Sensory Profile of Canarium Nut Tempeh Fermented with Varying Concentrations of Rhizopus oligosporus

  • Helen C D Tuhumury Agricultural Product Technology Department, Faculty of Agriculture, Pattimura University, Jl. Ir. M. Putuhena, Kampus Poka Ambon, 97233, Indonesia
  • Gillian Tetelepta Agricultural Product Technology Department, Faculty of Agriculture, Pattimura University, Jl. Ir. M. Putuhena, Kampus Poka Ambon, 97233, Indonesia
  • Arthur F A Sopacua Agricultural Product Technology Department, Faculty of Agriculture, Pattimura University, Jl. Ir. M. Putuhena, Kampus Poka Ambon, 97233, Indonesia
Keywords: Canarium nut, Rhizopus oligosporus, Tempeh, Sensory evaluation, Fermentation

Abstract

This study investigated the sensory characteristics of tempeh produced from canarium nuts (Canarium indicum) fermented with varying concentrations (0.5%, 1.5%, 2.5%, and 3.5% w/w) of Rhizopus oligosporus. Canarium nut tempeh presents a promising alternative to traditional soy-based tempeh, particularly for consumers seeking diverse textures and flavors or those with soy allergies. Sensory evaluation was conducted using hedonic and descriptive tests among 25 semi-trained panelists. The results demonstrated that the 0.5% inoculum concentration yielded the highest scores in aroma, taste, texture, and overall liking. Descriptive analysis revealed that lower inoculum levels preserved the distinctive canarium nut aroma and flavor while maintaining moderate fermentation intensity and balanced textural properties. In contrast, higher inoculum concentrations resulted in increased bitterness, excessive firmness, and masked nutty characteristics due to over-fermentation. These findings suggest that low inoculum levels are optimal for producing canarium nut tempeh with superior sensory appeal. This study supports the development of high-quality, non-soy tempeh products using underutilized local resources and provides insights into optimizing fungal fermentation processes.

Downloads

Download data is not yet available.

References

Ahnan-Winarno, A.D., Cordeiro, L., Winarno, F.G., Gibbons, J., & Xiao, H. (2021). Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1717–1767. https://doi.org/https://doi.org/10.1111/1541-4337.12710

Aliyah, N. (2024). Pembuatan tempe kacang tunggak (Vigna unguiculata) dengan variasi lama fermentasi menggunakan inokulum tempe. Joiurnal of Comprehensive Science, 3(1), 62–78.

Bai, S. H., Brooks, P., Gama, R., Nevenimo, T., Hannet, G., Hannet, D., Randall, B., Walton, D., Grant, E., & Wallace, H.M. (2019). Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. Journal of Food Science and Technology, 56(2), 792–798. https://doi.org/10.1007/s13197-018-3539-6

Cabanillas, B., Jappe, U., & Novak, N. (2018). Allergy to peanut, soybean, and other legumes: recent advances in allergen characterization, stability to processing and IgE cross-reactivity. Molecular Nutrition & Food Research, 62(1), 1700446. https://doi.org/https://doi.org/10.1002/mnfr.201700446

Campbell, R., Hauptmann, A., Campbell, K., Fox, S., & Marco, M.L. (2022). Better understanding of food and human microbiomes through collaborative research on inuit fermented foods. Microbiome Research Reports, 1(1), 1–7. https://doi.org/10.20517/mrr.2021.06

Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461–478. https://doi.org/10.1038/s41575-019-0157-3

Damayanti, A., Bahlawan, Z.A.S., Winaningsih, I., Ramadhani, R.R., Bancin, W.A.P., & Yuliono, B. (2025). A quality analysis of different types of peanuts tempeh wrap as food security. AIP Conference Proceedings, 3166(1), 20030. https://doi.org/10.1063/5.0236745

Domínguez-López, I., Yago-Aragón, M., Salas-Huetos, A., Tresserra-Rimbau, A., & Hurtado-Barroso, S. (2020). Effects of dietary phytoestrogens on hormones throughout a human lifespan: A review. Nutrients, 12(8), 1–25. https://doi.org/10.3390/nu12082456

