BROMELIN UNTUK PRODUKSI GELATIN TULANG KAMBING KACANG
BROMELIN FOR THE PRODUCTION OF KACANG GOAT BONE GELATIN
Abstract
Penelitian ini bertujuan untuk mengevaluasi sifat kimia, fisik dan fungsional gelatin tulang kambing Kacang yang diekstraksi menggunakan bromelin dengan perlakuan konsentrasi yang berbeda, yaitu GB-0 (gelatin dengan bromelin 0 %), GB-1 (Gelatin dengan bromelin 10 U), GB-2 (Gelatin dengan bromelin 15 U dan GB-3 (Gelatin dengan bromelin 20 U). Tulang yang digunakan adalah tulang kambing kacang. Rancangan penelitian yang digunakan adalah rancangan acak lengkap pola searah dengan 4 perlakuan konsentrasi bromelin dengan 5 ulang. Parameter yang diamati adalah rendemen, analisis proksimat (kadar air, abu, lemak dan protein kasar), pH, distribusi berat molekul protein, profil gugus fungsional FTIR, morfologi, foaming expansion (FE) dan stability (FS) serta kapasitas dan stailitas emulsi gelatin. Hasil penelitian menunjukan bahwa rendemen tertinggi pada gelatin tulang kambing Kacang dengan perlakuan bromelin 20 U (GB-3), adalah 8,31%. Kadar air, protein, sifat foaming dan emulsi tertinggi dengan perlakuan bromelin 15 U (GB-2), dengan pH, kadar abu terendah. Rantai ß telah terdegradasi, rantai α1 dengan berat molekul 31,00 - 91,12 kDa, menghilangnya tripel heliks ditunjukkan FTIR dan struktur gel yang lebih halus, kompak dengan rongga yang lebih kecil pada gelatin GB-1 dan GB-2. Kesimpulan dari penelitian ini adalah bromelin 15 U/g tulang dapat digunakan untuk ekstraksi tulang kambing Kacang dengan menghasilkan gelatin dengan sifat fisiokimia dan fungsional yang dapat digunakan untuk aplikasi pangan.
ABSTRACT
This study aims to evaluate the chemical, physical, and functional properties of Kacang goat bone Kacang gelatin extracted using different concentrations of bromelain. The concentrations used were GB-0 (gelatin with 0% bromelain), GB-1 (gelatin with 10 U bromelain), GB-2 (gelatin with 15 U bromelain), and GB-3 (gelatin with 20 U bromelain). Kacang Goat bones were used for the extraction. The research design employed a completely randomized unidirectional design with 4 bromelain concentration treatments and 5 repetitions. The parameters observed included yield, proximate analysis (moisture, ash, fat, and crude protein content), pH, protein molecular weight distribution, FTIR functional group profile, morphology, foaming expansion (FE) and stability (FS), the capacity and stability gelatin emulsions. The results of the research showed that the highest yield of goat Kacang bone gelatin was obtained with the 20 U bromelain treatment (GB-3), which yielded 8.31%. The gelatin extracted with the 15 U bromelain treatment (GB-2) had the highest water content, protein content, foaming properties, and emulsion properties, as well as the lowest ash content and pH. The ß chain of the gelatin was degraded, while the α1 chain had a molecular weight of 31.00 - 91.12 kDa. The FTIR analysis showed the disappearance of the triple helix structure, and the gel structure of GB-1 and GB-2 gelatin was smoother and more compact with smaller cavities. In conclusion, bromelain at a concentration of 15 U/g bone can be used for the extraction of Kacang goat bones, resulting in gelatin with desirable physiochemical and functional properties suitable for food applications.
Downloads
References
Abedinia, A., Ariffin, F., Huda, N., & Nafchi, A. M. (2017). Extraction and characterization of gelatin from the feet of Pekin duck (Anas platyrhynchos domestica) as affected by acid, alkaline, and enzyme pretreatment. International journal of biological macromolecules, 98, 586-594.
Ahmad, M., & Benjakul, S. (2011). Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hydrocoll, 25(3), 381 – 388.
Ahmad, T., Ismail, A., Ahmad, S. A., Khalil, K. A., Awad, E. A., Leo, T. K., Imlan, J. C., & Sazili, A. Q. (2018). Characterization of gelatin from bovine skin extracted using ultrasound subsequent to bromelain pretreatment. Food hydrocolloids, 80, 264-273.
Ahmad, T., Ismail, A., Ahmad, S. A., Khalil, K. A., Teik Kee, L., Awad, E. A., & Sazili, A. Q. (2019). Physicochemical characteristics and molecular structures of gelatin extracted from bovine skin: effects of actinidin and papain enzymes pretreatment. International Journal of Food Properties, 22(1), 138-153.
Ahmad, T., Ismail, A., Ahmad, S. A., Khalil, K. A., Kee, L. T., Awad, E. A., & Sazili, A. Q. (2020). Extraction, characterization and molecular structure of bovine skin gelatin extracted with plant enzymes bromelain and zingibain. Journal of food science and technology, 57, 3772-3781.
