KORELASI TEMPERATURE HUMIDITY INDEX DENGAN KONSUMSI PAKAN DAN PRODUKSI SUSU SAPI PERANAKAN FRIESIAN HOLSTEIN LAKTASI
CORRELATION OF TEMPERATURE HUMIDITY INDEX WITH FEED CONSUMPTION AND MILK PRODUCTION OF LACTATION FRIESIAN HOLSTEIN CROSSBREED
Abstract
Penelitian ini bertujuan untuk mengetahui korelasi antara nilai temperature humidity index (THI) dengan tingkat konsumsi bahan kering (BK) pakan dan produksi susu sapi Peranakan Friesian Holstein (PFH). Penelitian dengan metode observasi (observatory design), dimana sebanyak 20 ekor sapi PFH periode laktasi ke-1 sampai ke-3 yang dipelihara di Kelompok Ternak Ngudi Makmur II, Cangkringan, Sleman, Yogyakarta dipilih secara purposive sampling dan digunakan sebagai sampel penelitian. Data suhu, kelembaban, tingkat konsumsi pakan, dan performa produksi susu diukur menggunakan alat dan teknik yang valid dan reliabel. Analisis sampel pakan untuk uji BK dilaksanakan di Laboratorium Teknologi Makanan Ternak dan Laboratorium Ilmu Ternak Perah dan Industri Persusuan, Fakultas Peternakan, Universitas Gadjah Mada. Variabel yang diamati meliputi fisiologi lingkungan (suhu dan kelembaban), konsumsi BK, serta produksi susu. Data dianalisis menggunakan analisis korelasi dengan bantuan software SPSS kemudian disajikan secara deskriptif. Hasil penelitian menunjukkan rata-rata nilai THI sapi PFH sebesar 78,05±1,13, rata-rata konsumsi BK 14,53±1,20 kg/ekor/hari, dan rata-rata produksi susu 14,74±2,76 l/ekor/hari. Nilai THI mengindikasikan tingkat stres ringan pada sapi PFH, dan nilai THI tidak memiliki korelasi dengan tingkat konsumsi BK pakan dan produksi susu.
ABSTRACT
This study aims to determine the correlation between the temperature humidity index (THI) value and the level of dry matter (DM) feed consumption and milk production of Friesian Holstein crossbreed (PFH) dairy cows. The study used an observational design, where 20 PFH cows in the 1st to 3rd lactation periods kept at the Ngudi Makmur II Livestock Group, Cangkringan, Sleman, Yogyakarta, were selected by purposive sampling and used as research samples. Data on temperature, humidity, feed consumption levels, and milk production performance were measured using valid and reliable tools and techniques. Analysis of feed samples for dry matter testing was carried out at the Animal Feed Technology Laboratory and the Dairy Science and Dairy Industry Laboratory, Faculty of Animal Husbandry, Gadjah Mada University. Observed variables included environmental physiology (temperature and humidity), DM consumption, and milk production. Data were analyzed using regression analysis with the help of SPSS software and then presented descriptively. The results showed an average THI value of PFH cattle of 78.05 ± 1.13, an average feed consumption of 14.53 ± 1.20 kg DM/head/day, and an average milk production of 14.74 ± 2.76 l/head/day. The THI value indicates a mild level of stress in PFH cattle, and the THI value has no correlation with the level of DM feed consumption and milk production.
Downloads
References
Adhyatma, M., Ahmad, Y., Kusuma, S., Permadi, H., & Fajrin, E. (2024). Evaluation of dairy cow milk production based on temperature humidity index (thi). Jurnal Sains Dan Teknologi Industri Peternakan, 4(1), 7-14. https://doi.org/10.55678/jstip.v4i1.1368
Aditya, F., Sulastri, & Novirzal. (2015). Perbandingan nilai MPPA produksi susu antara sapi perah friesian holstein dan peranakan friesian Holstein di Balai Besar Pembibitan Ternak Unggul dan Hijauan Pakan Ternak Baturraden Purwokerto. Jurnal Ilmiah Peternakan Terpadu, 3(1), 93-97. https://jurnal.fp.unila.ac.id/index.php/JIPT/article/view/680
Al Reyad, M., Sarker, M.A.H., Uddin, M.E., Habib, R., & ur-Rashid, M.H. (2016). Effect of heat stress on milk production and its composition of Holstein Friesian crossbred dairy cows. Asian J. Med. Biol. Res., 2(2), 190-195. http://dx.doi.org/10.3329/ajmbr.v2i2.29060
Amir, A., Atabany, A., Syawal, S., Zulkharnaim, Tambunan, R.D., Zubir, & Mubarak, A.S. (2025) Assessment of milk yield, physiological responses, and heat tolerance of lactating dairy cows in different agroclimatic in Bogor of West Java, Indonesia. Livestock Research for Rural Development, 37(1), 3. http://www.lrrd.org/lrrd37/1/3703azha.html.
