ADAPTIVE EXPONENTIALLY WEIGHTED MOVING AVERAGE WITH MEASUREMENT ERROR (COVARIATE) WITH AUXILIARY INFORMATION MAXIMUM FOR CEMENT QUALITY CONTROL

  • Eirene Christina Sellyra Institut Teknologi Sepuluh Nopember
  • Muhammad Ahsan Institut Teknologi Sepuluh Nopember
  • Wibawati Wibawati Institut Teknologi Sepuluh Nopember
Keywords: Adaptive,, Auxiliary Variable,, Control Chart,, Covariate,, EWMA,, Measurement Error

Abstract

The Shewhart control chart exhibits limitations in detecting small process shifts and monitors the mean and variance separately. To address these shortcomings, this study introduces the Adaptive EWMA with Measurement Error (Covariate Method) and Auxiliary Information Max (AEWMA ME C AI Max) control chart. This novel approach integrates memory-based monitoring, joint mean-variance detection, measurement error correction through the covariate method, utilization of auxiliary variables, and adaptive adjustment mechanisms to enhance sensitivity across various shift magnitudes. The AEWMA ME C AI Max chart was applied to cement production data from PT XYZ, using Blaine fineness as an auxiliary variable for monitoring compressive strength. Comparative analysis demonstrates that the adaptive chart consistently produces control statistics closer to the upper control limit compared to the non-adaptive Max-EWMA ME C AI chart, validating its superior sensitivity in shift detection. Furthermore, the cement production process at PT XYZ was found to be statistically capable, with a lower capability index (Ppl) and process performance index (Ppk) of 1.45, indicating consistent compliance with lower specification limits and centered process performance. These results affirm the practical effectiveness of the AEWMA ME C AI Max chart in enhancing process monitoring and capability assessment in industrial applications.

Downloads

Download data is not yet available.