Egounlety, M., & Aworh, O.C. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Ha). Journal of Food Engineering, 56(2), 249–254. https://doi.org/https://doi.org/10.1016/S0260-8774(02)00262-5

Handoyo, T., & Morita, N. (2006). Structural and functional properties of fermented soybean (Tempeh) by using rhizopus oligosporus. International Journal of Food Properties, 9(2), 347–355. https://doi.org/10.1080/10942910500224746

Lee, S. M., Oh, J., Hurh, B.-S., Jeong, G.-H., Shin, Y.-K., & Kim, Y.-S. (2016). Volatile compounds produced by lactobacillus paracasei during oat fermentation. Journal of Food Science, 81(12), C2915–C2922. https://doi.org/https://doi.org/10.1111/1750-3841.13547

Leeuwendaal, N. K., Stanton, C., O’Toole, P.W., & Beresford, T.P. (2022). Fermented foods, health and the gut microbiome. Nutrients, 14(7), 1527. https://doi.org/10.3390/nu14071527

Magdalena, S., Hogaputri, J.E., Yulandi, A., & Yogiara, Y. (2022). The addition of lactic acid bacteria in the soybean soaking process of tempeh. Food Research, 6(3), 27–33. https://doi.org/10.26656/fr.2017.6(3).304

Mailoa, M., Widyaningsih, T.D., Putri, W.D.R., & Harijono. (2019). Fresh and roasted Canarium nut (Canarium vulgare) altering the lipid profile of hypercholesterolemic rats (Rattus norvegicus). Eurasia J Biosci, 13, 231–238. https://www.proquest.com/docview/2234975066?pq-origsite=gscholar&fromopenview=true

Matsuo, M. (2006). Preparation and preferences of peanut-tempeh, peanuts fermented with Rhizopus oligosporus. Food Science and Technology Research, 12(4), 270–274. https://doi.org/10.3136/fstr.12.270

Nur, N., Meryandini, A., Suhartono, M.T., & Suwanto, A. (2020). Lipolytic bacteria and the dynamics of flavor production in indonesian tempeh. Biodiversitas, 21(8), 3818–3825. https://doi.org/10.13057/biodiv/d210850

Pangastuti, A., Alfisah, R.K., Istiana, N.I., Sari, S.L.A., Setyaningsih, R., Susilowati, A., & Purwoko, T. (2019). Metagenomic analysis of microbial community in over-fermented tempeh. Biodiversitas, 20(4), 1106–1114. https://doi.org/10.13057/biodiv/d200423

Prameswari, H.A., Nursiwi, A., Zaman, M.Z., Ishartani, D., & Sari, A.M. (2021). Changes in chemical and sensory characteristics of gunungkidul’s lamtoro (Leucaena leucocephala) tempeh during extended fermentation. IOP Conference Series: Earth and Environmental Science, 828(1), 012001. https://doi.org/10.1088/1755-1315/828/1/012001

Puspitasari, D., Nasir, M., & Azmin, N. (2022). Uji organoleptik tempe dari biji asam (Tamarindus indica) berdasarkan waktu fermentasi. JUSTER : Jurnal Sains Dan Terapan, 1(1), 8–14. https://doi.org/10.55784/juster.vol1.iss1.12

Ritter, S.W., Gastl, M.I., & Becker, T.M. (2022). The modification of volatile and nonvolatile compounds in lupines and faba beans by substrate modulation and lactic acid fermentation to facilitate their use for legume-based beverages—A review. Comprehensive Reviews in Food Science and Food Safety, 21(5), 4018–4055. https://doi.org/https://doi.org/10.1111/1541-4337.13002

Rizal, S., Kustyawati, M.E., Murhadi, & Hasanudin, U. (2021). The growth of yeast and fungi, the formation of β-Glucan, and the antibacterial activities during soybean fermentation in producing tempeh. International Journal of Food Science, 2021(1), 6676042. https://doi.org/https://doi.org/10.1155/2021/6676042

Rizal, S., Kustyawati, M.E., Murhadi, Sari, R.K., & Hidayat, R. (2024). Microbiological, sensory, and chemical properties of high-quality tempeh made with instant Mosaccha tempeh inoculum powder. Food Science and Technology International, 21, 10820132241264444. https://doi.org/10.1177/10820132241264443