Amrullah, M. F. R., P. Surjawardojo dan E.Setyowati. (2018). Produksi dan kualitas susu sapi Peranakan Friesian Holstein pada pemerahan pagi dan sore. Maduranch, 3(2):68-74. http://dx.doi.org/10.53712/maduranch.v3i2.445
Asmarasari, S.A., Azizah, N., Sutikno, S., Puastuti, W., Amir, A., Praharani, L., Rusdiana, S., Hidayat, C., Hafid, A., Kusumaningrum, D.A., Saputra, F., Talib, C., Herliatika, A., Shiddieqy, M.I., & Hayanti, S.Y. (2023). A review of dairy cattle heat stress mitigation in Indonesia. Veterinary World, 16(5), 1098-1108. https://doi.org/10.14202/vetworld.2023.1098-1108
Bohmanova, J., Misztal, I., & Cole, J. B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of dairy science, 90(4), 1947-1956. https://doi.org/10.3168/jds.2006-513
Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M. N., & Belyea, R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, 51(6), 479-491. https://doi.org/10.1051/animres:2002036
[BPS] Badan Pusat Statistik. (2024). Produksi Susu Segar menurut Provinsi (Ton), 2024. Jakarta: Badan Pusat Statistik.
Capela, L., Leites, I., & Pereira, R. M. (2025). Heat stress from calving to mating: mechanisms and impact on cattle fertility. Animals, 15(12), 1747. https://doi.org/10.3390/ani15121747
Chang-Fung-Martel, J., Harrison, M.T., & Brown, J.N. (2021). Negative relationship between dry matter intake and the temperature-humidity index with increasing heat stress in cattle: a global meta-analysis. Int J Biometeorol, 65, 2099–2109. https://doi.org/10.1007/s00484-021-02167-0
Chen, L., Thorup, V.M., Kudahl, A.B., & Østergaard. S. (2024). Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. Journal of Dairy Science, 107(5), 3207-3218. https://doi.org/10.3168/jds.2023-24059
Chrást, V., Langová, L., Novotná, I., Zemanová, M., Vrtková, I., Urban, T., ... & Havlíček, Z. (2023). Effect of temperature-humidity index on physiological and haematological indicators in dairy cows. Journal of Central European Agriculture, 24(4), 802-808. https://doi.org/10.5513/JCEA01/24.4.3960
Christi, R. F., Salman, L. B., & Alfikri, I. (2023). Evaluasi performa produksi susu dan reproduksi sapi perah Friesian Holstein DI BPT HMT Cikole Lembang. Jurnal Sumber Daya Hewan, 4(1), 1-7. https://doi.org/10.24198/jsdh.v4i1.48548
Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Vet World, 9(3), 260-8. https://doi.org/10.14202/vetworld.2016.260-268
De Rensis, F., Garcia-Ispierto, I., & López-Gatius, F. (2015). Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows. Theriogenology, 84(5), 659-666. https://doi.org/10.1016/j.theriogenology.2015.04.021
Dimov, D., Penev T., & Marinov, I. (2020). Temperature-humidity index – an indicator for prediction of heat stress in dairy cows. Veterinarija ir Zootechnika, 78(100), 10-15. https://vetzoo.lsmuni.lt/data/vols/2020/78/en/dimov.pdf.
Djelailia, H., M'Hamdi, N., Bouraoui, R., & Najar, T.. (2021). Effects of thermal stress on physiological state and hormone concentrations in Holstein cows under arid climatic conditions. South African Journal of Animal Science, 51(4), 452-459. https://doi.org/10.4314/sajas.v51i4.5
Džermeikaitė, K., Krištolaitytė, J., Malašauskienė, D., Arlauskaitė, S., Girdauskaitė, A., & Antanaitis, R. (2025). The Impact of heat stress on dairy cattle: effects on milk quality, rumination behaviour, and reticulorumen ph response using machine learning models. Biosensors, 15(9), 608. https://doi.org/10.3390/bios15090608
Firman, A., Budimulati, L., Paturochman, M., & Munandar, M. (2018). Succession models on smallholder dairy farms in Indonesia. Livestock Research for Rural Development, 30(10), 176. http://www.lrrd.org/lrrd30/10/achma30176.html.
