2020.100051
Wibisono, P., Miladan, N., & Utomo, R. P. (2023). Hubungan Perubahan Kerapatan Vegetasi dan Bangunan terhadap Suhu Permukaan Lahan: Studi Kasus di Aglomerasi Perkotaan Surakarta. Desa-Kota, 5(1), 148. https://doi.org/10.20961/desa-kota.v5i1.63639.148-162
Copyright (c) 2025 Resti Limehuwey, Micky Kololu, Sitti Hafsa Kotarumalos, warni multi

This work is licensed under a Creative Commons Attribution 4.0 International License.