In Silico Detection of Antimicrobial Resistance and Virulence Genes in Methicillin Resistant Staphylococcus aureus Clinical Isolates: A Comparative Genomics Approach

  • Muhammad Taufiq Hidayat Department of Medical Laboratory Technology, Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia https://orcid.org/0000-0003-4251-5806
  • Endah Prayekti Department of Medical Laboratory Technology, Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
  • Muhammad Afwan Romdloni Department of Medical Laboratory Technology, Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia https://orcid.org/0000-0003-4780-2142
  • Seggaf Achmad Syah Department of Medical Laboratory Technology, Faculty of Health, Universitas Nahdlatul Ulama Surabaya, Surabaya, Indonesia
Keywords: Antimicrobial Resistance; Comparative Genomics; Methicillin Resistant; Staphylococcus aureus; Virulence Factors; Whole-genome sequencing

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) remains a formidable threat in both community and healthcare settings, thanks to its ability to evade β-lactam antibiotics and accumulate resistance to multiple drug classes. Here, we sequenced and compared the genomes of 13 recent clinical MRSA isolates alongside two well-characterized reference strains (N315 and NCTC 8325). By applying the ResFinder and VirulenceFinder pipelines, we rapidly cataloged each strain’s antibiotic resistance and virulence repertoire. Every MRSA isolate carried the hallmark mecA gene, and most also harbored blaZ, which encodes penicillinase. Resistance determinants for aminoglycosides (aac(6′)-Ie-aph(2″), aph(3′)-III), macrolides (erm(C), mph(C)), and chloramphenicol (cat variants) appeared in various combinations across the collection. On the virulence side, genes for α- and γ-hemolysins (hla, hlgABC) were universal, and nearly all strains possessed phage-encoded immune-evasion factors (sak, scn). The total count of virulence genes ranged from ten to fourteen per genome, peaking in two particularly gene-rich isolates. Our findings highlight the genetic diversity of MRSA, where multidrug resistance and a broad toxin arsenal coexist. Moreover, this study underscores the speed and reliability of in silico screening tools for antimicrobial-resistance surveillance and comparative genomics. Future work should integrate laboratory assays and patient data to link these genomic profiles to clinical outcomes.

Downloads

Download data is not yet available.

References

Afzal, M., Vijay, A. K., Stapleton, F., & Willcox, M. D. P. (2022). Genomics of Staphylococcus aureus Strains Isolated from Infectious and Non-Infectious Ocular Conditions. Antibiotics, 11(8). https://doi.org/10.3390/antibiotics11081011

Alkuraythi, D. M., Alkhulaifi, M. M., Binjomah, A. Z., Alarwi, M., Mujallad, M. I., Alharbi, S. A., Alshomrani, M., Gojobori, T., & Alajel, S. M. (2023). Comparative genomic analysis of antibiotic resistance and virulence genes in Staphylococcus aureus isolates from patients and retail meat. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1339339

Andrzejczuk, S., Cygan, M., Dłuski, D., Stępień-Pyśniak, D., & Kosikowska, U. (2023). Staphylococcal Resistance Patterns, blaZ and SCCmec Cassette Genes in the Nasopharyngeal Microbiota of Pregnant Women. International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24097980

Bano, A., Asghar, F., Ejaz, H., Junaid, K., Bashier Eltayeb, L., & Javed, N. (2023). Exploring the virulence potential of immune evasion cluster genes in methicillin-resistant Staphylococcus aureus from cancer patients. Saudi Journal of Biological Sciences, 30(11). https://doi.org/10.1016/j.sjbs.2023.103835

Bashir, A. M. (2025). Methicillin-Resistant Staphylococcus aureus. The Handbook of Zoonotic Diseases of Goats, 202–207. https://doi.org/10.1079/9781800622852.0016

Bortolaia, V., Kaas, R. S., Ruppe, E., Roberts, M. C., Schwarz, S., Cattoir, V., Philippon, A., Allesoe, R. L., Rebelo, A. R., Florensa, A. F., Fagelhauer, L., Chakraborty, T., Neumann, B., Werner, G., Bender, J. K., Stingl, K., Nguyen, M., Coppens, J., Xavier, B. B., … Aarestrup, F. M. (2020). ResFinder 4.0 for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy, 75(12), 3491–3500. https://doi.org/10.1093/jac/dkaa345