Getabalew, M., & Negash, A. (2020). Effect of heat stress on nutrient metabolism and feed intake of ruminant animals: A review. American-Eurasian Journal of Scientific Research, 15(2), 70-75. http://dx.doi.org/10.5829/idosi.aejsr.2020.70.75
Habiba, M. U., Hoque, S. A. M., Uddin, M., Esha, K.-A.-J., Seema, S. Z., Al-Noman, K. M., Tamanna, S. N., Akhtar, S., Salam, M. A., Selim, A. S. M., & Rahman, M. M. (2025). Effect of short duration heat stress on the physiological and production parameters of Holstein-Friesian crossbred dairy cows in Bangladesh. Climate, 13(1), 18. https://doi.org/10.3390/cli13010018
Hartanto, R., Pamungkas, A. A., Prayitno, E., & Harjanti, D. W. (2020). Milk production of Holstein–Friesian dairy cows in various lactation periods (case study at capita farm, Semarang, Central Java, Indonesia). J. Ternak, 11(2), 44-49. https://doi.org/10.30736/jy.v11i2.73
Holodova, L. V., Novoselova, K. S., Mikhalev, E. V., Onegov, A. V., & Chirgin, E. D. (2019, August). The effect of age on milk productivity and reproductive qualities of dairy cows. In IOP Conference Series: Earth and Environmental Science (Vol. 315, No. 2, p. 022087). IOP Publishing. https://doi.org/10.1088/1755-1315/315/2/022087
Indriyani, N., Hartanto, R., & Harjanti, D.W. (2020). Evaluasi Konsumsi Bahan Kering, Bobot Badan dan Produksi Susu Induk Sapi Perah pada Bulan Pertama Laktasi. Disertasi. Semarang: Universitas Diponegoro.
Jarmuji, J., Suherman, D., Yanuri, Y., Afriansyah, R., & Sulistyowati, E. (2021). Effect of sakura block on milk production and milk quality of fh cows in late lactation. Jurnal Sain Peternakan Indonesia, 16(3), 266–272. https://ejournal.unib.ac.id/jspi/article/view/11016
Jeon, E., Jang, S., Yeo, J.M., Kim, D.W., & Cho, K. (2023). Impact of climate change and heat stress on milk production in Korean holstein cows: A large-scale data analysis. Animals (Basel), 13(18), 2946. https://doi.org/10.3390/ani13182946
Jo, J., Nejad, J.G., Kim, H., & Lee, H. (2024). Effect of seven days heat stress on feed and water intake, milk characteristics, blood parameters, physiological indicators, and gene expression in Holstein dairy cows. Journal of Thermal Biology, 123, 103929. https://doi.org/10.1016/j.jtherbio.2024.103929
Komala, I., Arifiantini, I., & Tumbelaka, L. (2015). Hubungan produksi susu berdasarkan Grade MPPA dengan performa reproduksi. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, 3(1): 33-39. https://journal.ipb.ac.id/index.php/ipthp/article/view/10811
Larasati, R., Susilorini, T. E., Surjowardojo, P., & Wahyuni, R. D. (2024). Correlation of linear body size with body condition score and body weight of participated cow used in the progeny test in East Java. Animal Production, 26(2), 70-81. https://doi.org/10.20884/1.jap.2024.26.2.298
Lee, J., Kim, D., Son, J., Kim, D., Jeon, E., Jung, D., ... & Choi, I. (2023). Effects of heat stress on conception in Holstein and Jersey cattle and oocyte maturation in vitro. Journal of Animal Science and Technology, 65(2), 324. https://doi.org/10.5187/jast.2022.e113
Leondro, H., Widyobroto, B.P., & Agus, A. (2021). Physiological responses of the Holstein Friesian dairy cows raised under tropical conditions in Indonesia. Journal of Physics Conference Series, 1869(1), 1-6. http://dx.doi.org/10.1088/1742-6596/1869/1/012161
Lovarelli, D., G. Minozzi., A. Arazi., M. Guarino., and F. Tiezzi. (2024). Effect of extended heat stress in dairy cows on productive and behavioral traits. Animal, 18(3): 101089. ISSN 1751-7311, https://doi.org/10.1016/j.animal.2024.101089
Madyawati, S. P., Prastiya, R. A., Srianto, P., Pradana, M., Yansri, A. A., & Kholik, K. (2025). Detection of luteinizing hormone receptor in Holstein Friesian dairy cows undergoing repeat breeding. World's Veterinary Journal, 15(2), 224-228. https://dx.doi.org/10.54203/scil.2025.wvj24
Mahmud, A., Busono, W., Surjowardojo, P., & Tribudi, Y. A. (2020). Produksi susu sapi perah Friesian holstein (FH) pada periode laktasi yang berbeda. Jurnal Ilmu dan Teknologi Peternakan, 8(2): 79-84. https://doi.org/10.20956/jitp.v8i2.10132
Maylinda, S., & Riskila, F. (2023). The Effect of type of roof on heat tolerance coefficient and milk production in Friesian Holstein crossbred cows. Jurnal Ilmu-Ilmu Peternakan, 33(2), 12. https://doi.org/10.21776/ub.jiip.2023.033.02.12.
