Some NECESSARY AND SUFFICIENT CONDITIONS OF COMULTIPLICATION MODULE

Keywords: Algebra

Abstract

In ring theory, if  and  be ideals of , then the multiplication of  and , which is defined by  is also ideal of . Motivated by the multiplication of two ideals, then can be defined a multiplication module, a special module which every submodule of  can be expressed as the multiplication of an ideal of ring and the module itself, and can simply be written as .  Furthermore, if   the module become a comultiplication module. By the definition, it concludes that every comultiplication module is a multiplication module but the converse is not necessarily applicable.

Keywordsannihilator, ideal, module, comultiplication module, multiplication module, ring, submodule.

Downloads

Download data is not yet available.

References

Al-Shaniafi, Y. Smith P., (2009), Comultiplication Modules over Commutative Rings, Journal of Commutative Algebra.

Atani, S.,Ghaleh, S..2006.On Comultiplication Modules. International Mathematical Forum.

Gilbert, L., Gilbert J..2009.Elements of Modern Algebra. USA : Brooks/Cole.

Rajaee, S. 2013. Some Results on Comultiplication Modules. International Journal of Algebra, Vol.7.

Wijayanti, Sri Wahyuni. 2013. Bahan Ajar : Teori Modul. Yogyakarta.

Wijayanti, Sri Wahyuni. 2013. Bahan Ajar : Teori Ring. Yogyakarta.

Wisbauer, R. .1991. Foundations of Module and Ring Theory, Gordon and Breach Science Publishers.

Published
2022-10-13