Rizal, S., Kustyawati, M.E., Suharyono, A.S., & Suyarto, V.A. (2022). Changes of nutritional composition of tempeh during fermentation with the addition of Saccharomyces cerevisiae. Biodiversitas, 23(3), 1553–1559. https://doi.org/10.13057/biodiv/d230345

Seumahu, C.A., Suwanto, A., Rusmana, I., & Solihin, D.D. (2013). Bacterial and fungal communities in tempeh as reveal by amplified ribosomal intergenic sequence analysis. HAYATI Journal of Biosciences, 20(2), 65–71. https://doi.org/https://doi.org/10.4308/hjb.20.2.65

Sitompul, S.R., Eliska, & Tarigan, A.A. (2023). Uji daya terima dan kandungan gizi tempe biji karet (Hevea brasiliensis). Jurnal Kesehatan Masyarakat Indonesia, 1(1), 35–45. https://doi.org/10.1016/j.jnc.2020.125798

Sivakumar, P.S., Panda, S.H., Ray, R.C., Naskar, S.K., & Bharathi, L.K. (2010). Consumer acceptance of lactic acid-fermented sweet potato pickle. Journal of Sensory Studies, 25(5), 706–719. https://doi.org/https://doi.org/10.1111/j.1745-459X.2010.00299.x

Starzyńska-Janiszewska, A, Stodolak, B, Duliński, R, & Mickowska, B. (2012). The influence of inoculum composition on selected bioactive and nutritional parameters of grass pea tempeh obtained by mixed-culture fermentation with Rhizopus oligosporus and Aspergillus oryzae strains. Food Science and Technology International, 18(2), 113–122. https://doi.org/10.1177/1082013211414771

Tamam, B. (2022). Tempe: Pangan lokal unggul (Superfood) khasanah budaya bangsa. Indonesian Red Crescent Humanitarian Journal, 1(1), 41–48. https://doi.org/10.56744/irchum.v1i1.14

Tamang, J.P., Watanabe, K., & Holzapfel, W.H. (2016). Review: Diversity of microorganisms in global fermented foods and beverages. Frontiers in Microbiology, 7, 1–28. https://doi.org/10.3389/fmicb.2016.00377

Teoh, S.Q., Chin, N.L., Chong, C.W., Ripen, A.M., How, S., & Lim, J.J.L. (2024). A review on health benefits and processing of tempeh with outlines on its functional microbes. Future Foods, 9, 100330. https://doi.org/https://doi.org/10.1016/j.fufo.2024.100330

Tuhumury, H.C.D., Souripet, A., & Pattiwael, K.J. (2023). Production of canarium (Canarium indicum L) butter with different sugar concentrations. Journal of Applied Agricultural Science and Technology, 7(2), 130–141. https://doi.org/10.55043/jaast.v7i2.138

Wang, K., Wu, H., Wang, J., & Ren, Q. (2023). Microbiota composition during fermentation of broomcorn millet huangjiu and their effects on flavor quality. Foods, 12(14), 2680. https://doi.org/10.3390/foods12142680

Wihan, L.A., & Anugrahati, N.A. (2023). Utilization of partially purified papain enzyme in mallika black soybean tempeh hydrolysate as umami seasoning. Caraka Tani: Journal of Sustainable Agriculture, 38(2), 215–228. https://doi.org/10.20961/carakatani.v38i2.71093

Zainal Abidin, N.A., Mohd Zin, Z., Abdullah, M.A.A., Rusli, N.D., & Zainol, M.K. (2020). Physicochemical Properties and Sensory Acceptance of Canavalia ensiformis Tempeh Energy Bar. Food Research, 4(5), 1637–1645. https://doi.org/10.26656/fr.2017.4(5).150

Published
2025-05-26
How to Cite
Tuhumury, H., Tetelepta, G., & Sopacua, A. (2025). Sensory Profile of Canarium Nut Tempeh Fermented with Varying Concentrations of Rhizopus oligosporus. Tropical Small Island Agriculture Management, 5(1), 1-16. https://doi.org/10.30598/tsiam.2025.5.1.1