Che Hamzah, A. M., Chew, C. H., Al-Trad, E. I., Puah, S. M., Chua, K. H., Nor, N. I., Ismail, S., Maeda, T., Palittapongarnpim, P., & Yeo, C. C. (2024). Whole genome sequencing of methicillin-resistant Staphylococcus aureus clinical isolates from Terengganu, Malaysia, indicates the predominance of the EMRSA-15 (ST22-SCCmec IV) clone. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-54182-x

Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. In Virulence (Vol. 12, Issue 1, pp. 547–569). Bellwether Publishing, Ltd. https://doi.org/10.1080/21505594.2021.1878688

Juma, M. A., Sonda, T., Wadugu, B., Kuchaka, D., Shayo, M., Paulo, P., Kimu, P., Kanje, L. E., Beti, M., Van Zwetselaar, M., Mmbaga, B., & Kumburu, H. (2025). Genomic detection of Panton-Valentine Leucocidins encoding genes, virulence factors and distribution of antiseptic resistance determinants among Methicillin-resistant S. aureus isolates from patients attending regional referral hospitals in Tanzania. BMC Medical Genomics, 18(1). https://doi.org/10.1186/s12920-025-02085-9

Kathirvel, K., Rudhra, O., Rajapandian, S. G. K., Venkatesh Prajna, N., Lalitha, P., & Devarajan, B. (2021). Characterization of antibiotic resistance and virulence genes of ocular methicillin-resistant Staphylococcus aureus strains through complete genome analysis. Experimental Eye Research, 212. https://doi.org/10.1016/j.exer.2021.108764

Laabei, M., Uhlemann, A. C., Lowy, F. D., Austin, E. D., Yokoyama, M., Ouadi, K., Feil, E., Thorpe, H. A., Williams, B., Perkins, M., Peacock, S. J., Clarke, S. R., Dordel, J., Holden, M., Votintseva, A. A., Bowden, R., Crook, D. W., Young, B. C., Wilson, D. J., … Massey, R. C. (2015). Evolutionary Trade-Offs Underlie the Multi-faceted Virulence of Staphylococcus aureus. PLoS Biology, 13(9). https://doi.org/10.1371/journal.pbio.1002229

Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., Jelsbak, L., Sicheritz-Pontén, T., Ussery, D. W., Aarestrup, F. M., & Lund, O. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. Journal of Clinical Microbiology, 50(4), 1355–1361. https://doi.org/10.1128/JCM.06094-11

Noone, J. C., Ferreira, F. A., & Aamot, H. V. (2021). microorganisms Culture-Independent Genotyping, Virulence and Antimicrobial Resistance Gene Identification of Staphylococcus aureus from Orthopaedic Implant-Associated Infections. https://doi.org/10.3390/microorganisms

O’Neill, J. (2016). Tackling Drug-Resistant Infections Globally: Final Report And Recommendations The Review On Antimicrobial Resistance. HM GOvernment.

Rocha, G. D., de Simoni Gouveia, J. J., da Costa, M. M., Soares, R. A. N., & Gouveia, G. V. (2024). Resistance and virulence in Staphylococcus aureus by whole-genome sequencing: a comparative approach in blaZ-positive isolates. Brazilian Journal of Microbiology, 55(1), 955–967. https://doi.org/10.1007/s42770-023-01243-4

Santos, I. N. M., Alberto-Lei, F., Santos, F. F., Balera, M. F. C., Kurihara, M. N., Cunha, C. C., Seriacopi, L. S., Durigon, T. S., Reis, F. B., Eisen, A. K. A., Caleiro, G. S., de Araújo, J., Durigon, E. L., Klautau, G. B., & Salles, M. J. (2025). Comparative genomic analysis of resistance and virulence genes in staphylococcus epidermidis and their impact on clinical outcome of musculoskeletal infections. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-09061-4

Touaitia, R., Mairi, A., Ibrahim, N. A., Basher, N. S., Idres, T., & Touati, A. (2025). Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. In Antibiotics (Vol. 14, Issue 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/antibiotics14050470

Published
2025-09-11
How to Cite
Hidayat, M. T., Prayekti, E., Romdloni, M. A., & Syah, S. A. (2025). In Silico Detection of Antimicrobial Resistance and Virulence Genes in Methicillin Resistant Staphylococcus aureus Clinical Isolates: A Comparative Genomics Approach. BIOPENDIX: Jurnal Biologi, Pendidikan Dan Terapan, 13(1), 7-13. https://doi.org/10.30598/biopendixvol13issue1page7-13