Cuckoo Search Algorithm untuk Menyelesaikan Bi-Objective Permutation Flowshop Scheduling Problem
Main Article Content
Abstract
Tujuan dari penelitian ini adalah menyelesaikan permasalahan Bi-objective Permutation Flowshop Scheduling Problem (BPFSP) menggunakan Cuckoo Search Algorithm (CSA). BPFSP memiliki lebih dari satu fungsi tujuan yaitu meminimalkan makespan dan total tardiness. Program penerapan CSA untuk menyelesaikan BPFSP diimplementasikan dalam kasus dengan tiga jenis data yaitu data kecil dengan 5-pekerjaan 4-mesin, data sedang dengan 20-pekerjaan 10-mesin, dan data besar 50-pekerjaan 20-mesin dengan penggunaan beberapa nilai parameter yang bervariasi diantaranya maksimum iterasi, banyaknya sarang serta probabilitas pergantian sarang. Berdasarkan hasil running pada ketiga jenis data diperoleh bahwa semakin banyak jumlah sarang serta iterasi maka akan memberikan nilai fungsi tujuan BPFSP yang cenderung lebih baik. Sebaliknya, nilai fungsi tujuan BPFSP akan cenderung lebih baik jika nilai probabilitas pergantian sarang semakin kecil.