THE SUFFICIENT CONDITIONS FOR A MULTIPLICATIVE DERIVATION IN THE JORDAN RING TO BE ADDITIVE
Abstract
Derivation is a mapping from a set to itself. There are two types of derivations in rings: ordinary derivation and Jordan derivation. Given a triangular matrix ring , a non-associative ring can be formed, known as a Jordan ring T. Subsequently, on the Jordan ring , a derivation can be defined, referred to as derivation in the Jordan ring . This paper provides the conditions that must be met for a multiplication derivation on the Jordan ring to be additive. Furthermore, the ring must be -torsion-free so that the derivation on the Jordan ring becomes a Jordan derivation on the ring .
Downloads
References
S. Wahyuni, I. E. Wijayanti, and A. Munandar, Teori Representasi Grup Hingga. UGM Press, 2023.[2]“Hungerford,TomasW.,AbstractAlgebra,AnIntroduction,(Saunders)”.[3]D.Patty,Z.A.Leleury,S.Tapilatu,“SomePropertiesoftheIntervalMatrixSemiring[ퟎ,풂]”.[4]S. Wahyuni, I. E. Wijayanti, and D. A. Yuwaningsih, Teori Ring dan Modul. UGM Press, 2016.[5]I. K. Waliyanti, I. E. Wijayanti, and M. F. Rosyid, “On non-associative rings,” Mathematics and Statistics, vol. 9, no. 2, pp. 172–178, 2021, doi: 10.13189/ms.2021.090212.[6]C. Haetinger, M. Ashraf,S. Ali, and C.Haetinger,“On Derivations In Rings AndTheirApplications,”2006.[Online].Available:http://ensino.univates.br/ ̃chaet[7]S. Ali, N. N. Rafiquee, and V. Varshney, “CERTAIN TYPES OF DERIVATIONSIN RINGS: A SURVEY,” 2024.[8]A. B. Thomas, N. P. Puspita, and F. Fitriani, “DERIVATION ON SEVERAL RINGS,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 3, pp. 1729–1738, Jul. 2024, doi: 10.30598/barekengvol18iss3pp1729-1738.[9]I.Ernanto,“Sifat-SifatRingFaktorYangDilengkapiDerivasi,”Journal of Fundamental Mathematics and Applications (JFMA), vol. 1, no. 1, p. 12, Jun. 2018, doi: 10.14710/jfma.v1i1.3.[10]O.WootijiruttikalandU.Leerawat,“JordanDerivationsonRings,”2006.[11]N. ur Rehman, A. Z. Ansari, and T. Bano, “On generalized Jordan ∗-derivation in rings,” Journal of the Egyptian Mathematical Society, vol. 22, no. 1, pp. 11–13, Apr. 2014, doi: 10.1016/j.joems.2013.04.011.[12]Z. Jokar, A. Hosseini, and A. Niknam, “Some conditions under which Jordan derivations are zero,” Journal of Taibah University for Science, vol. 11, no. 6, pp. 1095–1098, 2017, doi: 10.1016/j.jtusci.2016.09.006.[13]T. K. Lee and J. H. Lin, “Jordan derivations of prime rings with characteristictwo,” Linear Algebra Appl, vol. 462, pp. 1–15, Dec. 2014, doi: 10.1016/j.laa.2014.08.006.[14]B.FerreiraandB.L.M.Ferreira,“Jordanderivationsontriangularmatrixrings,”2015.[Online].Available:https://www.researchgate.net/publication/267515073[15]Y. Wang, “Additivity of multiplicative maps on triangular rings,” Linear Algebra Appl, vol. 434, no. 3, pp. 625–635, 2011, doi: 10.1016/j.laa.2010.09.015.
Copyright (c) 2025 Dyana Patty

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.