Alemán, A., Giménez, B., Gómez‐Guillén, M. C., & Montero, P. (2011). Enzymatic hydrolysis of fish gelatin under high pressure treatment. International journal of food science & technology, 46(6), 1129-1136.
Al-Hassan, A. A. (2020). Gelatin from camel skins: Extraction and characterizations. Food Hydrocolloids, 101, 105457.
Ali, E., Sultana, S., Hamid, S. B. A., Hossain, M., Yehya, W. A., Kader, A., & Bhargava, S. K. (2016). Gelatin controversies in food, pharmaceuticals, and personal care products: Authentication methods, current status, and future challenges. Crit. Rev. Food Sci. Nutr., 58, 1495 – 1511.
Al-Kahtani, H. A., Jaswir, I., Ismail, E. A., Ahmed, M. A., Monsur Hammed, A., Olorunnisola, S., & Octavianti, F. (2017). Structural characteristics of camel-bone gelatin by demineralization and extraction. International journal of food properties, 20(11), 2559-2568.
Amid, A., Ismail, N. A., Yusof, F., & Salleh, H. M. (2011). Expression, purification, and characterization of a recombinant stem bromelain from Ananas comosus. Process Biochemistry, 46(12), 2232-2239.
AOAC. (2000). Official Methods of Analysis. 15th Edition. Virginia-USA: Inc, ed.
Bichukale, A. D., Koli, J. M., Sonavane, A. E., Vishwasrao, V. V., Pujari, K. H., & Shingare, P. E. (2018). Functional properties of gelatin extracted from poultry skin and bone waste. Int. J. Pure Appl. Biosci, 6(4), 87-101.
Cao, S., Wang, Y., Xing, L., Zhang, W., & Zhou, G. (2020). Structure and physical properties of gelatin from bovine bone collagen influenced by acid pretreatment and pepsin. Food and Bioproducts Processing, 121, 213-223.
Cebi, N., Durak, M. Z., Toker, O. S., Sagdic, O., & Arici, M. (2016). An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food chemistry, 190, 1109-1115.
Chakka, A. K., Muhammed, A., Sakhare, P. Z., & Bhaskar, N. (2017). Poultry processing waste as an alternative source for mammalian gelatin: Extraction and characterization of gelatin from chicken feet using food grade acids. Waste and Biomass Valorization, 8, 2583-2593.
Chen, M., Sala, G., Meinders, M. B., van Valenberg, H. J., van der Linden, E., & Sagis, L. M. (2017). Interfacial properties, thin film stability and foam stability of casein micelle dispersions. Colloids and Surfaces B: Biointerfaces, 149, 56-63.
Chuaychan, S., Benjakul, S., & Nuthong, P. (2016). Element distribution and morphology of spotted golden goatfish fish scales as affected by demineralisation. Food chemistry, 197, 814-820.
Gelatin Manufacturers Institute of America (GMIA). (2012). Gelatin Handbook. Page 1 – 25. America.
Guo, L., Colby, R. H., Lusignan, C. P., & Whitesides, T. H. (2003). Kinetics of triple helix formation in semidilute gelatin solutions. Macromolecules, 36(26), 9999-10008.
Haryati, D., Nadhifa, L., & Abdullah, N. (2019, November). Extraction and characterization of gelatin from rabbitfish skin (Siganus canaliculatus) with enzymatic method using bromelin enzyme. In IOP Conference Series: Earth and Environmental Science (Vol. 355, No. 1, p. 012095). IOP Publishing.
Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., & Tanaka, M. (2006). Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids, 20(4), 492-501.
Jelita, J., Wirjosentono, B., Tamrin, T., & Marpaung, L. (2018, December). Characterization of gelatin from scapula (Os scapula) from Aceh cattle. In AIP Conference Proceedings (Vol. 2049, No. 1). AIP Publishing.
Kołodziejska, I., Skierka, E., Sadowska, M., Kołodziejski, W., & Niecikowska, C. (2008). Effect of extracting time and temperature on yield of gelatin from different fish offal. Food Chemistry, 107(2), 700-706.
Ktari, N., Bkhairia, I., Jridi, M., Hamza, I., Riadh, B. S., & Nasri, M. (2014). Digestive acid protease from zebra blenny (Salaria basilisca): Characteristics and application in gelatin extraction. Food research international, 57, 218-224.
Laemmli, U.K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nat. Publ. Gr., 228, 726–734.
Ling ling, G., W. Zhen-yu, L. Zheng, Z. Cai-xia, & Z. De-quan. (2018). The characterization of acid and pepsin soluble collagen from ovine bones (Ujumuqin sheep). J. Integr. Agric., 17, 704–711.
Liu, D, Liang, L, Regenstein, J. M., & Zhou, P. (2012). Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chemistry, 133, 1441-1448.
Ma, Y., Zeng, X., Ma, X., Yang, R., & Zhao, W. (2019). A simple and eco-friendly method of gelatin production from bone: One-step biocatalysis. Journal of Cleaner Production, 209, 916-926.
