Analisis Prediksi Okupansi Jumlah Penumpang Kereta Api dengan Metode Support Vector Regression dan Gaussian Process Regression (Studi Kasus: Kereta Api Argo Parahyangan)

Main Article Content

Meta Kallista

Abstract

SVR (support vector regression) dan GPR (gaussian process regression) adalah beberapa metode di dalam pembelajaran mesin yang sering digunakan untuk mengakomodasi masalah regresi. SVR dan GPR memiliki keunggulan dibandingkan menggunakan fungsi regresi biasa. Kedua metode ini merupakan model pembelajaran mesin non-deep learning, dimana model pembelajarannya dibangun dengan menggunakan fungsi matematis. Sebagai studi kasus, di dalam makalah diteliti tentang prediksi okupansi penumpang Kereta Api Argo Parahyangan yang dioperasikan oleh PT Kereta Api Indonesia (Persero) untuk melayani lintas kota Bandung–Gambir dan sebaliknya. Penelitian dilakukan dengan menggunakan data berupa jumlah penumpang per hari selama satu tahun pada kelas ekonomi dan kelas eksekutif Kereta Api Argo Parahyangan. Skenario pengujian dilakukan dengan membandingkan antara rata-rata error kuadratik (RMSE) antara prediksi dan target pelatihan dengan metode SVR dan GPR.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. Kallista, “Analisis Prediksi Okupansi Jumlah Penumpang Kereta Api dengan Metode Support Vector Regression dan Gaussian Process Regression (Studi Kasus: Kereta Api Argo Parahyangan)”, Tensor, vol. 1, no. 2, pp. 83-92, Dec. 2020.
Section
Articles