# PERLUASAN DEFINISI RATA-RATA VIA TEOREMA NILAI RATA-RATA

• Mochammad Idris Program Studi Matematika, Fakultas MIPA, Universitas Lambung Mangkurat, Indonesia
Keywords: rata-rata, teorema nilai rata-rata

### Abstract

Untuk n bilangan positif, kita dapat menghitung rata-ratanya dengan rata-rata aritmetik, rata-rata geometrik, dan rata-rata harmonik. Namun ada beberapa definisi nilai ratarata yang lain hanya untuk dua bilangan positif, dua yang disebutkan di sini adalah rata-rata logaritmik dan rata-rata identrik. Dalam paper ini, kita memperluas definisi rata-rata logaritmik dan rata-rata identrik untuk n bilangan positif via teorema nilai rata-rata

### References

G. Zabandan, ”Several integral inequalities and their applications on means,” Int. J. Nonlinear Anal. Appl. 12(2), 363-374 (2012).

R. G. Bartle, D. R. Sherbert, Introduction to Real Analysis, 4th Edition, John Wiley & Sons, Inc. (2010).

B. Long, Y. Li, and Y. Chu, ”Optimal Inequalities Between Generalized Logarithmic, Identric, and Power Means” International Journal of Pure and Applied Mathematics, 80(1) , 41-51 (2012).

J. Sandor and B. Bhayo, ”On Some Inequalities for the Identric, Logarithmic and Related Means” Journal of Mathematical Inequalities, 9(3), 889-896 (2015).

K. B. Stolarsky, ”Generalizations of the Logarithmic Mean” Mathematics Magazine, 48(2), 87-92 (1975). [

P. S. Bullen, Handbook of Means and Their Inequalities. Kluwer (2003).

E. M. Pearce, J. Pecˇaric´, and V. ˇSimic´, “On Weighted Generalized Logarithmic Means,” Houston Journal of Mathematics, 23(2), 547-562 (2020).

A. O. Pittenger, “The logarithmic mean in n variables, ”Amer. Math. Monthly, 92, 99-104 (1985).

S. Mustonen, “Logarithmic Mean for Several Arguments, ” unpbublished paper, the current version of this paper can be downloaded from http://www.survo.fi/papers/logmean.pdf, last update: 17 November 2005.

Z. G. Xiao and Z. H. Zhang, “The Inequalities G ≤ L ≤ I ≤ A in n Variables, ”Journal of Inequalities in Pure and Applied Mathematics, 4(2), Article 39 (2003).

M. H. Duong, Fundamental Inequalities: Techniques and Applications (Lecture notes). Mathematics Institute, University of Warwick (2017).

P. S. Bullen, D. S. Mitrinovic´, and P. M. Vasic´, “Means and their inequalities, ”Reidel, Dordrecht (1989).

B. C. Carlson, Special Functions of Applied Mathematics. Academic Press, New York (1977).

B. C. Carlson, “The logarithmic mean,” Amer. Math. Monthly, 79, 615-618 (1972).

Published
2022-04-19
How to Cite
Idris, M. (2022). PERLUASAN DEFINISI RATA-RATA VIA TEOREMA NILAI RATA-RATA. Pattimura Proceeding: Conference of Science and Technology, 2(1), 115-124. https://doi.org/10.30598/PattimuraSci.2021.KNMXX.115-124
Section
Articles