Mariod, A. A., & Fadul, H. (2015). Extraction and characterization of gelatin from two edible Sudanese insects and its applications in ice cream making. Food Science and Technology International, 21(5), 380-391.
Matulessy, D. N., Erwanto, Y., Nurliyani, N., Suryanto, E., Abidin, M. Z., & Hakim, T. R. (2021). Characterization and functional properties of gelatin from goat bone through alcalase and neutrase enzymatic extraction. Veterinary World, 14(9), 2397.
Mirzapour-kouhdasht, A., Moosavi-Nasab, M., & Aminlari, M. (2018). Gelatin production using fish wastes by extracted alkaline protease from Bacillus licheniformis. J Food Sci Technol, 55(12), 5175 – 5180.
Morales, R., Martínez, K. D., Ruiz-Henestrosa, V. M. P., & Pilosof, A. M. (2015). Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry, 26, 48-55.
Ninpetch, U., Tsukada, M., & Promboon, A. (2015). Mechanical properties of silk fabric degummed with bromelain. Journal of Engineered Fibers and Fabrics, 10(3), 155892501501000319.
Norziah, M. H., Kee, H. Y., & Norita, M. (2014). Response surface optimization of bromelain-assisted gelatin extraction from surimi processing wastes. Food Bioscience, 5, 9-18.
Ramli, A. N. M., Manas, N. H. A., Hamid, A. A. A., Hamid, H. A., & Illias, R. M. (2018). Comparative structural analysis of fruit and stem bromelain from Ananas comosus. Food chemistry, 266, 183-191.
Renuka, V., Ravishankar, C. N. R., Zynudheen, A. A., Bindu, J., & Joseph, T. C. (2019). Characterization of gelatin obtained from unicorn leatherjacket (Aluterus monoceros) and reef cod (Epinephelus diacanthus) skins. Lwt-Food Sci. Technol., 116 (108586), 1-8.
Rowan, A. D., Buttle, D. J., & Barrett, A. J. (1990). The cysteine proteinases of the pineapple plant. Biochemical Journal, 266(3), 869.
Samsudin, F. S., Aminal’lah, N., Zain, F. A. M., Kamarudin, A. S., Marlida, Y., & Huda, N. (2018). Physicochemical properties of quail bone gelatin extract with hydrochloric acid and citric acid. Journal of Agrobiotechnology, 9(1S), 92-101.
São Paulo Barretto Miranda, Í.K., A. Fontes Suzart Miranda, F.V.D. Souza, M.A. Vannier-Santos, C.P. Pirovani, I.M. Pepe, I.J. Rodowanski, K.T. de S.E. Ferreira, L. Mendes Souza Vaz, and S.A. de Assis. 2017. The biochemical characterization, stabilization studies and the antiproliferative effect of bromelain against B16F10 murine melanoma cells. Int. J. Food Sci. Nutr., 68, 442–454.
See, S.F., L.L. Hoo, and A.S. Babji. 2011. Optimization of enzymatic hydrolysis of Salmon (Salmo salar) skin by Alcalase. Int. Food Res. J., 18, 1359–1365.
Standar Nasional Indonesia (SNI). (1995). Mutu dan cara uji gelatin. Jakarta: Badan Standardisasi Nasional SNI 01- 3735.
Surówka, K., Żmudziński, D., Fik, M., Macura, R., & Łasocha, W. (2004). New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates. Innovative Food Science & Emerging Technologies, 5(2), 225-234.
Tkaczewska, J., Morawska, M., Kulawik, P., & Zając, M. (2018). Characterization of carp (Cyprinus carpio) skin gelatin extracted using different pretreatments method. Food Hydrocolloids, 81, 169-179.
Tümerkan, E. T. A., Cansu, Ü., Boran, G., Mac Regenstein, J., & Özoğul, F. (2019). Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chemistry, 287, 273-279.
Xu, M., Wei, L., Xiao, Y., Bi, H., Yang, H., & Du, Y. (2017). Physicochemical and functional properties of gelatin extracted from Yak skin. International journal of biological macromolecules, 95, 1246-1253.
Xu, J., Zhang, T., Zhang, Y., Yang, L., Nie, Y., Tao, N., ... & Zhong, J. (2021). Silver carp scale gelatins for the stabilization of fish oil-loaded emulsions. International journal of biological macromolecules, 186, 145-154.
Zarei, M., Mazaheri Tehrani, M., Rashidi, H., & Fathi Najafi, M. (2019). Optimization of Gelatin Extraction Process, from Sheep Skin Waste Uing Alcalase Enzyme by Response Surface Method. Research and Innovation in Food Science and Technology, 8(2), 125-136.
Zhang, Y., Dutilleul, P., Orsat, V., & Simpson, B. K. (2018). Alcalase assisted production of novel high alpha-chain gelatin and the functional stability of its hydrogel as influenced by thermal treatment. International journal of biological macromolecules, 118, 2278-2286.