References

[1] Douglas C. Montgomery, Introduction to Statistical Quality Control, 7th editio., vol. 11, no. 1. United States of America: John Wiley & Sons, Inc., 2013. [Online]. Available: http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI
[2] Douglas C. Montgomery, Introduction to Statistical Quality Control. 2020.
[3] M. Noor-ul-Amin, A. Javaid, M. Hanif, and E. Dogu, “Performance of maximum EWMA control chart in the presence of measurement error using auxiliary information,” Commun. Stat. Simul. Comput., vol. 51, no. 9, pp. 1–25, 2020, doi: 10.1080/03610918.2020.1772301.
[4] R. G. Crowder, Principles of Learning and Memory: Classic Edition. 2014.
[5] J. F. Macgregor and T. J. Harris, “The Exponentially Weighted Moving Variance,” J. Qual. Technol., vol. 25, no. 2, pp. 106–118, 1993, doi: 10.1080/00224065.1993.11979433.
[6] H. Xie, “Contributions to Qualimetry,” p. 197, 1999, [Online]. Available: https://mspace.lib.umanitoba.ca/server/api/core/bitstreams/dc803caa-dca2-4741-a31c-ede909f8f035/content
[7] A. Haq and M. B. C. Khoo, “A new synthetic control chart for monitoring process mean using auxiliary information,” J. Stat. Comput. Simul., vol. 86, no. 15, pp. 3068–3092, 2016, doi: 10.1080/00949655.2016.1150477.
[8] K. W. Linna and W. H. Woodall, “Effect of measurement error on shewhart control charts,” J. Qual. Technol., vol. 33, no. 2, pp. 213–222, 2001, doi: 10.1080/00224065.2001.11980068.
[9] P. E. Maravelakis, J. Panaretos, and S. Psarakis, “EWMA chart and measurement error,” J. Appl. Stat., vol. 31, no. 4, pp. 445–455, 2004, doi: 10.1080/02664760410001681738.
[10] H. Du Nguyen, K. P. Tran, G. Celano, P. E. Maravelakis, and P. Castagliola, “On the effect of the measurement error on Shewhart t and EWMA t control charts,” Int. J. Adv. Manuf. Technol., vol. 107, no. 9–10, pp. 4317–4332, 2020, doi: 10.1007/s00170-020-05222-z.
[11] G. C. Runger and D. C. Montgomery, “Gauge capability and designed experiments. part 1 basic methods,” Qual. Eng., vol. 6, no. 1, pp. 115–135, 1993, doi: 10.1080/08982119308918710.
[12] T. De Waal, A. Van Delden, and S. Scholtus, “Quality measures for multisource statistics,” Stat. J. IAOS, vol. 35, no. 2, pp. 179–192, 2019, doi: 10.3233/SJI-180468.
[13] P. H. Lee and C. S. Lin, “Adaptive Max charts for monitoring process mean and variability,” J. Chinese Inst. Ind. Eng., vol. 29, no. 3, pp. 193–205, 2012, doi: 10.1080/10170669.2012.673508.
[14] N. Abbas, M. Riaz, and R. J. M. M. Does, “An EWMA-Type control chart for monitoring the process mean using auxiliary information,” Commun. Stat. - Theory Methods, vol. 43, no. 16, pp. 3485–3498, 2014, doi: 10.1080/03610926.2012.700368.
[15] A. Haq, “A New Maximum EWMA Control Chart for Simultaneously Monitoring Process Mean and Dispersion Using Auxiliary Information,” Qual. Reliab. Eng. Int., vol. 33, no. 7, pp. 1577–1587, 2017, doi: 10.1002/qre.2126.
[16] A. Javaid, M. Noor-ul-Amin, and M. Hanif, “Performance of Max-EWMA control chart for joint monitoring of mean and variance with measurement error,” Commun. Stat. Simul. Comput., vol. 52, no. 1, pp. 1–26, 2023, doi: 10.1080/03610918.2020.1842886.
[17] M. Noor-ul-Amin, A. Riaz, and A. Safeer, “Exponentially weighted moving average control chart using auxiliary variable with measurement error,” Commun. Stat. Simul. Comput., vol. 51, no. 3, pp. 1002–1014, 2020, doi: 10.1080/03610918.2019.1661474.
[18] Prof.Dr.Sugiyono, Metode Penelitan Kuantitatif Kualitatif dan R&D. ALFABETA,CV., 2013.
[19] L. Kemdikbud, “Pertemuan 12 analisis korelasi product momen pearson,” Anal. Korelasi Prod. Moment Pearson, p. 12, 2020, [Online]. Available: https://lmsspada.kemdikbud.go.id/pluginfile.php/559913/mod_folder/content/0/PERTEMUAN
[20] W. J. Braun and D. Park, “Estimation of $σ$ for Individuals Charts,” J. Qual. Technol., vol. 40, no. 3, pp. 332–344, 2008, doi: 10.1080/00224065.2008.11917738.
[21] W. W. Daniel, Applied Nonparametric statistics, 2nd ed. Boston Massachusetts: PWS-KENT Publishing Company, 1990.
[22] A. Haq and S. Akhtar, “Auxiliary information based maximum EWMA and DEWMA charts with variable sampling intervals for process mean and variance,” Commun. Stat. - Theory Methods, vol. 51, no. 12, pp. 3985–4005, 2022, doi: 10.1080/03610926.2020.1805766.
[23] G. Capizzi and G. Masarotto, “An adaptive exponentially weighted moving average control chart,” Technometrics, vol. 45, no. 3, pp. 199–207, 2003, doi: 10.1198/004017003000000023.
[24] S. A. P. Andikaputra, “Diagram Kontrol Adaptive Exponentially Weighted Moving Average Max (AEWMAM) Chart,” Institut Teknologi Sepuluh Nopember Indonesia, 2023.
[25] N. A. Saleh, M. A. Mahmoud, and A. S. G. Abdel-Salam, “The performance of the adaptive exponentially weighted moving average control chart with estimated parameters,” Qual. Reliab. Eng. Int., vol. 29, no. 4, pp. 595–606, 2013, doi: 10.1002/qre.1408.
[26] A. Haq, R. Gulzar, and M. B. C. Khoo, “An efficient adaptive EWMA control chart for monitoring the process mean,” Qual. Reliab. Eng. Int., vol. 34, no. 4, pp. 563–571, 2018, doi: 10.1002/qre.2272.
[27] A. Rochmaturiza and D. F. Aksioma, “PENGENDALIAN KUALITAS PRODUK PORTLAND POZZOLAND CEMENT ( PPC ) DENGAN PENDEKATAN REGRESSION ADJUSTMENT CONTROL CHART DI PT . SEMEN INDONESIA ( Persero ), Tbk . Unit Gresik,” p. 132, 2018.
[28] I. P. Laintarawan, I. N. S. Widnyana, and I. W. Artana, “Buku Ajar Konstruksi Beton I,” p. 69, 2009.
[29] S. W. I. Pratama, N. Rauf, and E. Juarlin, “Pembuatan dan Pengujian Kualitas Semen Portland Yang Diperkaya Silikat Abu Ampas Tebu ( Fabrication and Quality Test of Cement Portland With Enriched by Silicate Sugarcane Bagasse Ash ),” J. Fis. FMIPA Unhas, pp. 1–5, 2014.
[30] B. S. N. BSN, “SNI 0302-2014 semen portland pozolan oleh BSN.” p. 8, 2014.
Published
2025-05-04