APPLICATION OF THE ARIMA MODEL IN FORECASTING ETHEREUM PRICES

  • Romario Desouza Daniel Mangiwa Politeknik Statistika STIS
  • Revina Siregar Politeknik Statistika STIS
  • Seli Delima Sari
  • Neli Agustina Politeknik Statistika STIS https://orcid.org/0000-0002-1768-2648
Keywords: Forecast, Peramalan, Investing, Investasi, Ethereum, Cryptocurrency, ARIMA

Abstract

Ethereum merupakan salah satu mata uang kripto yang dibeli oleh masyarakat untuk investasi. Untuk melakukan hal ini, diperlukan prediksi harga Ethereum yang akurat agar masyarakat terhindar dari kerugian. Penelitian ini bertujuan untuk meramalkan harga Ethereum menggunakan model Autoregressive Integrated Moving Average (ARIMA). Data historis harga Ethereum dari 1 Januari 2023 hingga 15 Januari 2025 digunakan sebagai sampel, mencakup 534 periode. Model ARIMA (0,1,9) dipilih berdasarkan kriteria AIC, SC, dan Adjusted R-squared, dengan hasil peramalan dievaluasi menggunakan Mean Absolute Percentage Error (MAPE) sebesar 15,01% dan Root Mean Squared Error (RMSE) sebesar 649,702. Hasil peramalan menunjukkan bahwa harga Ethereum cenderung meningkat dalam 30 periode mendatang, meskipun fluktuasi peramalan tidak sebesar data historisnya. Penelitian ini menyimpulkan bahwa model ARIMA memberikan prediksi yang cukup akurat untuk jangka pendek, namun tingkat kesalahan meningkat seiring bertambahnya panjang periode peramalan. Temuan ini dapat menjadi acuan bagi investor dalam menyusun strategi investasi jangka pendek untuk Ethereum.

Downloads

Download data is not yet available.

References

M. G. Solomon, Ethereum For Dummies. United States: Wiley, 2019.

I. Santo, Melangkah ke Dunia Cryptocurrency: Memulai Perjalanan Anda ke Investasi Digital di Indonesia. Bintang Semesta Media, 2023.

J. Meliza and D. Hastalona, Investasi di Pasar Cryptocurrency. Penerbit P4I, 2022.

A. Singh, P. Kumar, and S. Taneja, Algorithmic Approaches to Financial Technology: Forecasting, Trading, and Optimization. IGI Global, 2024.

F. Rojas, H. Pomares, I. Rojas, and O. Valenzuela, Theory and Applications of Time Series Analysis: Selected Contributions from ITISE 2018. Springer International Publishing, 2019.

A. Aryanusa and S. Zahara, “Analisis Prediksi Harga Bitcoin Menggunakan Metode ARIMA,” SUBMIT: Jurnal Ilmiah Teknologi Informasi Dan Sains, vol. 4, no. 1, pp. 15–18, 2024. doi: 10.36815/submit.v4i1.3339.

A. Azari, “Bitcoin price prediction: An ARIMA approach,” arXiv preprint arXiv:1904.05315, 2019.

S. M. Raju and A. M. Tarif, “Real-time prediction of BITCOIN price using machine learning techniques and public sentiment analysis,” arXiv preprint arXiv:2006.14473, 2020.

A. Listiani and D. Al Mahkya, “Peramalan Cryptocurrency dengan Autoregressive Integrated Moving Average (ARIMA) dan Risiko Kerugian dengan Value at Risk (VaR),” Journal of Science and Applicative Technology, vol. 6, no. 2, pp. 85–91, 2022.

M. Jayasankar, “Comparative Forecasting of Major Cryptocurrencies: An Empirical Study Using Four Timeseries Forecasting Models,” in Proc. Int. Conf. Financial Markets & Corporate Finance, Singapore: Springer Nature Singapore, July 2023, pp. 41–57.

K. Cortez, M. D. P. Rodríguez-García, and S. Mongrut, “Exchange market liquidity prediction with the K-nearest neighbor approach: Crypto vs. fiat currencies,” Mathematics, vol. 9, no. 1, p. 56, 2020.

P. Sharma and R. M. Pramila, “Price prediction of Ethereum using time series and deep learning techniques,” in Proc. Emerging Trends and Technologies on Intelligent Systems: ETTIS 2022, Singapore: Springer Nature Singapore, 2022, pp. 401–413.

D. L. John, S. Binnewies, and B. Stantic, “Cryptocurrency Price Prediction Algorithms: A Survey and Future Directions,” Forecasting, vol. 6, no. 3, pp. 637–671, 2024. doi: 10.3390/forecast6030034.

I. Apriansyah, “Penyebab Harga Ethereum (ETH) Naik: Didorong Upgrade Dencun dan ETF,” Bittime, 2024. [Online]. Available: https://support.bittime.com/hc/id/articles/9106221767055-Penyebab-Harga-Ethereum-ETH-Naik-Didorong-Upgrade-Dencun-dan-ETF. [Accessed: Jan. 25, 2025].

N. Liunardo, D. Gunawan, and N. Murniati, “Analisis Peramalan Nilai Ethereum Menggunakan Model Autoregressive Integrated Moving Average,” Accounting Progress, vol. 2, no. 2, pp. 49–61, 2024. doi: 10.70021/ap.v2i2.99.

S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting: Methods and Applications, 2nd ed. New York, NY: Wiley, 1997.

J. D. Cryer and K.-S. Chan, Time Series Analysis with Applications in R, 2nd ed. Berlin, Germany: Springer, 2008.

J. E. Hanke and D. W. Winchern, Business Forecasting, 8th ed. Fngwood, NJ: Cliffs Prentice Hall, 2005.

P. Chang, Y. Wang, and C. Liu, “The development of a weighted evolving fuzzy neural network for PCB sales forecasting,” Expert Systems with Applications, vol. 32, pp. 86–96, 2007. doi: 10.1016/j.eswa.2005.11.021.

D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series Analysis and Forecasting. Hoboken, NJ: Wiley, 2008.

J. Supranto, Statistik Teori dan Aplikasi, 7th ed. Jakarta, Indonesia: Penerbit Airlangga, 2008.

Published
2025-05-05