Application of Markov Chain in Predicting Sugar Production at Candi Baru Sugar Factory, Sidoarjo
Abstract
Granulated sugar is a sugar commonly used daily to manufacture food and beverages. The demand for granulated sugar continues to increase, but the number of sugar factories and the area of sugar cane in Indonesia is decreasing. This causes a gap between the demand for sugar which continues to increase, and the production of granulated sugar continues to decline, resulting in Indonesia being the largest country importer of sugar. The imbalance between the demand and production of granulated sugar At Candi Baru Sugar Factory, Sidoarjo, East Java, resulted in not achieving the target to meet these needs. Therefore, predictions are made to get an overview of production planning to optimize granulated sugar production so that sugar needs can be met. The prediction method used at the Candi Baru sugar factory, Sidoarjo, East Java, for the 2022 milling period is the Markov Chain method with a four-state divisor, namely drastically down, down, up, and up drastically. The application of Markov Chains produces predictions for each state. It is predicted that the production of sugar with the highest percentage for May – December upstate.
Downloads
References
A.R, Putra, Riset Operasional dengan POM-QM for Windows (Desanta Multivisitama, Serang), pp. 59-60, 2018.
A, Ridhwan., D.E, Ratnawati and B, Rahayudi, “Peramalan Produksi Gula Pasir Menggunakan Fuzzy Time Series Dengan Optimasi Algoritma Genetika (Studi Kasus PG Candi Baru Sidoarjo),” Journal of Information Technology and Computer Science. (Brawijaya University, Malang), pp. 2543-2548, 2018.
A.S, Rachman., I, Cholissodin and M.A, Fauzi, “Peramalan Produksi Gula Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Pada PG Candi Baru Sidoarjo,” Journal of Information Technology and Computer Science. (Brawijaya University, Malang), pp. 1683-1689, 2018
Aulia, “Aplikasi Rantai Markov Dalam Memprediksi Ekspor dan Impor Migas Di Indonesia,” B.Sc. Thesis, Sumatera Utara University, 2021.
Aulia and Iqbal, “Pendekatan Rantai Markov Waktu Diskrit Dalam Memprediksi Perencanaan Produksi Padi Terhadap Lahan Panen Di Sumatera Utara,” B.Sc. Thesis, Sumatera Utara University, 2018.
Basorudin and Dona, “ Penerapan Metode Markov Chain Untuk Memprediksi Hasil Panen Kelapa Sawit dan Karet di Kabupaten Rokan Hulu,” Journal of Informatics and Computer Science. (Pasir Pengaraian University, Riau), pp. 116-123, 2020
B, Harstanto, Naskah Tutorial QM for Windows (Universitas Padjajaran, bandung), pp. 3, 2011
E, Satriana., E, Tety and A, Rifai, “Faktor-Faktor yang Mempengaruhi Konsumsi Gula Pasir di Indonesia,” Journal of Agribusiness. (Riau University, Riau), pp. 01-15, 2014.
E.Y, Darmayanti., B.D, Setiawan and F.A, Bachtiar, “Particle Swarm Optimization Untuk Optimasi Bobot Extreme learning Machine Dalam Memprediksi Produksi Gula Kristal Putih Pabrik Gula Candi Baru-Sidoarjo,” Journal of Information Technology and Computer Science. (Brawijaya University, Malang), pp. 5096-5104, 2018
H.A, Taha, Operations Research An Introduction 10^thEdition (Pearson Education, England, 2017), pp. 632.
H.J, Wells, Software for Decision Science: Quantitative Methods Production and Operations Management. (England, Pearson Education), pp. 147, 2015.
I.N, Rizanti and Soehardjoepri, “Prediksi Produksi Kayu Bundar Kabupaten Malang Dengan Menggunakan Metode Markov Chain,” Journal of Sciences and Arts. (Teknologi Sepuluh November Institute of Technology, Surabaya), pp. 2337-3520, 2017
Karmini, Ekonomi Produksi Pertanian (Mulawarman University press, Samarinda), pp. 16, 2018.
L.J, Cseke., A, Kirakosyan., P.B, Kaufman., S.L, Warber., J.A, Duke., H.L, Brielmen, Natural Product From Plant Second Edition (CRC Press, Boca Raton), pp. 27, 2006.
Nurfitrianti, “Penerapan Data Mining Untuk Prediksi Harga Beras Di Indonesia Menggunakan Model Markov,“ B.Sc (Tech). Thesis, Sultan Syarif Kasim Islamic State University, 2019.
S.D, Anitasari., D.N.R, Sari., I.A, Astarini., M.R, Defiani, Teknologi Kultur Mikroskopa Tebu (LPPM IKIP PGRI Jember Press, Jember), pp. 5-9, 2018.
S.M, Ross, Introduction to Probability Models 10^thEdition (Elsevier Inc, California), pp. 192-215, 2010.
S, Maghfiroh dan F, Hilmiyah, “ Prediksi Hasil Produksi Pajale di Kabupaten Jember Menggunakan Metode Markov Chain,” Journal of Science, Technology dan Industry. (Jember University, Jember), pp. 145-150, 2021.
S, Sasake., Y.A, Lesnussa and A.Z, Wattimena, “Peramalan Cuaca Menggunakan Metode Rantai Markov (Studi Kasus: Cuaca Harian Di Kota Ambon),” Journal of Mathematics. (Pattimura University, Ambon), pp. 01-09, 2021.
S, Sinulingga, Perencanaan dan Pengendalian Produksi Edisi Pertama (Graha Ilmu, Yogyakarta, 2009), pp. 23.
T.A, Nurman., I, Syata and C.D, Wulandari, “Prediksi Hasil Panen Kopi Di Sulawesi Menggunakan Analisis Rantai Markov,” Journal of Applied Mathematics and Statistics. (Alauddin Islamic State University, Makasar), pp. 120-127, 2021
T, Sariwulan, Pengantar Statistika Ekonomi dan Bisnis (Samudra Biru, Yogyakarta), pp. 15-16, 2018.
Copyright (c) 2023 Pattimura Proceeding: Conference of Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.