Moore, S.S., Costa, A., Penasa, M., & De Marchi, M. (2024). Effects of different temperature-humidity indexes on milk traits of Holstein cows: A 10-year retrospective study. Journal of Dairy Science, 107(6), 3669-3687. https://doi.org/10.3168/jds.2023-23723.
Moran, J., & Morey, P. (2015). Strategies to increase the domestic production of raw milk in Indonesia and other South East Asian Countries. The Proceeding on 6th International Seminar on Tropical Animal Production Integrated Approach in Developing Sustainable Tropical Animal Production, 20-22 October 2015, Yogyakarta, Indonesia, pp 1-11. https://journal.ugm.ac.id/istapproceeding/article/viewFile/30539/18422.
Nam, K. T., Choi, N., Na, Y., & Choi, Y. (2024). Effect of the temperature–humidity index on the productivity of dairy cows and the correlation between the temperature–humidity index and rumen temperature using a rumen sensor. Animals, 14(19): 2848. https://doi.org/10.3390/ani14192848
NRC. (2001). Nutrient Requirement of Dairy Cattle. Washington, D.C: National Academic Press.
Ominski, K. H., Kennedy, A. D., Wittenberg, K. M., & Nia, S. M. (2002). Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress. Journal of Dairy Science, 85(4), 730-737. https://doi.org/10.3168/jds.S0022-0302(02)74130-1
Palulungan, J.A., Adiarto, & Hartatik, T. (2013). Pengaruh kombinasi pengkabutan dan kipas angin terhadap kondisi fisiologis sapi perah Peranakan Friesian Holland. Buletin Peternakan, 37(3), 189-197. https://doi.org/10.21059/buletinpeternak.v37i3.3091
Penev, T., Dimov, D., Vasilev, N., Mitev, J., & Miteva, C. (2020). Effect of heat stress on some reproductive traits in Holstein-Friesian cows under temperate continental climate. Bulgarian Journal of Agricultural Science, 26(1), 155-162. https://www.researchgate.net/publication/348591705
Permatasari, D. S., Harjanti, D. W., & Hartanto, R. (2021). Relationship between body weight and dry matter intake of dry-off cows with birth weight and body measurements of calves. Jurnal Ilmiah Peternakan Terpadu, 9(1), 28–43. https://doi.org/10.23960/jipt.v9i1.p28-43
Polsky, L., & Von Keyserlingk, M. A. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of dairy science, 100(11), 8645-8657. https://doi.org/10.3168/jds.2017-12651
Rachmawanto, M. D., Afton Atabany, & Bagus Priyo Purwanto. (2022). The correlation of microclimate on milk productivity and lactation percentage of Friesian Holstein dairy cattle in Balai Pengembangan Ternak Sapi Perah Hijauan Pakan Ternak (BPTSP HPT) Cikole. Jurnal Ilmu-Ilmu Peternakan, 32(3), 328-339. https://doi.org/10.21776/ub.jiip.2022.032.03.03
Rahman, M. A., Chowdhury, R., & Islam, K. M. S. (2024). Performance and nutritional status of Holstein crossbred cows in a selected area of Bangladesh under the existing farming system. Journal of Advanced Veterinary and Animal Research, 11(3), 686. https://doi.org/10.5455/javar.2024.k818
Ratni, E., Lendrawati, Islam, D., & Rachman, K. I. (2025). Temporal and spatial variations of temperature-humidity index related to heat stress in high-altitude dairy cattle farms. Andalasian Livestock, 2(1), 98–106. https://doi.org/10.25077/alive.v2.n1.p98-106.2025
Selviana, L.L., Hakim, A., Rayani, T.F., Resti, Y., & Halimah, B.N. (2024). Produksi dan kualitas susu sapi perah peranakan friesian holstein (PFH) di KUD Giri Tani Cisarua Bogor. Ternak Tropika Journal of Tropical Animal Production, 25(2), 172-181. https://doi.org/10.21776/ub.jtapro.2024.025.02.8
Sembada, P., Ramadhan, I., Raihan, M. R. F., Mugniawan, A., & Hendrawan, M. R. R. (2020). Performa produksi dan reproduksi sapi perah di UPTD BPPIP-TSP Bunikasih. Jurnal Sains Terapan: Wahana Informasi dan Alih Teknologi Pertanian, 10(2), 70-82. https://doi.org/10.29244/jstsv.10.2.70-82
Sesay, A. R. (2023). Effect of heat stress on dairy cow production, reproduction, health, and potential mitigation strategies. J. Appl. Adv. Res, 8, 13-25. https://doi.org/10.21839/jaar.2023.v8.8371
Subarkah, & Ragil, M. (2017) Hubungan Temperature Humidity Index (THI) Terhadap Produksi Susu Sapi Perah PFH Yang Diberi Pakan Total Mixed Ration (TMR) di Kecamatan Bantur Kabupaten Malang. Tesis. Malang: Universitas Brawijaya.
Sulfiani, E. (2019). Suplementasi Pemberian Daun Katuk (Sauropus androgynus) Terhadap Konsumsi Bahan Kering, Bahan Organik Dan Protein Kasar Sapi Friesian Holstein (FH). Disertasi. Makassar: Universitas Hasanuddin.
Sulistyowati, E., Suherman, D., Badarina, I., Mujiharjo, S., & Fanhar, S. (2019). Respons fisiologis sapi Fries holland laktasi yang diberi ransum dengan konsentrat mengandung kulit durian (Duria zibethinus) difermentasi Pleorotus ostreatus. Jurnal Sain Peternakan Indonesia, 14(1), 101-112. https://ejournal.unib.ac.id/jspi/article/view/7225
Sumartono, W. A. P., Hidanah, S., Yudaniayanti, I. S., Paramita, W., Al Arif, M. A., & Mustofa, I. (2023). Milk production and business analysis on dairy cattle affected by PMK in “Kampoeng Ternak” Sidoarjo livestock: A Literature Review. SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 2(5), 1473-1482. https://doi.org/10.54443/sibatik.v2i5.811
Susanto, A., Purwantini, D., Agus Santosa, S., & Puspita Candrasari, D. (2023). Study of non-genetic factors affecting dairy cow’s milk production and the development of correction factors for selection of FH cattle in Indonesia. Animal Production, 25(2), 71-82. https://doi.org/10.20884/1.jap.2023.25.2.221
Sutarno, & Setyawan, A.D. (2015). Review: Genetic diversity of local and exotic cattle and their crossbreeding impact on the quality of Indonesian cattle. Biodiversitas Journal of Biological Diversity, 16(2), 327-354. http://dx.doi.org/10.13057/biodiv/d160230
Toghdory, A., Ghoorchi, T., Asadi, M., Bokharaeian, M., Najafi, M., & Ghassemi Nejad, J. (2022). Effects of environmental temperature and humidity on milk composition, microbial load, and somatic cells in milk of holstein dairy cows in the Northeast Regions of Iran. Animals, 12(18), 2484. https://doi.org/10.3390/ani12182484
Țogoe, D., & Mincă, N. A. (2024). The impact of heat stress on the physiological, productive, and reproductive status of dairy cows. Agriculture, 14(8), 1241. https://doi.org/10.3390/agriculture14081241
Utami, K. B., Widiarso, B. P., & Kampus, J. P. (2022). Assessment of heat stress in dairy cows related to physiological responses. Indones. J. Anim. Sci, 32(2), 283-293. https://doi.org/10.21776/ub.jiip.2022.032.02.14
Wang, X., Bjerg, B.S., Choi, C.Y., Zong, C., & Zhang, G. (2018). A review and quantitative assessment of cattle-related thermal indices. Journal of Thermal Biology, 77, 24-37. https://doi.org/10.1016/j.jtherbio.2018.08.005
Wibowo, S.K., Rahmatullah, A.A., Putri, C.E.A., Srianto, P., Permatasari, D.A., Raharjo, D., Rimayanti, Safitri, E., Afandi M.A., & Karim, N.A. (2024). The Quality of milk production in Friesian Holstein (FH) dairy cattle experiencing repeat breeding at KUD Tani Wilis Sendang, Tulungagung Regency. Journal of Applied Veterinary Science and Technology, 5(2), 135-139. https://doi.org/10.20473/javest.V5.I2.2024.135-139
Wirando, Doloksaribu, L., Dewantari, M., Kayana, I. G. N., & Mahardika, I. G. (2023). Performance of Friesian holstein cows at Sumberbulu dairy farm in Banyuwangi East Java. Majalah Ilmiah Peternakan, 26(1), 37-48. https://doi.org/10.24843/MIP.2023.v26.i01.p07




